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Abstract— In swarm robotic systems emergent swarm proper-
ties are particularly difficult to analyse and model. This paper
describes a simple but effective algorithm for emergent swarm
taxis (swarm motion toward a beacon) in a 2D or 3D wireless
connected swarm of minimalist mobile robots. The paper then
undertakes a deep analysis of the swarm taxis by identifying
both first and second order micro-level robot interactions and
quantifying the contribution of each such interaction to the
macro-level swarm behaviour. From the analysis we develop a
simple quantitative model that is able to predict swarm velocity
with reasonable accuracy. Although the analysis is specific to the
swarm algorithm in question, we believe that the methodology
presented has generic value to swarm modellers.

I. BACKGROUND.

The fields of robotics and artificial intelligence have seen
increased interest in swarm systems in recent years. Draw-
ing inspiration from biology and in particular social insects,
researchers in swarm robotics aim to build systems that com-
prise large numbers of autonomous robots that self-organise
to achieve useful work, without centralised or heirarchical
control.

The idea of de-centralised control is essential. Almost all
traditional technologies and social structures (governments and
companies, for instance) employ centralised control. One agent
is the leader that organizes the other agents and instructs them
what to do and when to do it. In swarm systems no such
leader exists. The organization is completely ‘flat’; there is
no hierarchy, and all the agents in the system have the same
amount of influence. Furthermore, robots in a swarm robotic
system typically cannot communicate with all other robots.
Rather, each robot can only communicate with a few of its
nearest neighbours. In other words, communication is local.

Typically a robot might only communicate with five to ten
of its closest neighbours, even though a swarm can comprise
hundreds of robots. The challenge for swarm roboticists is
to design the communication and behavioural rules for the
individual agents so that the overall desired swarm properties
and functions will emerge from the interactions between
individual robots: Each other and their environment.

One of the significant advantages of such a decentralised
approach is robustness. Since there is no common-mode failure
point or vulnerability in the swarm, overall swarm behaviours
should operate even if one or a number of individual robots
fail [1]. Due to the locality of sensing and communication

swarm robotic systems also have the potential to scale to large
numbers [2].

Work in swarm robotics to date has fallen into two relatively
distinct categories. In the first of these categories, the swarm
performs the task faster than an individual robot could do on its
own, but adds no new qualitative ability. This will typically be
for swarm tasks such as foraging, area mapping and clustering
[3], [4], [5]. A single robot may solve the problem alone
given enough time, but applying a swarm greatly enhances
the performance time and robustness. The swarm level exhibit
a new quantitative property compared to the individual robots.

In the second category swarm task completion is dependent
on the collective. Such tasks are dependent on cooperation be-
tween multiple robots; one single robot could not complete the
task, even given infinite time. In such tasks, the swarm level
behaviour is qualitatively different compared to the individual
robots. One example is collective manipulation (stick pulling)
[6]. A further example is our work on wireless connected
swarms that exhibit interesting and potentially useful emer-
gent swarm properties, including swarm aggregation, ad-hoc
networking, beacon-taxis and beacon containment [7]. All of
these properties emerge from the interaction of multiple robots.
This paper focuses on emergent swarm taxis, and develops
the algorithm developed by Nembrini et al [7], [8]. We then
undertake a detailed analysis of the low-level interactions
which give rise to the swarm taxis behaviour (hitherto, the
mechanisms of this swarm taxis behaviour have not been fully
understood), and armed with this analysis we propose a simple
model with which we can predict swarm velocity from low-
level robot parameters.

Modelling and analysis of swarm robotic systems poses a
significant challenge to researchers in the field. Developing
models with predictive power, such that macro-swarm proper-
ties can be predicted from changes in micro-robot parameters
is difficult, not least because robotic swarms are examples of
non-linear, dynamical, stochastic systems.

There are two main motivations for making models. Models
are important for proving safety properties of swarm systems.
There are some great promises in swarm robotics, e.g for huge
swarms of nano sized robots to solve certain medical problems
[9] [10]. If swarm robotics is to deliver on these promises,
formal proofs of swarm properties and swarm models are
essential. We also believe that good models will facilitate the
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design of swarm systems. If we want to design a swarm system
with a given property, models that relate individual robot
properties to swarm level properties avoid the need to find
solutions by trial and error. For a recent survey of modelling
approaches see [11].

Although the analysis developed in this paper is specific
to the emergent swarm taxis algorithm, we believe that the
methodology presented has generic value in extending the
tools and methods available to swarm modelers.

This paper proceeds as follows. In section II we describe the
enhanced swarm taxis algorithm, with reference to the finite
state machine for individual robots. Section III develops an
informal analysis of the taxis behaviour by identifying and
analysing micro-level pair-wise interactions between robots.
Sections IV, V an VI quantify the contributions to swarm
taxis from each of these micro-interactions, and hence build a
formal model of swarm taxis, with results comparing predicted
and measured swarm velocities.

II. SWARM TAXIS ALGORITHM

We have developed a class of algorithms which make use of
local wireless connectivity information alone to achieve swarm
aggregation [7], [8]. Wireless connectivity is linked to robot
motion so that robots within the swarm are wirelessly ‘glued’
together. This approach has several advantages: firstly the
robots need neither absolute or relative positional information;
secondly the swarm is able to maintain aggregation (i.e. stay
together) even in unbounded space, and thirdly, the connectiv-
ity needed for and generated by the algorithm means that the
swarm naturally forms an ad hoc communications network.
Such a network would be a requirement in many swarm
robotics applications. The algorithm requires that connectivity
information is transmitted only a single hop. The algorithm
meets the criteria for swarm robotics, articulated by Şahin,
2005 [12] and Beni, 2005 [13]. We have a highly robust
and scalable swarm of homogeneous and relatively incapable
robots with only local sensing and communication capabilities,
in which the required swarm behaviours are truly emergent.

The lowest level swarm behaviour is ‘coherence’ which, in
summary, works as follows. Each robot has range-limited wire-
less communication and, while moving, periodically broad-
casts an ‘I am here’ message. The message will of course be
received only by those robots that are within wireless range,
rw. It is important to recognise that this communication is fully
situated [14], i.e. there is no content in the messages, all that
is significant is message presence or absence. Robots do not
communicate any information on their internal state etc, nor
is it possible for a robot to determine its heading relative to
the communicating robot. If a robot loses a connection and
the number of remaining neighbours is less than or equal
to the threshold α, then it assumes it is moving out of the
swarm and will execute a 180◦ turn. When the number of
connections rises (i.e. when the swarm is regained) the robot
chooses a new direction at random. We say that the swarm is
coherent if any break in its overall connectivity lasts less than
a given time constant C. Coherence gives rise to the two basic

emergent behaviours of swarm aggregation and a (coherent)
connected ad hoc wireless network. Each robot also has short-
range avoidance sensors and a long-range beacon sensor.

Firstly, the short range collision avoidance sensor. The
robots will use this sensor to avoid colliding into each other
(or other obstacles in the environment). This sensor provides
robots with information about the relative direction towards
the obstacle.

Secondly, the robots have an omnidirectional beacon sensor.
This sensor can detect if the robot is illuminated by the beacon
source. We have assumed that there is no ambient beacon
radiation in the environment. Importantly the beacon source
is placed on the same level as the robots, so that one robot
can occlude the beacon from another.

In our simulation environment1 the robots have a physical
radius of 0.3 units. When they move they cover a distance of
0.05 units per time step, and we refer to this distance as Drobot.
In experiments, the wireless communication range, rw, varies
from 2.5 units to 4.0 units. This allows us to see how swarm
taxis velocity varies with different communication ranges, and
how well our model captures this variation. The velocity of
the whole swarm is denoted Dswarm and refers to the distance
the swarm centroid moves per time step. An important detail
of the enhanced swarm taxis algorithm is that a robot’s avoid
distance is varied dependent on whether the robot’s beacon
sensor is illuminated or non-illuminated. If a robot is in the
shadow of another robot (or an obstacle) it will have a smaller
avoid radius as opposed to when it is illuminated. The avoid
radius for shadowed robots is arbitrarily chosen as 0.4 units,
and 0.51 for illuminated robots.

Fig. 1. Three robots drawn to scale with, rw 2.5 units (left), avoid radius
for illuminated robots, 0.51 units (middle), and avoid radius for shadowed
robots, 0.4 units (right). The robot radius is 0.3 units.

A. States and behaviours

The robots have five different states and for each state a cor-
responding behaviour. See figure 2. There are four transition
rules that determine transitions between the states. The default
state is the Forward state. When the robot is in this state it will
move forward by Drobot units per time step. The coherence

1Netlogo. http://ccl.northwestern.edu/netlogo/
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state maintains swarm aggregation, as described above. Given
the different avoid sensor radii, depending upon the robot’s
illuminated status, there are two avoidance states. Finally we
have a state for random turns. As we will see later, it is the
two avoidance states that enable the swarm to perform taxis.

The default state is the forward state. Dependent on the
robots’ environment other states can be invoked, but as soon
as the corresponding behaviour is performed the robot returns
to the forward state. While in the forward state the robots
continuously monitor the number of robots within communi-
cation range (neighbours) and the avoidance and light sensors.
If the number of neighbours falls below a predefined value,
α, the robot will enter the coherence state. In this state the
robot will perform a 180◦ turn. Assuming that a robot lost a
connection because of moving away from the swarm, a 180◦

turn will ensure that the robot will reconnect with the swarm
again, contributing to maintaining swarm aggregation. As soon
as the 180◦ turn has been performed, the robot re-enters the
default forward state.

The random state is entered when the robot notices an
increase in number of robots within communication range.
Since this number is increasing the robot may be moving
closer to the center of the swarm. In this state the robot will
make a random turn, to a new direction and then return to the
forward state.

There are two avoid states, one which applies when the
robot is illuminated, the other when the robot is in shadow. The
short range avoidance sensor also provides accurate heading
towards the colliding object. When an object is being detected
the robot will turn in the opposite direction to the object, and
then return to the forward state. The difference between the
two avoid states is the range. When a robot is illuminated the
avoid radius is 0.51 units, 0.4 when it is in a shadow.

Since our simulation is a discrete system there is a chance
of several conditions being triggered at the same time. In such
cases, the coherence and random states take precedence over
avoid states. Coherence and random states can not have their
conditions satisfied at the same time. When the robot enters

Fig. 2. The state diagram of the robot control.

the avoid state, it will make a turn in the opposite direction,
and then immediately return to the forward state. The same
holds true for the coherence and random turn states. As a
simplifying assumption we have set the turn time to zero.

B. Symmetry breaking necessary for taxis

Thus far we have described how the swarm maintains aggre-
gation. One behaviour keeps the swarm together (coherence),

and another prevents the robots from colliding into each other
(avoidance). But to achieve taxis we need some kind of
symmetry breaking. Information of the direction towards the
beacon must somehow be captured by the swarm. We do this
via the avoid states. Consider the case of robots A and B in

Fig. 3. A swarm of ten robots and a beacon source. Due to the difference in
avoid radius the swarm will move towards the beacon. The light gray robots
are illuminated, the dark gray robots are non-illuminated, i.e. occluded.

figure 3. We see that robot A, which is illuminated, will try
to avoid robot B, since B is within A’s avoidance radius. But
there will be no similar behaviour on behalf of B since B’s
avoid radius is smaller, and hence B does not detect A. It is
exactly this difference in avoid radius that gives rise to the
beacon taxis behaviour.

The position of the swarm is defined as the average X and
Y positions of the robots, i.e as the centroid. Swarm movement
is then the change in the centroid position. This means that if
two robots move in exactly opposite directions with the same
distance, they will not change the position of the swarm. The
movement of one robot contributes to movement of the swarm
with a value that is equivalent to the distance moved by the
robot divided by the swarm population N .

In simulation we have varied the wireless communication
range, and run 50 simulations for each range. In all cases the
swarm successfully reached the beacon. The swarm velocity
and communication range are plotted in figure 4. We see that
the swarm velocity increases with the communication range.
This will be analysed and explained in detail later in this paper.

III. INFORMAL ANALYSIS OF THE TAXIS BEHAVIOUR

In order to develop a model of swarm taxis we will in
this section informally describe how the different interactions
between robots contribute to the overall swarm behaviour.

A. Coherence behaviour

We first make the simplifying assumption of α = population
size N . Even though this means that the swarm will be fully
connected - or attempt to be fully connected - we have chosen
to fix α at this value because the swarm becomes easier to
analyze. The rationale is that when α = N the coherence
behaviour will always take place in pairs. In other words when
a robot loses a connection there will always be another robot,
i.e. the one with which the connection was lost, that also loses
a connection, see figure 5. Since both robots will then always
have less than α connections, both will enter the coherence
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Fig. 4. The Dswarm for a swarm with 15 robots for different wireless
ranges. Each point is the average of 50 runs. The error bars denote the fastest
and slowest in each group.

state. From the perspective of overall swarm movement the
two actions will cancel each other out and hence provide no
net contribution to swarm taxis.

Fig. 5. Coherence movement takes place in pairs. Robot A loses contact
with robot B and vice versa at the same time. They will both turn 180◦ in
the next time step.

B. Collision between non-illuminated robots

When two robots that are both in shadow get too close
to each other, they will enter the avoid state at the same
time. Their avoid sensors have the same range, and they will
perceive each other’s direction accurately and at the same time.
Hence they will move in opposite directions and therefore the
avoid behaviour provides no net movement for the swarm.
Non-illuminated collisions are thus neutral with respect to
taxis.

C. Collision between illuminated robots

An identical argument can be made for the avoidance
behaviour between two robots that are both illuminated. Even
though their avoidance radii are larger than that of non-
illuminated robots, each robot has same radius, ensuring they

will avoid each other at the same time. The net movement
from the swarm perspective is therefore nil.

D. Collision between robots with different illumination status

The case of particular interest is that of collision between
two robots with different illumination status. Because of its
larger avoid sensor range the illuminated robot will detect the
non-illuminated robot at a greater distance and the illuminated
robot will consequently enter the avoid state without being
detected by the non-illuminated robot; this is where the
symmetry breaking necessary for swarm taxis takes place. The
illuminated robot will move away from the non-illuminated
robot, and since by definition the illuminated robot is closer
to the beacon then we have a contribution to the net swarm
movement (taxis) towards the beacon.2 When an illuminated
robot is avoiding a non-illuminated robot as described here,
it will move towards the beacon; for simplicity we will
refer to a robot in this particular condition as being in a
‘progressive’ state. The progressive state is really no more than

Fig. 6. When a robot moves towards the light, we refer to this as being in a
progressive state. This is a quasi-state that exits independently of the control
states. See full text for detailed explanation

a special case of the forward state, however there is value in
differentiating this quasi-state for the purposes of this analysis.
Figure 6 shows the new extended state diagram for the robot,
with two quasi-states added for avoid and forward.

E. An exception case

We saw above that due to the difference in collision
avoidance radius illuminated robots will differentially avoid
non-illuminated robots. If the illuminated robot is the one that
generates the shadow for the non-illuminated robot, then we
see the net contribution to swarm taxis described above. This
is the situation we see in figure 3 between robots A and B.
But there can be exceptional cases where an illuminated robot
avoids a shadowed robot, but is not itself the robot that casts
the shadow. Once again we can see such a situation in figure 3:
robot D, illuminated, will avoid robot C, shadowed. However,
robot C is not shadowed by robot D, but some other robot
that is closer to the beacon. Thus this collision avoidance will
not provide any net contribution to swarm taxis. When we
calculate the contribution a robot has on the progress of the
swarm we must take such exceptional cases into account. This
will be spelled out in detail in the formal analysis.

2Note that we could achieve a negative beacon-taxis swarm behaviour by
simply reversing the roles of illuminated and non-illuminated robots.

48

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



IV. THE FORMAL ANALYSIS, STEP ONE

We saw in the previous section that there will be cases where
a collision between an illuminated robot and a non-illuminated
robot does not necessarily contribute to swarm taxis. In our
simulated environment up is denoted by 0◦, right is 90◦, down
is 180◦and left is 270◦. The robot swarm starts on the left side
of the environment and the beacon source is placed to the right.
If we again consider the case of robots A and B in figure 3,
we see that robot A’s new heading after avoiding robot B will
be approximately 90◦. The distance moved towards the light,
Dprogress, in one time step is

Dprogress = Drobot ∗ sin heading (1)

In this case sin of heading is 1 and the movement towards the
beacon is the same as the movement per time step, 0.05 units.
We can compare this with the case of robots C and D in figure
3. We see that robot D has a heading of 350◦. The distance
moved towards the beacon for one time step then becomes

Dprogress = 0.05 ∗ sin 350 = 0.05 ∗ −0.17 = −0.0087 (2)

So this interaction will contribute with a small negative
movement towards the beacon.

We have measured the new heading of an avoiding robot
for each interaction and found the average sine value for the
avoiding robots. This value must be taken into account when
we then calculate the contribution of one interaction. The
average sine value varies a little across experiments as the
wireless distance changes. Let θ denote the sine factor. In the
first set of simulations θ varies from 0.473 to 0.453. By taking
this value into account we can calculate how much a single
robot moves towards the beacon per interaction.

We have seen above how one interaction between an illu-
minated and non-illuminated robot yields a small movement
towards the beacon. But to be able to determine the speed
of the whole swarm we also need to know how often such
collisions take place, and equally importantly, after a collision
for how long do robots stay in the ‘progressive’ quasi-state
before being disturbed and switching to avoid or coherence
states. Let Iprog denote the number of interactions between
an illuminated robot and a non-illuminated robot. Further, let
tprog denote the time a robot stays in the progressive state
before being disturbed. Now it might be possible to calculate
these values from first principles, but here for simplicity we
measure these values from simulation. We argue that this is
justified on the grounds that what we measure are micro-level
robot properties, in order to model and predict macro-level
swarm properties.

Now that we have established the necessary variables, we
make our first attempt at predicting the swarm velocity from
the interactions.

PDswarm =
Iprog ∗ tprog ∗ Drobot ∗ θ

N
(3)

where PDswarm is the predicted distance covered by the
whole swarm towards the beacon in one single time step.

V. RESULTS FROM THE FIRST STEP IN THE FORMAL

ANALYSIS

We have run experiments with different population sizes and
different values for the range of the wireless communication.
In particular we have used swarm sizes of 10 and 15, com-
munication ranges from 2.5 to 3.5 for swarms with population
of 10, and communication range 3.0 to 4.0 for swarms with
population 15. We have taken the average of 50 runs for each
communication range and swarm size, a total of 1100 runs.
We will give values for Iprog, tprog, and θ, and calculations
for one run. Remaining runs will be summarised.

We start with the first set of experiments. The population
in this case is 15. In this case we have measured swarm
taxis speed for wireless communication ranges from 3.0 to
4.0 units, in 0.1 step increments. A value less than 3.0 packs
the swarm too tightly together so a minimum value of 3.0
was chosen. We see from the table I that there is about one

TABLE I

NUMBER OF PROGRESSIVE INTERACTIONS PR TIME STEP AND

CORRESPONDING VELOCITY, AVERAGE OF 50 RUNS

rw Iprog tprog θ PDswarm

3.0 0.93 1.57 0.45 0.00224

3.1 0.96 1.65 0.45 0.00239

3.2 0.98 1.76 0.44 0.00256

3.3 0.99 1.88 0.43 0.00271

3.4 1.00 2.00 0.43 0.00288

3.5 0.99 2.11 0.42 0.00301

3.6 0.98 2.25 0.42 0.00314

3.7 0.97 2.37 0.41 0.00320

3.8 0.96 2.48 0.41 0.00333

3.9 0.94 2.59 0.41 0.00340

4.0 0.91 2.73 0.41 0.00348

progressive interaction per time step. However, as the wireless
communication range increases the time in which the robot
stays in the progressive behavior gets longer. The smallest is
1.57 time step up to 2.73 time steps. From these values we
can do the first calculation of the swarm velocity. If we use
the values when the wireless communication distance is 3.0
we get a swarm velocity of

PDswarm =
0.93 ∗ 1.57 ∗ 0.05 ∗ 0.45

15
= 0.0022 (4)

In figure 7 we see a graph of the swarm velocity against
wireless communication distance. We see that the swarm
moves faster as the wireless range increases. This is partly
explained by the fact that the higher the wireless communica-
tion range, the longer the robots can stay in their progressive
state, without being disturbed. Thus each single interaction
contributes more to the overall movement.

However, we can see that there is a large offset between the
real values and the predicted values. This seems to suggest that
there is something else in the interactions between the robots
that contributes to the overall taxis. We therefore extend the

49

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
0

1

2

3

4

5

6

7

8

x 10
−3 Distance per time step for Population 15, Alpha 15

Wireless communication range

D
is

ta
nc

e 
co

ve
re

d 
by

 s
w

ar
m

 p
er

 ti
m

e 
st

ep
.

Maximum and minimum measured distance
Average measured
Predicted 1st order

Fig. 7. The measured average Dswarm, including minimum and maximum
values. The lower line is the PDswarm from model 1.

model by re-visiting some of the initial assumptions that were
used in the first part of the analysis.

VI. FORMAL ANALYSIS, STEP TWO

This paper initially made a number of assumptions that will
now be reconsidered. First, we assumed that an interaction
between robots with the same illumination status would be
neutral with respect to swarm taxis. Secondly, we assumed that
coherence movements would be neutral since they take place
in pairs. We will now examine those assumptions further.

The assumption regarding collisions between robots with
the same illumination status seems to hold true. However,
consider now collisions between robots where one of those
robots is in the progressive quasi-state. When a robot is in
the progressive state and hence moving towards the beacon,
we contend that when it collides with another robot, and thus
makes an avoidance movement, the progressive movement is
‘transferred’ to the robot it collides with. The new robot will
now progress towards the beacon, until it must either make
a coherence movement or have to avoid yet another robot.
We refer to this as ‘second order’ avoid progress, as the
robot is not progressive due to a direct interaction between
an illuminated and shadowed robot, but due to avoiding
one already in the progressive state. Thus we measure three
additional values from the simulation. First, the number of
avoidance interactions between robots in the progressive state
and other robots, I2nd−avoid. We again need to know for how
long the robot stays in this state, t2nd−avoid and finally, the
average direction of the robot after such an interaction, once
again denoted θ. We can then use the same equation as above
to calculate the predicted contribution to the swarm movement
from this type of interaction,

PDswarm2a =
I2nd−avoid ∗ t2nd−avoid ∗ Drobot ∗ θ

N
(5)

where swarm2a refers to second order avoid interaction.

It seems natural to expect that the contribution to swarm
taxis from this second order interaction is less than the first
order contribution, and this is confirmed from the simulation
values. This is mainly for two reasons. The second order avoid
interactions take place rarely compared the first order avoid
interactions, and the sin value is much smaller, i.e. the angles
of interaction are larger compared to the first order case.

TABLE II

NUMBER OF INTERACTIONS 2ND ORDER AVOID, AVERAGE OF 50 RUNS

rw I2nd−avoid t2nd−avoid θ PDswarm2a

3.0 0.33 2.12 0.17 0.00041

3.1 0.33 2.29 0.17 0.00045

3.2 0.34 2.46 0.18 0.00051

3.3 0.35 2.67 0.17 0.00056

3.4 0.35 2.87 0.18 0.00063

3.5 0.36 3.07 0.18 0.00068

3.6 0.36 3.30 0.18 0.00077

3.7 0.37 3.51 0.18 0.00079

3.8 0.37 3.70 0.18 0.00085

3.9 0.37 3.90 0.18 0.00093

4.0 0.38 4.18 0.18 0.00098

Nonetheless, there is a clear bias in the second order
avoidance. In table II we can see the same tendency as we see
in the first order avoidance, i.e. as the communication range
increases, so does the time spent in the 2nd order avoid-state.
Once again, this helps to explain why the swarm moves faster
with longer communication range.

The second assumption we will revisit is the assumption
that coherence movements are always neutral. We will follow
the same line of thought as above: when a robot has to perform
a coherence move it will contribute to movement towards the
beacon if the robot it lost the connection to was in a first
order progressive state. Thus we must measure how many such
interactions there are per time step, denoted I2nd−coh. We must
also measure the duration of this state, denoted t2nd−coh. From
this we calculate the contribution to the swarm movement from
this type of interaction.

PDswarm2c =
I2nd−coh ∗ t2nd−coh ∗ Drobot ∗ θ

N
(6)

There is one problem with this. We can easily measure from
our simulation both I2nd−coh and t2nd−coh, and the results are
shown in table III. However, due to our simulation setup it is
very hard to measure the heading a second order coherence
move makes the robot take. For our calculations we have
used the same heading as the first order heading, but this is
almost guaranteed to be too high. First order interactions can
take place almost all over the swarm. We see that the second
order avoid sine value is approximately 0.18 whereas the first
order sine value varies from 0.47 to 0.41, more than twice
the distance covered per time step. Most likely the variations
between the second order coherence will be larger. Perhaps a
better estimate is to use the second order avoid value, or an
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TABLE III

NUMBER OF INTERACTIONS 2ND ORDER COHERENCE, AVERAGE OF 50

RUNS. SINE VALUE OMITTED.

rw I2nd−coh t2nd−coh PDswarm2c.

3.0 0.35 1.04 0.00057

3.1 0.33 1.04 0.00053

3.2 0.31 1.04 0.00048

3.3 0.28 1.04 0.00044

3.4 0.26 1.05 0.00041

3.5 0.25 1.05 0.00038

3.6 0.23 1.05 0.00036

3.7 0.22 1.05 0.00033

3.8 0.21 1.05 0.00032

3.9 0.20 1.05 0.00030

4.0 0.19 1.05 0.00029

average of the two. This is surely a point that needs further
examination.

We can see from table III that the time spent in the coher-
ence state does not increase with increasing communication
range. At first this may seem surprising, but remember that
when a robot enters the coherence state it turns around to
move towards the remainder of the swarm. As it gets closer
and consequently increases the number of connections it will
make a random turn. Since a robot will turn around as soon
as a connection is lost, it will reconnect almost instantly
independent of the wireless communication radius. Now that
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Fig. 8. The measured average Dswarm, including minimum and maximum
values. The lower line is PDswarm−total.

we know the velocity contribution from first order avoid,
second order coherence and second order avoid, we can sum
them to get net velocity towards the beacon. The predicted
swarm movement per time step equals

PDswarm−total = PDswarm + PDswarm2a + PDswarm2c

(7)
When we sum the contribution from all three elements we see

a reasonable correlation between the predicted and measured
values for swarm velocity as shown in figure 8.

We have also run the same simulations and calculations for
a swarm with only ten robots. We will not give the detailed
numbers here, but the summarised results are shown in figure
9. We see that the model again predicts swarm velocity with
reasonable accuracy for the smaller population size. However,
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Fig. 9. The measured average Dswarm and predicted value
PDswarm−total for a swarm with population size N = 10. The topmost
line is PDswarm−total.

we should make a number of critical observations. In the
case of population size 15, we always predict a slightly
smaller swarm velocity than the measured value. Our predicted
values are always between the average and minimum measured
values. But when we examine the results for a population size
of 10, we tend to predict somewhat higher swarm velocity
values. Once again, we are always within the bounds of the
natural variations in the experiments, but on the other side of
the average. At this stage we can only speculate about why
this is so; one possible explanation might be that as the swarm
size increases, there will be room for third and perhaps even
fourth order effects, that we do not take into account.

VII. CONCLUSION AND FURTHER WORK

In this paper we have described an improved algorithm
for emergent taxis in a swarm of wireless connected mobile
robots. We have seen how a set of simple behavioural rules
for the robots can generate beacon-taxis even though none of
the robots have the necessary sensing ability to determine the
direction of the beacon. The emergent swarm taxis is a strictly
collective property that does not work with less than four or
five robots and whose performance improves with increasing
swarm size. We have developed an informal analysis of the
swarm that explains the micro-level interactions between the
robots and how they combine to make swarm taxis possible.
We have, with reasonable accuracy, been able to formalize our
initial analysis and calculate how much the different types of
interactions contribute to the overall velocity of the swarm,
and based on this formalization we can predict the velocity
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of the swarm. Even though we have made several simplifying
assumptions, e.g robot turning is instant; complete uniformity
of avoidance sensors; no real motion dynamics, the results
from this analysis provide us with some confidence that a
more advanced model, that takes these issues into account is
possible.

Compared to the original algorithm for emergent taxis [7],
[8] the algorithm presented here is improved because the
robots do not need to have a representation of the connec-
tivity or illumination status of their neighbours. Thus the
communication in purely situated, and bandwidth utilization
and simplicity have been improved.

There are, however, three problems not addressed so far
that should be addressed. Firstly, in this paper we have used
our simulation to measure and numerically characterize the
different micro-level interactions between the robots. Arguably
this makes the results somewhat circular, and the interaction
values need to be derived analytically or geometrically if we
really want to call our estimate of swarm velocity a prediction.
This poses a formidable challenge, particularly since several
of the state transition probabilities are conditional, and small
errors in estimation can lead to large errors on the macro level.
Even though the taxis behaviours in general are very robust,
e.g. stable and reliable under relatively large variations on the
micro level, the exact velocity of the taxis is very sensitive to
small variations on the micro level.

Another problem posed by this work is our simplifying
assumption of α = population. This means that the swarm
will attempt to be fully connected at all times and this surely
goes against the swarm paradigm. One of the greatest benefits
of a swarm system is exactly that communication is local,
which in turn allows swarm systems to scale well. We have
made this assumption to make the analysis simpler, but further
work will need to remove this assumption and hence apply to
wireless connected swarms with local communication only.

The final problem is generalisability. The analysis and
model presented in this paper is very specific to this particular
swarm system. We wonder if it would be possible to make
models that are more general, and would be able to capture the
underlying mechanisms for taxis, even if taxis was achieved
by using different behavioural rules. However, there is a
possibility that different swarm taxis implementations will be
too different to be captured by a similar model.

Notwithstanding these self-critical observations, we believe
that the methodology presented in this paper is of generic
value: that is a reductive approach that identifies both first
and second order micro-level pair-wise interactions between
robots and then attempts to quantify the contribution of each
such interaction to the overall swarm behaviour.

A. We need real robots

The swarm taxis algorithm has to date been evaluated only
in simulation. Furthermore, although simulated in 2D, the
algorithm is inherently dimensionless, and should in principle
work in 3D just as well (providing the robots have sufficient
controllable degrees of freedom).

We aim to validate both the algorithm and the model using
both 2D and 3D robots. For 2D experiments we have a fleet
of wheeled Linux-based robots already built in our laboratory.
For 3D experiments we are currently upgrading a small swarm
of lighter-than-air aerobots.
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