
Using the Particle Swarm Optimization Algorithm for Robotic Search
Applications

James M. Hereford, Member, IEEE, Michael Siebold, Shannon Nichols
Murray State University

Department of Engineering and Physics

Murray, KY 42071

Abstract— This paper describes the experimental results of
using the Particle Swarm Optimization (PSO) algorithm to
control a suite of robots. In our approach, each bot is one
particle in the PSO; each particle/bot makes measurements,
updates its own position and velocity, updates its own personal
best measurement (pbest) and personal best location (if
necessary), and broadcasts to the other bots if it has found a
global best measurement/position. We built three bots and
tested the algorithm by letting the bots find the brightest spot
of light in the room. The tests show that using the PSO to
control a swarm can successfully find the target, even in the
presence of obstacles.

I. INTRODUCTION

Our goal is as follows: build a suite/swarm of (very) small

robots that can search a room for a “target”. We envision

that the robots will be about the size of a quarter dollar, or

smaller, and have a sensor or sensors that “sniff” out the

desired target. For example, the target could be a bomb and

the robot sensors would be a chemical detector that can

distinguish the bomb from its surroundings. Or the target

could be a radiation leak and the sensors would be radiation

detectors. This type of scenario has many possible

applications. In each scenario, there is a target point that is

either (a) hard to find and/or (b) dangerous for humans to

search out.

In place of humans, robots can be used to do the search. We

envision using several small robots instead of one large

robot. Several robots provide for a natural “fault tolerance”.

If one or more of the robots is damaged, there are still other

functional robots that can continue to search. In addition,

small robots will potentially be easier to transport (lighter),

quicker to search (more robots can cover more area) and

cheaper to make. The suite of robots will work together to

solve the problem. However, there will not be a “master”

robot or global processor that will direct the movements of

each robot. Each robot determines its own movement and is

able to communicate with other robots wirelessly.

It is not very efficient to have the suite of robots looking

randomly around the room hoping to “get lucky” and find

the target. There needs to be some way to coordinate the

movements of the many robots. There needs to be an

algorithm that can guide the robots toward promising

regions to search while not getting distracted by local

variations. The search algorithm must have the following

constraints:

The search algorithm should be distributed among the

many robots. If the algorithm is located in one robot,

then the system will fail if that robot fails. Also,

there would be a lot of communications among the

robots if each robot had to wait for movement

commands from a central source. Thus, the search

algorithm needs to be de-centralized.

The search algorithm should be computationally

simple. The processor on each bot is small, has

limited memory, and there is a limited power source

(a battery) so the processor needs to be power

efficient. Therefore, the processor will be a simple

processor. The search algorithm needs to be tailored

to such a processor.

The search algorithm should have a minimum amount

of communications among the robots. The algorithm

needs to be scalable from one robot up to 10’s, 100’s,

even 1000’s of robots. The upper limit on the

number of robots will be set by the communication

links among the robots. If each robot has to wait for

information from other robots, then the system will

break down as the number of robots increases.

Instead, there needs to be a way to share information

among the robots without requiring lots of

communication traffic.

The search algorithm must allow for contiguous

movement of the robots. There are search algorithms

that work well in simulation (e.g., genetic algorithms)

but require “step” changes in the solutions at each

iteration. This would not be feasible in this

application.

This paper describes the results from programming a suite of

robots to search for the brightest spot of light in a room.

The algorithm is based on the Particle Swarm Optimization

(PSO) algorithm that has proven successful in optimization

type searches. The algorithm, described in [Hereford 2006],

allows each bot to calculate its new position based on its

present measurement and present position. In section 2, we

give a brief overview of the modified PSO algorithm and

summarize simulation results. In section 3, we describe the

robots that we will use to implement the PSO (mitEBots).

Section 4 gives the results of experimental runs using the

53

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

PSO with the bots. The results show that the PSO + bot

swarm is able to find a target, even in the presence of

obstacles. Section 5 gives the conclusions for this paper.

II. BACKGROUND

A. Classic PSO

In Particle Swarm Optimization (PSO) [Eberhart 1995,

Eberhart 2001, Eberhart 2004], the potential solutions,

called particles, “fly” through the problem space by

following some simple rules. All of the particles have

fitness values based on their position and have velocities

which direct the flight of the particles. PSO is initialized

with a group of random particles (solutions), and then

searches for optima by updating generations. In every

iteration, each particle is updated by following two "best"

values. The first one is the best solution (fitness) the particle

has achieved so far. This value is called pbest. Another

"best" value that is tracked by the particle swarm optimizer

is the best value obtained so far by any particle in the

population. This best value is a global best and called gbest.

After finding the two best values, the particle updates its

velocity and positions with following equations:

vn+1 = wivn + c1*rand*(pbestn – pn) + c2*rand*(gbestn–pn)

pn+1 = pn + vn+1

wi is the inertia coefficient which slows velocity over time;

vn is the particle velocity; pn is the current particle position

in the search space; pbestn and gbestn are defined as the

“personal” best and global best; rand is a random number

between (0,1); c1, c2 are learning factors. The stop

condition is usually the maximum number of allowed

iterations for PSO to execute or the minimum error

requirement. As with the other parameters, the stop

condition depends on the problem to be optimized.

In summary, the advantages of the PSO over other

algorithms are that (a) it is computationally simple and

efficient; (b) each agent only needs to know its own local

information and the global best to compute the new position,

so there is a minimal amount of data transfer among the

agents; and (c) the results from all agents in the population

are not required to form the next generation, so a centralized

processor is not required.

Because of the required search algorithm characteristics

listed in section I, we chose the PSO as the starting point for

the search control algorithm. The PSO is computationally

simple. It requires only four multiplies and four

add/subtracts to update the velocity and then one add to

update the position. There is no complicated iterative

equation solving required and no exponential or trig

functions to implement. The PSO is also a distributed

algorithm. Each agent/particle/bot can update its own

velocity and position. The only external information is the

global best – the best value by any particle within the

population. The calculation of the global best can be done

with a simple comparative statement. Thus, each bot does

not need to know the results from each member of the

population as in many traditional schemes.

The PSO also allows the contiguous movement of the bots.

The updated position is relative to the current position so

there is no jump changes in position or random movements.

If there are constraints on the movement of the bot during

each iteration, then limitations can be placed on the

maximum and minimum velocity that is allowed for each

particle/Bot.

B. Modified PSO

The idea of the distributed PSO (dPSO) algorithm is to have

each particle/bot make measurements, update its own

position and velocity, update its own personal best

measurement (pbest) and personal best location (if

necessary), and broadcast to the other bots if it has found a

global best measurement/position. Thus, all velocity and

position updates are done locally by each bot and only

global best updates are broadcast. This reduces the amount

of information that is communicated among the bots and

increases the scalability of the algorithm.

There are several modifications that have to be made to the

classic PSO algorithm for it to work effectively for the

distributed search scenario. First, each bot has limited

mobility (a limited turning radius, a small maximum velocity

and it can not move backwards). The classic PSO assumes

that the particles can move in any direction and with any

velocity up to a stated Vmax. The bots, however, have to

move within a limited cone.

A second modification is introduced to reduce the amount of

communications traffic; the dPSO only broadcasts a new

gbest location after it has been determined that the bot has

indeed found an overall global best. Frequently, especially

at the beginning of a search, more than one bot will find a

new global best within a particular time interval. Rather

than broadcast both the new value of gbest and the location,

the local bot will only broadcast the gbest value. If it is

determined that it indeed has the gbest, it will then broadcast

the location of the global best so the other bots can use the

new value in their velocity update equations.

Simulation results showed that the dPSO is a very good way

of coordinating simple bots for a search operation. For

target locations in the middle of the search space, bots

utilizing the dPSO find the target 99 or 100 % of the time.

54

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

A lower maximum velocity for each bot leads to slightly

more effective searches (2-3 % more effective), but it then

takes longer (on average) to reach the target. The algorithm

is scalable to large numbers of bots since the

communications requirements do not increase as the number

of bots is increased.

We note that the dPSO has potential to also be used as a

parallel (multiprocessor) version of the PSO. However, the

dPSO has not been optimized to provide speed or good test

results with complex search functions like other parallel

PSO techniques [Chang 2005]. Instead, the goal of the

dPSO is to minimize the communications among the

particles/bots and thus make it easily scalable to large

numbers of particles.

C. Related Work

Other authors have investigated using multiple (simple)

robots for search type applications. Hayes et al. report using

autonomous mobile robots for beacon localization [Hayes

2000] and plume tracking/odor source localization [Hayes

2002]; they base their search techniques on biological

principles (surge “upwind”) but do not use the PSO

algorithm directly. Doctor et al. [Doctor 2004] discuss

using the PSO for multiple robot searches. Their focus is on

optimizing the parameters of the search PSO and do not

consider the scalability of the standard PSO to large

numbers of robots. Pugh et al. [Pugh 2005, Pugh 2006]

explore using PSO on problems in noisy environments,

focusing on unsupervised robotic learning. They use the

PSO to evolve a robot controller that avoids obstacles, but it

does not appear that the distributed robots communicate

with each other.

There is at least one other research group that is

investigating using mobile robots as particles within a PSO

search framework. Jatmiko et al. [Jatmiko 2006] use mobile

robots for plume detection and traversal. They utilize a

modified form of the PSO to control the robots and consider

how the robots respond to search space changes such as

turbulence and wind changes. They do not, however,

consider how well the process will scale to large numbers of

robots. Also, they have not yet published results of

implementing their PSO variants in actual hardware robot

swarms.

III. DESCRIPTION OF MITEBOTS

To embed the dPSO algorithm into a swarm of robots, each

robot in the swarm must have a certain minimal set of

abilities. Each robot must be able to (a) make a

measurement of the surrounding environment, (b) perform

calculations, (c) determine accurate position information, (d)

move to a new location in the search space and (e)

(wirelessly) communicate with other bots. Each of these

operations is required to implement the dPSO operations of

function evaluation (make measurement), velocity and

intended position update (simple calculations), move to the

new position (move and position information), and

communicate the global best value and location to other bots

in the neighborhood or swarm (communication with other

bots).

In addition to the required characteristics above, there are

several desired characteristics for each bot. Each bot should

be small, both in size and in weight, which also means the

processor must be small and have limited computational

capability. The bot must be self-contained in terms of

power. Each bot may have an array of sensors that can

make measurements. As mentioned above, the sensors

could measure temperature, chemical density, radiation,

sound level or electromagnetic radiation within a specific

band.

We have built a set of robots to demonstrate a proof-of-

principle experiment for the dPSO. We call our robots

mitEBots. The mitEBots use Motes [Culler 2004] to

provide sensing, processing, and communications and an

electric car to provide movement. They are based on the

CotsBots design [Bergbreiter 2003], but the mitEBots

designed by Murray State University feature a Cricket mote

[Teller 2003] as the design center point. Like the CotsBots,

the primary locomotive hardware is a radio-controlled car

that has been disemboweled of its electronics. There is a

motor board to interface the Mote to the car’s steering and

drive motors. Each of the mitEBots contains a simple

processor (Atmega 128L 8-bit microprocessor, 4 MHz

clock) so each bot can perform calculations locally.

The Cricket board, developed at MIT’s Computer Science

and Artificial Intelligence Laboratory, attaches to a sensor

board and comes equipped with a combination of RF and

ultrasound technologies to provide location information.

Three beacons (other Cricket motes) are mounted in the

search space so each mitEBot can determine its x, y (and z if

desired) position. Even in the presence of several competing

beacon transmissions, Cricket achieves good precision and

accuracy. Its decentralized architecture makes the system

easy to deploy.

An alternative method to determine position information is

suggested by Spears et al. [Spears 2006] that is based on

trilateration. In the trilateration method, each bot is

equipped with a radio frequency (RF) transceiver and three

ultrasound transceivers. Each bot is able to determine how

far away it is from neighboring bots and thus determine its

position, assuming that the positions of the other bots are

known. This method has the attractive feature of

eliminating the need for stationary beacons at known

55

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

locations. However, it would require more communications

packets be exchanged among the bots and there is a concern

that position errors would grow over time since there are no

fixed reference points.

Murray State University has built and tested three mitEBots

for use with the PSO algorithm. (See Figure 1.) Each

mitEBot can only turn a maximum of 36 degrees to the right

or left and has a turning radius of approximately 17 cm. The

maximum velocity is approximately 1.0 m/s when the

batteries are fully charged but the bots do not move at

maximum velocity during the search operations. Each Bot

is approximately 16 cm long, 8.5 cm wide, and 7 cm tall.

Two of the mitEBots weigh 364 grams and the third bot

(built using a different model of remote-control car) weighs

387 grams which is about three times the weight of a

handheld scientific calculator. No steps were taken to

minimize the weight of the mitEBots as shown by the fact

that three different battery systems are used: AA for the

cricket mote, AAA for the motors and 9V for the interface

board.

Figure 1: Murray State’s mitEBot.

IV. RESULTS

A. Test conditions

To investigate the effectiveness of the dPSO algorithm, we

did several experiments. In the experiments, a diffuse light

source was placed near the ceiling of a dark room and

pointed downward. Bots with light sensors were placed at

various starting positions about 2 m apart to see (a) how

often and (b) how quickly they could find the brightest spot

of light in the room.

The layout of the test area is shown in Figure 2. The boxes

in the middle represent the obstacles that we placed in the

search space for the second half of the testing. The circles

indicate the starting positions of the bots and the highest

concentration of light is immediately to the left of the

vertical obstacle. Since we are using a diffuse light source,

the global best is actually a rectangle approximately .25 m

by .3 m.

Figure 2: Graphical representation of test area. Dimensions shown are in

meters.

B. Algorithm adjustments

To apply the dPSO to a robotic swarm search, we had to

make several adjustments to the algorithm. First, the bots

determine their position by triangulating from three cricket

motes set up as beacons. For the bots to obtain accurate

position measurements they must receive several data

packets from each beacon. Missed packets from the beacons

cause faulty distance measurements which leads to

inaccurate position information for the local bot. To correct

for any missed packets, the bots are programmed to move to

the next position and then wait for two consecutive “clean”

measurements (distance measurements within 2 cm) from all

three beacons. This wait leads to relatively long search

times.

A second algorithm adjustment had to be made because of

mechanical faults in each bot. In general, the bots move in

arcs even when the algorithm directs them to move in

straight lines. Each bot moves toward the desired position

in the search space but upon arrival at the destination point,

the orientation direction is usually skewed relative to the

movement. To compensate, we update the bot’s orientation

angle at each iteration based on the bot’s current position

and its previous position. This eliminates the buildup of

orientation errors that occur when a strict dead reckoning

system for orientation is used. We also orient the front

wheels on the bot to point straight ahead after each move.

Unlike a simulation-only PSO, the hardware bots can get

“stuck” at an obstacle or collide with another bot (particle).

Once a bot got stuck or collided, we programmed the bot to

back up and turn right. This allows the bot to move around

long obstacles, such as a wall, even though it may require

more than one cycle of backing up and turning to avoid.

56

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

C. Qualitative results

During the hardware experiments, we programmed each

mitEBot with identical nesC programs. (The only difference

is that each bot was programmed with a different

identification number.) The PSO parameters used were c1 =

2, c2 = 2, and wi = 1.0. We tried using wi = 0.8 but it

slowed the bots down considerably and led to many failed

searches. The value of Vmax was set based on the hardware

limitations of each bot. The value varied slightly from bot

to bot but it was approximately 0.8 m/s for each one. Each

bot was programmed to move in the desired direction for

approximately 0.5 sec. The bot would then make a

measurement, determine its new position, calculate its

desired movement direction based on the PSO update, orient

its wheels to that direction, if possible, and then move for

0.5 sec. The search was ended when there had been 20

iterations of the algorithm with no new global best

discovered. We made some test runs using a stop condition

with 10 iterations with no new gbest but we determined that

10 was insufficient.

Qualitative results for the robotic search are shown in

Figures 3 and 4. Figure 3 shows the path traced out by 1 bot

and Figure 4 shows the path traced out by 2 bots. Note that

these are not simulation results. These are plots of the

movement of the bot(s) through the search space where the

(x,y) position of the bot(s) were monitored throughout the

search. The x and y axes are to scale and the axes are in cm.

The asterisks (*) marks in the figures represent positions

where a new global best was found. The rectangular box is

peak area of the search space. The plots only show the

search up till the peak light value was found.

Figure 3: Path in search space with no obstacles for 1 bot.

In the one bot case (Figure 3), the bot starts in lower right

corner. It moves up (north), finds new global bests and

continues upward. When it starts to move away from the

peak, it circles clockwise and then begins moving to the left

(westward). When the light intensity measurements begin to

taper off again, the bot circles counterclockwise. The circle

behavior is because the bot is limited in its turning radius –

it can not make a sharp turn. Thus, it must move toward the

global best in a roundabout fashion. Eventually, it settles on

to the peak light value.

Figure 4: Path in search space with no obstacles for 2 bots in a 3 bot search.

Figure 4 shows the paths traced by two bots in a three bot

search. (Only two bots are shown to simplify the figure.) In

the multi bot case (Figure 4), the bots start at different

locations (lower right and lower left) and proceed to move

and take light intensity measurements. As seen with only 1

bot, if any of the bots starts moving away from the global

best, then they circle around to return to the vicinity of the

best value. In this search, there was a global best that

occurred within the rectangular box, but a superior gbest

was discovered within the next 20 iterations.

D. Quantitative results

The PSO algorithm was tested using swarm sizes of 1, 2 and

3 bots. (The 1-bot swarm was merely for baseline

comparison.) Ten runs were made for each of the three

cases. We tracked how many times the bots found the

brightest spot and how long it took for the bots to locate the

peak.

The bots were timed by a cricket mote which was not part of

the swarm. This mote transmitted a radio signal which

allowed all the bots to start searching simultaneously. This

mote then listened for radio communication between the

bots in the swarm. If twenty iterations of the algorithm

passed with no new global best, then we presume the search

is over and the external mote reported the length of time it

took the first bot to find the highest light value.

The quantitative results are shown in Table 1. The results

are for two different search spaces: one with no obstacles

and one with obstacles. The table shows the number of bots

in the swarm, the number of successful runs and the average

57

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

time to find the peak. The average time is for only the

successful searches.

TABLE 1: INITIAL RESULTS FROM USING PSO TO PROGRAM A SUITE OF BOTS

Runs without obstacles
Number

of bots

Successful

runs (out of

10)

Average

time of

successful

runs (sec)

Standard

deviation

(sec)

1 8 205.1 88.7

2 10 200.3 65.5

3 10 132 72.1

Runs with obstacles
Number

of bots

Successful

runs (out of

10)

Average

time of

successful

runs (sec)

Standard

deviation

(sec)

1 6 205.9 152.9

2 9 225.1 151.4

3 9 150.2 93.9

Increasing the number of bots does two things. It leads to

more successful searches and (usually) reduces the time to

find the peak/best value. We see that even with the

obstacles in the search space, the swarm is still able to find

the “target” or peak light intensity (almost) every time. In

general, the searches take longer when there are obstacles in

the search space but the search is still successful. The times

should be used for comparison purposes and not necessarily

as an absolute reference. As mentioned in section 4.B,

sketchy communications with the beacons forced the bots to

wait for two consecutive good data points at each iteration.

This waiting time greatly increased the search time.

The only data point that is counter-intuitive is the average

time values of the one bot case with obstacles. The average

search time actually is less than the two bot case, though

there were far fewer successful searches. This implies that

the one bot case with obstacles either finds the target

relatively quickly, or not at all.

The standard deviation for the test runs is relatively large,

especially for the 1 and 2 bot cases, with obstacles.

Generally, one really large search time in each set of 10 test

runs skewed the average and standard deviation times. For

the search with obstacles, in both the 1 and 2 bot cases, there

was one test case with a search time in excess of 500

seconds. We attribute these extremely long search times

primarily to low battery levels. Low battery levels leads to

longer wait times to get clean packets from the beacons

(transmission signals from the most-distant beacon are

weaker) and then slower movement of the bots.

To overcome the weak signal from one of the beacons, we

modified the position algorithm to allow the bot to calculate

its position with distance data from only two beacons. The

bot initially tried to get two consecutive good measurements

from all three beacons. If after seven seconds there was still

not good distance information, then the bot would use the

distance measurements from two beacons to calculate its

(x,y) position.

During our initial experiments, we noticed that the light

sensors on the bots were mismatched. That is, different bots

would read different values for the same light level. This

imbalance led to some stray values for the time to find the

target. Specifically, if the bot with the lowest light readings

found the peak value first, then other bots would circle

toward that point. When another bot (with a light sensor

that recorded higher light values) moved to the same

location, it would record a higher light value and the

algorithm would think a “new” target had been found.

To correct for the different sensor readings, we used linear

splines for each individual sensor to adjust and match the

light sensor outputs of the three bots. Thus, each bot will

give the same (corrected) output for the equivalent light

level. The results for 10 test runs with the position and

sensor algorithm corrections are shown in Table 2.

TABLE 2: RESULTS FROM USING PSO TO PROGRAM A SUITE OF BOTS WITH

SENSOR AND POSITION CORRECTIONS

Runs without obstacles
Number

of bots

Successful

runs (out of

10)

Average

time of

successful

runs (sec)

Standard

deviation

(sec)

1 6 180.2 101

2 10 176.1 68.9

3 10 109.6 55.0

Runs with obstacles
Number

of bots

Successful

runs (out of

10)

Average

time of

successful

runs (sec)

Standard

deviation

(sec)

1 8 250.2 108.6

2 10 181.7 76.1

3 10 125.8 65.2

As expected, the sensor and position corrections improve the

average and standard deviation of the search times. The

multi-bot test runs are all finding the peak value, even in the

presence of obstacles. As with the previous results, more

bots leads to more successful searches and faster search

times.

V. CONCLUSIONS

We have developed a version of the PSO that “distributes”

the processing among several, simple, compact, mobile bots.

58

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

We have called our algorithm the distributed PSO (dPSO).

In the dPSO algorithm, all the calculations are done

“locally”, that is, on each local bot. The only data that is

potentially needed from other bots is the value and location

of the global best, gbest. Thus, there are no communications

unless one of the bots finds a point in the search space that is

better than any point found up to that time during the search.

We have tested the distributed PSO algorithm using three

bots. The tests show that using the PSO to control a swarm

can successfully find the target (in this case, the brightest

point of light in the search space), even in the presence of

obstacles.

REFERENCES

[Bergbreiter 2003] S. Bergbreiter; K. Pister, "CotsBots: An Off-the-Shelf

Platform for Distributed Robotics," IROS 2003, Las Vegas, NV, October

27-31, 2003.

[Chang 2005] J. Chang, S. Chu, J. Roddick, J. Pan, “A parallel particle

swarm optimization algorithm with communication strategies”, Journal of

Information Science and Engineering, vol. 21, pp. 809-818, 2005.

[Culler 2004] D. Culler, H. Mulder, “Smart sensors to network the world”,

Scientific American, pp. 84 – 91, June 2004.

[Doctor 2004] S. Doctor, G. Venayagamoorthy, V. Gudise, “Optimal PSO

for collective robotic search applications”, IEEE Congress on Evolutionary

Computation, Portland, OR, pp. 1390 – 1395, June 2004.

[Eberhart 1995] R. Eberhart, J. Kennedy, “A new optimizer using particle

swarm theory”, Proceedings of the sixth international symposium on micro

machine and human science, Japan, pp. 39-43, 1995.

[Eberhart 2001] R. Eberhart, Y. Shi, “Particle swarm optimization:

developments, applications and resources”, Proc. congress on evolutionary

computation, Korea, 2001.

[Eberhart 2004] R. Eberhart, Y. Shi, Special issue on Particle Swarm

Optimization, IEEE Transactions on Evolutionary Computation, pp. 201 –

301, June 2004.

[Hayes 2000] A. Hayes, A. Martinoli, R. Goodman, “Comparing distributed

exploration strategies with simulated and real autonomous robots”, Proc of

the 5
th International Symposium on Distributed Autonomous Robotic

Systems, Knoxville, TN, pp. 261-270, October 2000.

[Hayes 2002] A. Hayes, A. Martinoli, R. Goodman, “Distributed Odor

Source Localization”, IEEE Sensors, pp. 260-271, June 2002.

[Hereford 2006] J. Hereford, “A distributed Particle Swarm Optimization

algorithm for swarm robotic applications”, 2006 Congress on Evolutionary

Computation, Vancouver, BC, pp. 6143 – 6149, July 2006.

[Hsiang 2002] T-R Hsiang, E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B.

Mitchell, “Algorithms for rapidly dispersing robot swarms in unknown

environments”, Fifth International Workshop on Algorithmic Foundation of

Robotics, December 2002.

[Jatmiko 2006] W. Jatmiko, K. Sekiyama, T. Fukuda, “A PSO-based mobile

sensor network for odor source localization in dynamic environment:

theory, simulation and measurement”, 2006 Congress on Evolutionary

Computation, Vancouver, BC, pp. 3781 – 3788, July 2006.

[Morlok 2004] R. Morlok, M. Gini, “Dispersing robots in an unknown

environment”, Distributed Autonomous Robotic Systems 2004, Toulouse,

France, June 2004.

[Pugh 2005] J. Pugh, A. Martinoli, Y. Zhang, “Particle Swarm Optimization

for unsupervised robotic learning”, Proc. of the 2005 IEEE Swarm

Intelligence Symposium, Pasadena, CA, June 2005.

[Pugh 2006] J. Pugh, A. Martinoli, “Multi-robot learning with Particle

Swarm Optimization”, Joint Conference on Autonomous Agents and

Multiagent Systems, Hakodate, Japan, May 2006.

[Spears 2006] W. Spears, J. Hamann, P. Maxim, P. Kunkel, D. Zarzhitsky,

D. Spears, C. and Karlsson, “Where are you?”, Proceedings of the SAB

Swarm Robotics Workshop, September 2006, Rome, Italy.

[Teller 2003] S. Teller, K. Chen, H. Balakrishnan, “Pervasive Pose-Aware

Applications and Infrastructure”, IEEE Computer Graphics and

Applications, July/August 2003.

59

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

