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Abstract – A recurrent neural network (RNN) trained with a 
combination of particle swarm optimization (PSO) and 
backpropagation (BP) algorithms is proposed in this paper. The 
network is used as a dynamic system modeling tool to identify the 
frequency-dependent impedances of power electronic systems 
such as rectifiers, inverters, and DC-DC converters. As a 
category of supervised learning methods, the various 
backpropagation training algorithms developed for recurrent 
neural networks use gradient descent information to guide their 
search for optimal weights solutions that minimize the output 
errors. While they prove to be very robust and effective in 
training many types of network structures, they suffer from some 
serious drawbacks such as slow convergence and being trapped 
at local minima. In this paper, a modified particle swarm 
optimization technique is used in combination with the 
backpropagation algorithm to traverse in a much larger search 
space for the optimal solution. The combined method preserves 
the advantages of both techniques and avoids their drawbacks. 
The method is implemented to train a RNN that successfully 
identifies the impedance characteristics of a three-phase inverter 
system. The performance of the proposed method is compared to 
those of both BP and PSO when used separately to solve the 
problem, demonstrating its superiority. 

I. INTRODUCTION 

There has been plenty amount of research on dynamic 
system modeling with recurrent neural networks [1-4]. RNNs 
have internal feedback loops within the network which allows 
them to store previously presented patterns. The capability 
makes this type of neural networks superior to conventional 
feedforward neural networks in modeling dynamic systems 
because the network outputs are functions of both the current 
inputs as well as their internal states. 

In this paper RNN is used to extract the 
frequency-dependent impedance characteristics of power 
electronics systems. Traditional impedance measurement 
techniques [5, 6] require multiple injections of test signals of 
different frequencies into the system during its normal 
operation. The test procedure is often complex and prolonged, 
which is not efficient and convenient, especially when the 
system under test is critical and minimal interruption is 
desired. The impedance identification method proposed in this 
paper avoids multiple injections and only one set of data is 
required; thus greatly reduce disturbances to system operation. 

An important step of the RNN-based impedance extraction 
method is to train the neural network such that it learns the 
dynamic behavior of the tested system. There are a variety of 
training algorithms available for neural networks [7-11]. 
However, certain properties of the RNN make many of the 

algorithms less efficient, and it often takes an enormous 
amount of time to train a network of even a moderate size. In 
addition, the complex error surface of the RNN network makes 
many training algorithms more prone to being trapped in local 
minima. 

A recent development in evolutionary computation 
techniques has enabled the application of various 
population-based search algorithms in the training of neural 
networks. Many researchers have focused on using genetic 
algorithms to tune the weight parameters of various neural 
networks [7, 8]. 

As a relatively new stochastic algorithm, the particle swarm 
optimization method has gained more and more attention. PSO 
is inspired by social interaction of knowledge, where each 
particle in a swarm flies through the search space with a 
velocity that is dynamically adjusted according to its own and 
its companion's historical behaviors. The PSO algorithm is 
easy to implement and has been empirically shown to perform 
well on many optimization problems. 

Like other evolutionary techniques, PSO was quickly used 
in neural network training. A preliminary study of PSO trained 
feedforward networks was presented in [9]. Test results based 
on the training of some simple problems showed that the 
performance of PSO is not much better than other methods. 
However, the authors argued that PSO is still promising in 
cases where a high number of local minima are known to exist. 
Another research of PSO trained neural network showed its 
superior learning ability for the XOR and simple recurrent 
network examples [10]. However, the authors also pointed out 
that PSO performed poorly in the learning of natural language 
phrase parsing. A detailed performance comparison of PSO 
and backpropagation algorithms was presented in [11], which 
demonstrated that PSO needs less computational resources to 
achieve the same error goal as with BP. However, only 
feedforward network was considered and the example problem 
used was straightforward. 

This paper investigates the performance of PSO and BP 
algorithms in the training of recurrent neural networks. Based 
on extensive test results, it shows the advantages and 
weaknesses of both methods. In addition, a training procedure 
that combines both techniques is proposed to avoid their 
shortcomings while preserving their advantages. The proposed 
training method is applied in impedance identification 
problem of power electronic systems. 

The rest of this manuscript is organized as follows. Problem 
formulation is presented in Section II, where the impedance 
identification issue is described. Section III discusses how to 
use RNN to extract the impedance information. In section IV, 
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the training of RNN is described in detail, where the 
performances of BP and PSO are compared. The combined 
training technique is also presented. Section V demonstrates 
the superior performance of the proposed method with 
simulation results.  

II. IMPEDANCE IDENTIFICATION OF POWER 
ELECTRONIC SYSTEMS 

Due to the wide-spread application of power electronic 
devices in modern power distribution systems, an important 
issue that attracts more and more research work is the stability 
of the systems where multiple power electronic devices 
interact with each other. Most power electronic switching 
devices have unique dynamic characteristics and stability 
problems that are not well understood due to the nonlinearity 
and time dependency of converters. Their constant-power 
operation capability often leads to negative impedance 
characteristic, which is a common cause for system instability 
[12]. 

Over the past decade various stability criteria have been 
established in terms of source and load impedances or 
admittances for both dc and ac systems [13-15]. To utilize 
these criteria for stability analysis, it is often necessary to 
obtain the frequency-dependent impedances/admittances of a 
subsystem by experiment. A widely used impedance 
measurement method is through the injection of perturbation 
signals. Figures 1 and 2 illustrate the shunt injection diagrams 
for both dc and three-phase systems where a small current 
signal of a certain frequency fi is injected into the system 
source/load interface. During the injection, the interface 
voltage and the source and load currents are measured and 
recorded. For a dc interface, the small-signal source 
impedance and load admittance at frequency fi can be 
determined by 
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where all the variables are complex numbers. Similar 
equations can be derived for ac systems, although a reference 
frame transformation is often involved [5]. 

Fig. 1. Impedance Measurement in dc/single-phase system. 

Fig. 2. Impedance Measurement in three-phase system. 

To obtain  accurate characteristics of a system over a wide 
frequency range, multiple injections of voltage or current 
perturbation signals of different frequencies are often required. 
The main disadvantages of this impedance measurement 
procedure include: 

1. It takes a considerable amount of time to complete the 
injections for all the frequencies and take the 
measurements. 

2. The operating point of the system may vary during the 
prolonged test procedure, which can lead to 
inconsistency in the measured system impedance 
characteristics. 

3. The injection device often consumes a significant 
amount of power and heat dissipation can be a serious 
issue.

4. The procedure only gives impedance information at the 
injection frequencies.  

To solve these problems, the key point is to minimize the 
injection time. In this paper, the recurrent neural network is 
used to model the system and extract the impedance 
information. 

III. IMPEDANCE IDENTIFICATION WITH RNN 

Unlike the widely used multi-layer perceptron network 
(MLPN) where data flows only in the forward direction, 
recurrent neural networks are feedback networks in which the 
present activation state is a function of the previous activation 
state as well as the present inputs. The feedback mechanism 
provides a memory to the recurrent networks so that they are 
capable of modeling systems with internal dynamics. 

Fig. 3. Topology of the Elman recurrent network. 
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The block diagram of a two-layer Elman RNN with three 
voltages as input and one current as output is shown in Fig. 3, 
where m neurons are used in the hidden layer. The topology is 
similar to that of a feedforward network, except that the 
outputs of the hidden layer is used as the feedback signals. 
Although not shown in the diagram, there is a one-step time 
delay in the feedback path so that previous outputs of the 
hidden layer, also called the states of the network, are used to 
calculate new output values. For a network with l inputs, m
hidden neurons, and n outputs, the hidden layer equations are 
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where x(t) is the input vector, w(1) is the weight matrix 
associated with the inputs and hidden neurons, and w(2) is the 
weight matrix associated with the states and hidden neurons. 
The hyperbolic tangent sigmoid function is selected as the 
nonlinear activation function sgm( ) of the hidden layer 
because it can provide a dual polarity signal to the output. 

Linear neurons are used in the network’s output layer. The 
outputs are determined by 
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where w(3) is the weight matrix associated with the hidden 
neurons and the outputs. 

Past research has demonstrated the ability of the RNN to 
learn process dynamics and provide efficient forecasts, and it 
has found application in many areas such as wind speed and 
power forecasting [1], design of a power system stabilizer [2], 
induction motor speed estimation[3], and prediction of 
elephant migration [4]. 

To identify the impedance characteristics of a system with 
RNN, it is necessary to inject signals to the system and 
measure currents and voltages. However, instead of multiple 
injections of signals of different frequencies, a sampled 
uniform random signal is injected to perturb the system and 
only one set of voltage and current measurements is needed. 
The measured signals are used as inputs and target outputs to 
train a RNN. A well trained RNN then has the ability to 
approximate the time-domain dynamic responses of the 
system to different input voltages. To extract the 
frequency-domain information, simulated voltage signals are 
fed into the network to obtain its current output. These signals 
can then be used in (1) to determine the impedance and 
admittance of the system. 

A significant advantage of the RNN based impedance 
identification method is that only one perturbation injection is 
needed, thus the amount of time for conducting tests on the 
system is greatly reduced. The majority of the identification 
work is done offline with the measured signals. In addition, 
once the training process is finished, ideal injection signals can 
be applied to the trained network to determine the impedance 

characteristics, which makes the results less susceptible to 
noises and frequency leakage. 

IV. RNN TRAINING WITH BP AND PSO 

The effectiveness of a RNN to accurately extract the 
impedance characteristics of a system depends on several 
factors. Firstly, the structure network must be designed so that 
it is able to model the tested system as close as possible. The 
important parameter here is the number of hidden neurons, 
which is the same as the number of states of the network. 
Generally more hidden neurons would enable the network to 
simulate more complex and higher-order dynamic systems. 
Secondly, the perturbation signals must have a wide spectrum 
that covers the frequency range of interest. They also should 
have a magnitude that is high enough to counter the effects of 
measurement noise. Finally, given a well-designed RNN 
network and effective injection signals, the network needs to 
be trained so that it can mimic closely the dynamic behaviors 
of the tested system. This section deals with the RNN training 
issue with several different approaches. 

A. Backpropagation training algorithm 

The backpropagation algorithm is by far the most 
commonly used training method for static multi-layer 
feedforward neural networks. The standard backpropagation is 
a gradient descent algorithm, in which the network weights are 
moved along the negative of the gradient of the performance 
function. The gradients are determined by  performing 
computations backward through the network. Although the 
algorithm and many of its variants suffer from some 
drawbacks such as slow convergence and being trapped in 
local minima, it has been shown to be effective to train 
feedforward neural networks in many applications. 

The same gradient-based backpropagation algorithm can be 
used to train recurrent neural networks. However, because of 
the existence of feedback loops in the network structure, the 
computation of gradients becomes much more complex, which 
makes the backpropagation procedure computationally more 
intensive. In addition, the error surfaces for recurrent networks 
are more complex than those for static networks, therefore the 
training is more likely to be trapped in local minima. 

To help the BP algorithm get out of a local minima area, one 
common strategy is to restart the training when the gradient is 
below a very low threshold while the output error is still large. 
By restarting the training process, a different set of random 
initial weights are selected, which may hopefully lead to an 
optimal solution. However, several properties of the RNN 
makes this technique ineffective. Firstly, with the feedback 
loops RNN often has a much larger set of weight parameters to 
determine. This means that the search space of RNN is of a 
much higher dimension than that of feedforward networks. 
The random initialization of weights in the huge search space 
is less likely to fall near the desired solution. Secondly, as 
mentioned above, the BP algorithm requires much more 
computational efforts in computing the output and 
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backpropagation. Thus discarding previous training results 
and restarting the whole process is very inefficient. 

In the past, considerable efforts have been devoted to 
optimally initialize the weight parameters of a neural network 
before its training begins. A multidimensional geometrical 
approach was proposed to accelerate the training speed of 
feedforward networks [16]. The underlying idea is to initialize 
the parameters of the network so that all activation functions 
can always be operated in an active region. Some researchers 
suggested that a simulated annealing method or a genetic 
algorithm should be used for initializing the weights between 
the input and the hidden layers [17]. Much of the focus of 
research has been on preventing the training from starting in 
the saturated region. 

B. PSO training algorithm 

Particle swarm optimization is a form of evolutionary 
computation algorithm based on the social metaphor of bird 
flocking or fish schooling. Like the genetic algorithm (GA), 
PSO is a population (swarm) based optimization tool. It has 
constructive cooperation between particles, and particles in the 
swarm can share information. PSO has memory of the past, so 
knowledge of good solutions is retained by all particles. 

The application of PSO in neural network training involves 
creating a swarm of networks initialized with random weights. 
Each network is called a particle and is a candidate solution. 
The particles have the ability to retain their own best-ever state 
and communicate with each other. The swarm evolves in the 
search space by letting all the particles fly towards the best 
solutions they know of. In the local version of the PSO 
algorithm, each particle only communicates its neighbors; 
while in the global version, each particle can communicate 
with any other particles so everyone knows where the 
best-solution-so-far is. 

The whole training process with the global version PSO can 
be summarized as follows. 

1. Initialize the weight parameters of N networks 
(particles) with random numbers, where N is the number 
of particles in the swarm. Also initialize N velocity 
vectors v(0) with random numbers. 

2. Start the iteration by feeding each network with the 
training data, and calculating its mean squared error 
(MSE), which is used as the fitness criterion of the 
particles. 

3. Compare the MSE of each particle with its best history 
value, also called the personal best (pbest) MSE. If the 
current MSE is lower than the pbest MSE, update pbest 
MSE and store current weights as the pbest weights. 

4. Find the minimal newly calculated MSE in the swarm. 
5. Compare the minimal MSE with the global best (gbest) 

MSE. If the minimal MSE is lower than gbest MSE, 
update gbest MSE and store the corresponding weights 
as the gbest weights. 

6. Update the velocity vector of each particle with 

igbest

ipbesti

WWc

WWctwvtv

22

111
 (5) 

where w is the inertia term, c1 and c2  are acceleration terms, 1

and 2 are uniformly distributed random numbers in [0, 1], and 
Wpbest, Wgbest, and Wi are the weight vectors of pbest, gbest, and 
the current particle, respectively. 

The iteration loop continues until the MSE of the gbest is 
lower than the desired threshold or a maximum iteration 
number is reached. When the iteration is finished, the gbest 
weights are used as the training results. 

Although there has been some research on the application of 
PSO in recurrent neural network training, its performance is 
relatively weak. Some of the problems include: 

1. The calculation of the outputs of a RNN takes more 
computational resources. For impedance identification 
of dynamic systems with RNN, a sequence of sampled 
voltage and current signals is fed to the network to 
calculate its output. Normally thousands of data points 
are needed to accurately represent the system. The 
evaluation of the cost function is thus computationally 
expensive. This would put a tight limit on the number of 
particles in a swarm. Normally 20 to 30 particles are 
used. 

2. The feedback loop in the RNN significantly increases 
the number of weight parameters. For example, a 
single-input-single-output two-layered feedforward 
network with 6 hidden neurons would have 18 weight 
parameters (including those associated with the bias 
term). A SISO two-layered recurrent network with the 
same number of hidden neurons would have 54 weight 
parameters. This means that the swarm needs to search 
for an optimal solution in a 54-dimension space. Given 
the limited number of particles in a swarm, it is very 
difficult for the swarm to find the optimal solution. 

C. Combined PSO-BP training algorithm 

Even though both BP and PSO algorithms have limitations 
in training recurrent neural networks, each of them has its own 
distinctive advantages.  

BP searches the space with the guidance of gradient 
information of the error surface, which makes the search more 
efficient than many of the evolutionary methods, especially 
when the search is around the global minimum. 

With proper design of the parameters, PSO can traverse 
large areas in the search space. Its stochastic characteristic 
enables it to perform global search in the space without getting 
trapped in local minima.  

A training algorithm that combines both PSO and BP is 
proposed in this paper. The procedure is as follows: 

1. A modified version of the PSO algorithm is first used to 
train the RNN. The goal of the PSO training is to 
traverse in a large area of the weight parameter space 
search for not only the solution with minimal MSE, but 
also the largest gradient. Finding the final optimal 
solution is not considered in this stage because it would 
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take too many iterations and the time consumed might 
be prohibitive. 

2. The modified PSO differs from the standard one in the 
fifth step. Instead of selecting the gbest solely based on 
particle MSE, the gradient of each particle is also 
considered. This is done by first determining the M
particles with the smallest MSE in the swarm, then 
picking the one with the largest gradient to compare 
with gbest. For a 30-particle swarm, M is chosen to be 5 
in this study. 

3. The PSO training terminates when gbest is not updated 
for some consecutive iterations, or when a maximum 
iteration number is reached. 

4. The training result of the PSO algorithm is then used to 
initialize a RNN to be trained with the BP algorithm.  

V. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed training 
method, a three-phase inverter system with R-L load is used. 
As shown in Fig. 4, the inverter is connected to a dc power 
supply. It converts the dc power into three phase ac power, 
which is then sent to the R-L load. A PWM controller, which is 
not shown in the diagram, is used to generate the switching 
signals for the six IGBT devices. The switching frequency of 
the PWM signals is 20 kHz, and the modulation index is set to 
0.9. 

Fig. 4. Diagram of the example inverter system. 

For the purpose of system impedance identification, random 
dc current signals are injected at the input interface of the 
inverter (the dc link capacitor is included in the inverter 
model), and the dc voltage and current are recorded for a 
duration of 0.2 seconds. The sampling frequency is set to be 
4 kHz. The signals are normalized to be used in RNN training, 
as shown in Fig. 5. 

The Elman RNN has 6 hidden neurons, and the voltage 
signal is used as the input, while the current is used as the 
target output. 

Fig. 5. Training signals used for RNN. 

The performance of BP training algorithm is demonstrated 
by multiple training of the same network with different 
random initial weights. The maximum epoch number is set to 
be 500. As can be seen in Fig. 6, after a period of rapid 
decrease, the MSE gradually settles down. At the end of 500 
epochs, most of the MSE curves become almost flat. This 
indicates that most likely the training has reached a minimal 
point. However, different initial weights have large impacts on 
the final MSE values, which range from 1.15e-8 to 0.0196. 
The final MSE value is very distributed with a mean value of 
0.0032. It is evident that some of the training results are 
trapped in local minima. For example, the top curve converges 
in less than 100 epochs and the gradient is very close zero. 

Fig. 6. Training process with BP algorithm. 

The performance of standard PSO training is shown in Fig. 
7. The PSO parameters are set as follows: w = 0.8, c1 = c2 = 
1.5, N = 30. Due to the high computational efforts involved, 
the maximum iteration number is set to 100. Comparing the 
results with those shown in Fig. 6, it can be seen that although 
the MSE curves are most consistent, the MSE values do not 
decrease as fast as those in the BP algorithm. This is mainly 
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because the small number of particles in the swarm that limits 
its search ability. It should be noted that the MSE values are 
still decreasing at the end of the training, even though at a 
lower speed. The final MSE values range from 0.025 to 0.054, 
with a mean value of 0.040. 

Fig. 7. Training process with PSO algorithm. 

Next the combine PSO-BP method is used to train the 
network. Same PSO parameters are used for the PSO stage, 
except that the maximum number of iterations is set to be 50. 
The resulted weights are then used as the initial values for the 
BP training stage. Fig. 8 shows the MSE curves during the BP 
training. Because the pre-training in the PSO stage, generally 
better results can be achieved in the BP stage. Although the 
modified PSO training cannot guarantee a global minimum 
can be found in the BP stage, it helps to avoid many local 
minima by directing the swarm towards areas with not only 
smaller MSE, but also larger gradient. The final MSE values 
range from 4.71e-9 to 0.0018, with a mean value of 7.94e-4. It 
can be seen that both the minimal MSE and mean MSE values 
are less that those in the training with BP only. 

Fig. 8. Training process with combined PSO-BP algorithm. 

The trained recurrent neural network is then used as a dynamic 

model to extract the impedance of the inverter system. The 
identification procedure involves feeding the neural network 
with ideal sinusoidal signals and calculating its output. Fourier 
transform is then used to process the signals and determine the 
magnitude and phase angle of the system impedance at the 
specific frequency. Fig. 9 shows the actual and identified 
impedances of the system in the frequency range of 10 Hz to 
1000 Hz. It can be seen that very good agreement is achieved. 

Fig. 9. Actual and identified impedance of the example system. 

VI. CONCLUSIONS 

In this paper a combined PSO-BP algorithm is used to train 
a recurrent neural network for the identification of impedances 
of power electronic systems. The PSO algorithm uses both the 
MSE and gradient information to guide the movement of the 
particles. After the neural network is trained with PSO for a 
number of iterations, BP is used to continue the training on the 
global best particle found in the PSO training. Simulation 
results demonstrated that the proposed training algorithm can 
statistically help avoid the training process being trapped in 
local minima, without being computationally demanding. 
Future work includes the determination of optimal division 
between PSO and BP to achieve a training process with 
minimal computational resources.  
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