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Abstract – This paper presents the concept as well as 
first results of the EU-MOP (“Elimination Units for 
Marine Oil Pollutions”) project1. The basic idea of this 
project is a swarm out of autonomous marine robots 
which are able to recover oil with the help of oil 
skimmers. In order to achieve a flexible and robust 
system, the swarm intelligence (SI) approach has been 
used as control paradigm for the EU-MOP robots. Within 
the SI approach interaction between the robots plays an 
important role for the performance of the whole multi 
robot system. Thus, three control approaches, all basing 
on SI, but with different levels of interaction, have been 
developed. Furthermore a method for the evaluation of 
swarms in comparison to single robot systems will be 
presented. 

 
I. INTRODUCTION 

 
A. Motivation 
 

Oil spills, arising either from marine accidents or from 
routine shipping and refining operations, are one of the major 
causes of ocean pollution, producing both ecological and 
economical damages of wide public concern. Spilled oil can 
negatively influence the physiology, immunology, and 
development of many organisms, but the most evident effect 
is usually an important decrease or disappearance of 
populations of marine fauna and flora within the affected 
area. As for economical damages especially the influence of 
oil spills on fishing industries and the tourist sector has to be 
mentioned [1]. 

 
The EU-MOP project follows a new approach for oil spill 

response, namely the use of multi robot systems (MRS) [2], 
as such systems have the potential for several advantages, 
like an increased system performance, a higher flexibility and 
an increased fault-tolerance [3], [4], [5], [6]. 

 
B. The basic EU-MOP concept 

 
Within the EU-MOP project different oil spill scenarios 

will be considered. Figure 1 shows the scheme of an oil spill 

response operation in an open sea scenario. After the 
detection of the oil spill and the initial phase, where the EU-
MOP robots (synonymously called EU-MOP units) as well as 
a support vessel, the so-called mother ship (MS), will be 
prepared for the oil spill response operation, the robots will 
be transported to the operational area by the mother ship. The 
operational area is a predefined virtual limitation, which will 
ensure that the units will not move in areas that could 
endanger the units, animals or human beings. Afterwards the 
robots will start the oil recovery operation with the help of 
skimmers. As every unit has only limited energy supply and 
limited storage capacities onboard, they have to move back to 
the mother ship in the case its energy is running low or its oil 
storage is full. As soon as the whole oil spill is eliminated the 
units will move back to the mother ship [2]. 

                                                           
1 EU-MOP is a research project co-funded by the European Commission 

in the context of the 6th Framework Programme.  The project started in 
February of 2005 and has a duration of 3 years. The EU-MOP consortium is 
coordinated by the National Technical University of Athens (Greece), and 
also includes as partners the University of Glasgow and Strathclyde (UK), 
Sirehna S.A. (France), I (Portugal), BMT Ltd (UK), Cetemar S.L. (Spain), 
Environmental Protection Engineering S.A. (Greece), Aurensis S.L. (Spain), 
the University of Oxford (UK), Consultrans S.A. (Spain), the Institute of 
Shipping Economics and Logistics (Germany), and the Fraunhofer Institute 
for Manufacturing Engineering and Automation IPA (Germany). 

 

 
Fig. 1. Basic EU-MOP concept in an open sea scenario 

 
C. Control of the EU-MOP swarm 

 
The amount of oil (Vskimmedoil) which has been collected by 

a unit i up to time t can be calculated as follows 
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where othickness(x,y,t) represents the thickness of the oil 

slick at position (x,y) at time t, runit,i represents the radius of 
unit i, xposi,(t) is the x-position and yposi(t) the y-position of 
unit i at time t. 

 
Nevertheless, the function othickness(x,y,t) is unknown, as 

there is no technique available which will provide full 
information on the thickness of the oil slick at all positions 
(x,y) and at all times t [7]. As consequence, the movements 
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of the robots cannot be planned by a central planning 
instance. Only a distributed approach, which allows the units 
to operate in an unknown environment, can be the basis for 
the control of the EU-MOP swarm. 

 
In the last years, a lot of research has been done in the field 

of distributed problem solving algorithms. These studies 
show that concerning performance, robustness and flexibility 
the so-called swarm intelligence is one of the promising 
approaches for distributed problem solving [8], [9] and for 
the control of multi robot systems [10]. Thus the use of the SI 
approach as basis for the control of the EU-MOP robots will 
be examined in this paper. 

 
II. SWARM INTELLIGENCE AS CONTROL 

PARADIGM OF THE EU-MOP ROBOTS 
 

A. Swarm intelligence research axes 
 
The expression swarm intelligence was introduced by 

Beni, Hackwood and Wang in the context of cellular robotic 
systems [11], [12], [13]. A cellular robotic system (CRS) 
“consists of a large number of robots operating in a cellular 
space under distributed control […]. All robots in the system 
have to cooperate in order to accomplish any global task” 
[14]. There is no synchronous clock or centralized control, 
limited communication exists only among adjacent robots. 
Each robot in the system has to make its own decisions 
autonomously based solely on sensed information on the 
environment and its internal state [14]. In this context swarm 
intelligence was defined as “a property of systems of non-
intelligent robots exhibiting collectively intelligent 
behaviour” [12], [13]. 

 
The second research axis goes back on the work of 

Bonabeau, Dorigo and Theraulaz; they state that “using the 
expression ‘swarm intelligence’ to describe only this work 
seems unnecessarily restrictive” [15]. Basing on studies of 
the behaviour of social insects they extend this definition “to 
include any attempt to design algorithms or distributed 
problem-solving devices inspired by the collective behaviour 
of social insects and other animal societies” [15]. The 
behaviour of social insects bases on the use of pheromones; 
by laying and following pheromone trails ants for instance 
are able to forage in unknown environments. The algorithm 
basing on that behaviour is called ant system (AS), which 
was first applied to the travelling salesman problem.  Due to 
many approaches for the modification and/or extension of 
this AS algorithm, Dorigo and Di Caro put these algorithms 
in a common framework by defining the Ant Colony 
Optimization (ACO) meta-heuristic [8]. So far, ACO has 
been applied to many applications, e.g. routing in 
telecommunication networks, but also in the field of robotics 
e.g. in cooperative transportation [8]. 

 
Finally, there is another research axis related to the 

expressions swarm and swarm intelligence: the so-called 
particle swarm optimization (PSO). PSO has roots in two 

main component methodologies: in artificial life (A-life), 
especially in bird flocking and fish schooling and it is also 
related to evolutionary computation, and has ties to both 
genetic algorithms and evolution strategies [9], [16], [17]. 

 
According to PSO, every potential solution to a given 

problem, called particle, is assigned a random velocity and a 
“position” in the hyperspace. Each position has a fitness 
value; and each particle “knows” its so-far best solution 
called pbest. Furthermore, the so-far global best solution of 
all particles, called gbest, is also known. In every iteration 
each particle sets its velocity according to the pbest and gbest 
values in order to find a better solution for the problem. 
Besides this global version of PSO there is a local version 
which replace gbest by a so-called lbest, which represents the 
pbest values of all particles in the neighbourhood of a particle 
[16], [17]. 

 
B. The importance of interaction for swarm intelligence 

 
Although these three research axes have some differences, 

they have one important mechanism in common which is the 
key for the intelligence: the interaction of the agents.  

 
Interaction can be classified into different categories. A 

very common classification bases on three categories: 
interaction through the environment, interaction through 
sensing, and interaction through communication [18]. 

 
Interaction through the environment is an indirect 

interaction. Each agent is able to modify the environment, 
and other agents respond to the new environment at a later 
time [8]. Thus, the environment itself is the communication 
medium. Stigmergy is one of the most common examples of 
this type of interaction. It is defined as “the process by which 
the coordination of tasks and the regulation of construction 
does not depend directly on the workers, but on the 
constructions themselves” [18], [19], [20], [21], [22]. Thus, 
stigmergy and interaction through the environment refers to 
the nest construction behaviour of termites or to the foraging 
behaviour of ants with pheromones. 

 
Interaction through sensing refers to “local interactions 

that occur between agents as a result of agents sensing one 
another, but without explicit communication” [23]. The 
collective movement of fishes and birds is an example of 
interaction through sensing [24]. 

 
In the third category of interaction, interaction through 

communication, agents “may address other agents directly, 
either in a system-specific manner or through a standard 
agent communication protocol” [18]. Human communication 
is an example out of the biology for this category of 
interaction. 

 
Each of the presented research axes of swarm intelligence 

bases on at least one of these interaction categories. The CRS 
approach mainly bases on interaction through sensing, ACO 
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mainly bases on interaction through the environment, and 
PSO bases on interaction through communication (global 
version) and on interaction through sensing (local version). 

 
Nevertheless, all types of interaction have a high potential 

for increasing the overall system performance of a multi 
robot system. Thus, in the context of the EU-MOP project a 
robotic swarm is a homogeneous group of robots that 
performs a predefined task by simple control strategies 
without any hierarchies and without any kind of central 
planning or control instance. The increased performance of a 
swarm arises from interaction of the agents, where interaction 
through the environment, interaction through sensing and 
interaction via communication is allowed. 

 
In order to compare different types of interaction three 

different control concepts for the EU-MOP robots have been 
developed. These will be presented and compared in chapter 
III.  

 
C. Assessment of robotic swarms 

 
In order to compare different control concepts, assessment 

criteria will be needed. Liu and Passino state that “although 
many studies on swarm intelligence have been presented, 
there are no general criteria to evaluate a swarm intelligent 
system's performance” [25]. Fukuda et al. try to make an 
evaluation based on the flexibility [26]. Nevertheless, as in 
every oil response scenario the time to recover the oil 
(recovery time T0) is crucial, a more specific criterion has 
been developed for the EU-MOP swarm. 

 
This criterion is called swarm performance quotient (QSP). 

It bases on the idea that a swarm of N robots should have an 
increased performance compared to a single robot system. 
Thus the performance PN of a swarm of N units has to be 
higher than N times the performance P1 of 1 robot; 
performance can be considered as the quotient of the initial 
oil slick size V0 and the time to recover the oil T0.  
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where T0,1 is the recovery time of 1 robot, and T0,N the time 

of a swarm with N robots. In other words: A EU-MOP swarm 
uses synergy effects and is thus better than a single robot 
system, if the quotient of the recovery time of one robot and 
N times the recovery time of N units is larger than 1. 

 
D. Simulation of the behaviour of the EU-MOP swarm 

 
Furthermore a C++ simulation has been developed in order 

to analyze the behaviour of the swarm and to estimate the 
recovery time of the different control concepts. Fig. 2 shows 

screenshots of the simulation with the EU-MOP robots, the 
oil slicks as well as the marine environment.  

 

 
Fig. 2. Screenshots of the simulation with robots, oil slick and marine 
environment 

 
In this simulation, the oil slick is spreading and weathering 

according to an oil fate model which has been developed by 
the University of Oxford within the EU-MOP project. The 
EU-MOP units behave according to the control systems 
described later in chapters III-V. The overall amount of 
skimmed oil by a swarm with N units up to time T is: 
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Input data of this simulation are the oil spill scenario 

(amount of oil, type of oil etc.), as well as typical data of the 
EU-MOP robots (size, speed etc.). The main output of this 
simulation is the recovery time T0 where Vskimmedoil(T0) = 0. 

 
III. SIMULATION OF DIFFERENT CONTROL 

CONCEPTS OF THE EU-MOP SWARM 
 
As mentioned above, three different control concepts will 

be presented, simulated and compared in this chapter. These 
control concepts differ in the level of interaction of the robots 
in a swarm; the three control concepts are: 

 
 a low-level interaction control concept (type A), 
 an interaction via environment control concept (type B) 

and 
 an interaction via communication control concept (type 

C). 
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Due to the fact that the EU-MOP robots will have to work 
in a highly dynamic environment with strong winds, waves 
and currents the robots will not be able to connect each-other 
physically. Thus the aspect of self-assembling will not 
considered in this paper. 

 
A. Low-level interaction control concept (type A) 

 
According to this control concept the robots are only 

equipped with bumpers for the detection of collisions with 
other units and the environment. The robots will not be able 
to detect oil, or to cooperate with other units. The only 
interaction is that a robot will be influenced by another one, if 
there was a collision between both (and as the units are only 
equipped with bumpers, they are not able to differentiate 
between EU-MOP robots and other obstacles). 

 
The control of the EU-MOP robots of this type (type A) is 

shown in the FSA diagram in Fig. 3. 
 

 
Fig. 3. FSA diagram of robots of type A 

 
At the beginning of its operation each unit of type A will 

have the state “move forward”, until one of the following 
events occurs: 

 
 a collision occurs on the left which will be detected by 

the left bumper, 
 a collision occurs on the right which will be detected 

by the right bumper, 

 the unit moves out of a predefined operational area 
which will be detected by a GPS sensor or 

 an internal timer will have a value of 0 (timeout). 
 
A collision, either on the left or on the right, will change 

the state of the unit to the state turn left or turn right, 
respectively. In this state the unit will turn for a random time; 
as soon as timeout occurs, the unit will change its state back 
to “move forward”. 

 
If the unit is in the state “move forward” and it moves out 

of a predefined operational area, the unit will turn towards 
the centre of the operational area and change back to the state 
“move forward”. 

 
Each time the unit changes into the state “move forward” 

an internal timer will be set to a random value. As soon as the 
timer has a value of 0 (timeout), the unit will change into the 
state “move spiral”, which means that it will turn left with an 
permanently increasing radius until, again, a timeout event 
occurs. The timeout event in the state “move spiral” will 
bring the unit back to the state “move forward”. Of course, 
collisions can also occur in the state “move spiral”. In this 
case, the units will handle collisions like in the state “move 
forward”. 

 
Furthermore each robot (type A, B and C) is equipped with 

a positioning system in order to move back to the MS if the 
oil storage is full. This is not shown in the FSA diagrams. 

 
The following diagram shows the amount of oil on water at 

each time step for 0 units, 1 unit, 2 units, 5 units and 20 units 
of type A. 

 

 
Fig. 4. Amount of oil in simulation of unit type A 

 
The line “0 units” shows the changes of the amount of oil 

on the water surface without any oil response operation. This 
line is only influenced by spreading and weathering effects of 
the oil. Typical effects are evaporation which will lead to a 
decrease of the amount of oil on the water surface, and 
emulsification, which will lead to an increase of the oil 
volume. The diagram in Fig. 4 shows a small phase of 
decreasing oil volume, afterwards a phase of an increasing 
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volume, and finally a phase of decreasing oil volume which 
ends in a saturation.  

 
The line “1 unit” shows the amount of oil on the water 

surface if one unit is applied. This line consists of two 
different sequences: In those phases, where the robot is not in 
the oil slick, the amount of oil behaves according to the line 
“0 units”. If a unit is recovering oil, the line decreases faster. 
This line shows, that there are a lot of phases, where the unit 
does not recover oil, thus the total recovery time is very high. 

 
The lines “2 units”, “5 units” and “20 units” show that if 

the number of units increases the amount of oil on the water 
surface decreases faster, as there are less times, where no unit 
recovers oil, and thus the total recovery time decreases also. 
The following table shows the recovery time and the swarm 
performance quotient as a function of the swarm size. 

 
TABLE I 

RESULTS OF THE SIMULATION OF THE TYPE A SWARM ROBOTS 
 

Swarm 
size (N) 

T0 of units of 
type A  
[s] 

QSP of units of 
type A  
[s] 

Standard 
deviation of T0  
[s] 

1 42499 1,00 2059,23 

2 21893 0,97 1145,74 

3 11938 1,19 619,33 

4 9885 1,07 498,65 

5 9702 0,88 470,30 

10 4074 1,04 125,68 

20 2810 0,76 94,97 

The T0 values base on 25 simulation runs with different random seeds for 
each swarm size. 

 
Due to the selected scenario (including size of robots, size 

of oil slick, size of environment etc.) 20 units is more or less 
the maximum size of a swarm; with higher swarm sizes each 
robot will permanently avoid collisions with other robots 
which will lead to the same unit type independent behaviour. 

 
 The recovery time T0 of these type A swarms is very bad 

(compared to those of the following swarm types B and C). 
Furthermore, the swarm performance quotient QSP reaches 
relatively bad values. The fact, that the QSP is sometimes 
above 1 and sometimes below 1 shows that there is now 
swarm “intelligence” behind this strategy. The low level of 
interaction of these robots is the reason for this bad swarm 
performance quotient. The only interaction in this scenario 
comes form the collisions between two units. After each 
collision both units will turn into a random direction, and this 
will lead to a better distribution of the units in the whole 
operational area. Nevertheless, this interaction is to low in 
order to reach a good QSP, and thus control concepts with 
more interaction will be needed. 

 
 

B. Interaction via environment control concept (type B) 
 
In this control concept each unit is additionally equipped 

with an oil detection sensor. These sensors will enable the 
units to move in a more intelligent way. The control of the 
EU-MOP robots of this type (type B) is shown in the FSA 
diagram in Fig. 5. According to this concept, a unit of type B 
will behave in the same way as a unit of type A if it does not 
detect oil. As soon as the unit detects oil it will switch into 
the state “move forward through oil”. Comparable to the state 
“move forward” each unit of type B which has the state 
“move forward through oil” will move straight ahead until 

 
 a collision occurs on the left which will be detected by 

the left bumper, 
 a collision occurs on the right which will be detected 

by the right bumper, 
 the unit does not detect oil which will be detected by 

the oil sensors. 
 

 
Fig. 5. FSA diagram of robots of type B 

 
In the case of a collision on the left / on the right the unit 

will turn to the right / to the left and afterwards it will change 
into the state “move forward through oil”.  

 
If a unit is in the state “move forward through oil” and the 

event “no oil detected” occurs, it will switch to the state 
“move spiral”. The idea behind this strategy is the following: 
A single unit detects oil and moves straight through the oil 
slick. If the unit has crossed this oil slick completely it will 
be split into two smaller oil slicks. If the unit is now moving 
a spiral it will be more or less immediately back in oil.  
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TABLE II 
RESULTS OF THE SIMULATION OF THE TYPE B SWARM ROBOTS 

 

Swarm 
size (N) 

T0 of units of 
type A  
[s] 

QSP of units of 
type A  
[s] 

Standard 
deviation of T0  
[s] 

1 17802 1,00 915,63 

2 4289 2,08 198,70 

3 2625 2,26 119,18 

4 2382 1,87 90,83 

5 1960 1,82 68,64 

10 1869 0,95 44,32 

20 1807 0,49 53,80 

The T0 values base on 25 simulation runs with different random seeds for 
each swarm size. 

 
The benefits of this strategy are illustrated in table II. This 

table shows that in both the recovery time T0 and in the QSP a 
swarm of units of type B performs much better than a swarm 
of units of type A. This will be explained with the following 
figure. 

 

 
Fig. 6. Amount of oil on water for 0 units, 1 unit of type A and 1 unit of type 
B over time 

 
The line “0 units” shows again the spreading and 

weathering effects of the oil. The line “1 unit of type A” 
shows the volume of the oil on water over time during an oil 
response operation of one unit of type A, the line “1 unit of 
type B” an oil response operation of one unit of type B 
respectively. Although in this example, the first time that a 
unit of type A removes oil is much earlier than a robot of 
type B, the recovery time of type B is much better. This is 
due to the oil detection sensor, which will enable a unit of 
type B to stay more or less always in the oil. Therefore, the 
line “1 unit of type B” decreases especially in the beginning 
much more than the line of type A. 

 
Furthermore, the oil detection sensor enables an interaction 

via the environment. The fact, that a unit removes oil at a 
certain position may influence the behaviour of another unit 
at a later time. But, the oil has not the same effects as the 

pheromone in the ant-based robot swarms. If an ant smells 
pheromone, this means that another ant has definitely been at 
the same place. The sensor information “oil detected at 
present position” is not clear; it means that either no robot 
has been at this position before or that a robot has removed 
oil at this position, but due to spreading and weathering 
effects the oil moved back to this position. The information 
“no oil detected” means, that oil has been removed at this 
position or that no oil has ever been there.  

 
Nevertheless, this swarm type reaches good QSP values; up 

to five units every additional unit will lead to an increased 
performance with a factor of about two. 

 
C. Interaction via communication control concept (type C) 

 
According to this concept, each unit is additionally 

equipped with a radio system, which will enable the robots to 
communicate. Thus, the following strategy comprises a state 
“move to oil unit”, where a unit which does not detect oil will 
move towards the closest unit which detects oil. The 
following figure shows the FSA diagram of the robots of type 
C. 

 
Fig. 7. FSA diagram of robots of type C 

 
Table III shows the results of swarms of type C. 
 
The additional sensor and the corresponding additional 

interaction (robots of type C uses interaction via 
communication and interaction via the environments) lead to 
better results than those of the robots of type A. With swarm 
sizes of more than two robots (in biology a swarm has at least 
3 agents [26]) the robots of type C perform better as those of 
type B.  
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TABLE III 
RESULTS OF THE SIMULATION OF THE TYPE C SWARM ROBOTS 

 

Swarm 
size (N) 

T0 of units of 
type A  
[s] 

QSP of units of 
type A  
[s] 

Standard 
deviation of T0  
[s] 

1 17805 1.00 843,64 

2 7278 1,22 372,68 

3 2459 2,41 104,74 

4 1863 2,39 66,51 

5 1703 2,09 53,06 

10 1651 1,08 54,78 

20 1620 0,55 54,52 

The T0 values base on 25 simulation runs with different random seeds for 
each swarm size. 

 
Furthermore, swarms up to 10 robots have a good swarm 

performance quotient. This is due to the increased interaction 
capabilities of the robots. For swarms up to 2 units, swarms 
of type B perform better. This is due to the fact, that with the 
strategy of type C causes a certain clustering effect, 
especially in the beginning of the simulation, where the units 
are dropped in sequence into the water. Thus, the second type 
C robot will directly move towards the first robot, while the 
type B robots are moving less concentrated through the 
operational area. Nevertheless, comparing all three type of 
control concepts, the type C control concept produces the 
best results. 

 
VI. CONCLUSION 

 
Many optimization problems can be solved with the help 

of central problem solving algorithms. For instance: The 
problem of the allocation of machines in order to produce a 
certain number of different products is a classical application 
of the linear programming (LP). A central planning instance 
can optimize the output of this production system. But what 
happens, if one of the machines has an unexpected 
breakdown? The results of this LP optimization are wrong as 
this algorithm assumed that machines do not have 
breakdowns. Furthermore, what happens if the time which a 
machine needs in order to process one of these products is 
unknown? Then, again, the LP algorithm will not be 
applicable. 

 
This example shows, that if an agent has to cope with an 

unknown and highly dynamic environment (where machines 
have breakdowns and where the behaviour of other objects in 
the environment is unknown), only distributed problem 
solving algorithms will be the basis for good solutions. 

 
The swarm intelligence approach is a distributed problem 

solving algorithm which is supposed to produce very 
intelligent solutions with simple agents. In this paper we have 
shown with a concrete application, namely the elimination of 
marine oil pollutions, that a SI-based control of multi robot 

systems produces very good results. Furthermore, we have 
shown that interaction between agents is very important for 
the SI approach and that especially in the field of robotics the 
combination of different interaction principles leads to 
additional benefits. 

 
Nevertheless, there are still further possibilities how to 

increase the interaction, e.g. the use of the interaction via 
sensing principle. Furthermore, these control concepts and 
interaction principles have just been simulated with the help 
of one concrete scenario. Thus, further research will be done 
in order to develop high-level interaction control strategies, 
which are able to cope with different oil spill scenarios. 
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