
Using the Particle Swarm Optimization Algorithm for Robotic Search 
Applications

James M. Hereford, Member, IEEE, Michael Siebold, Shannon Nichols 
Murray State University 

Department of Engineering and Physics 

Murray, KY 42071 

Abstract— This paper describes the experimental results of 
using the Particle Swarm Optimization (PSO) algorithm to 
control a suite of robots. In our approach, each bot is one 
particle in the PSO; each particle/bot makes measurements, 
updates its own position and velocity, updates its own personal 
best measurement (pbest) and personal best location (if 
necessary), and broadcasts to the other bots if it has found a 
global best measurement/position.  We built three bots and 
tested the algorithm by letting the bots find the brightest spot 
of light in the room. The tests show that using the PSO to 
control a swarm can successfully find the target, even in the 
presence of obstacles.   

I. INTRODUCTION

Our goal is as follows: build a suite/swarm of (very) small 

robots that can search a room for a “target”.  We envision 

that the robots will be about the size of a quarter dollar, or 

smaller, and have a sensor or sensors that “sniff” out the 

desired target.  For example, the target could be a bomb and 

the robot sensors would be a chemical detector that can 

distinguish the bomb from its surroundings.  Or the target 

could be a radiation leak and the sensors would be radiation 

detectors.  This type of scenario has many possible 

applications.  In each scenario, there is a target point that is 

either (a) hard to find and/or (b) dangerous for humans to 

search out. 

In place of humans, robots can be used to do the search.  We 

envision using several small robots instead of one large 

robot.  Several robots provide for a natural “fault tolerance”.  

If one or more of the robots is damaged, there are still other 

functional robots that can continue to search.  In addition, 

small robots will potentially be easier to transport (lighter), 

quicker to search (more robots can cover more area) and 

cheaper to make.  The suite of robots will work together to 

solve the problem.  However, there will not be a “master” 

robot or global processor that will direct the movements of 

each robot.  Each robot determines its own movement and is 

able to communicate with other robots wirelessly.   

It is not very efficient to have the suite of robots looking 

randomly around the room hoping to “get lucky” and find 

the target.  There needs to be some way to coordinate the 

movements of the many robots.  There needs to be an 

algorithm that can guide the robots toward promising 

regions to search while not getting distracted by local 

variations.  The search algorithm must have the following 

constraints: 

The search algorithm should be distributed among the 

many robots.  If the algorithm is located in one robot, 

then the system will fail if that robot fails.  Also, 

there would be a lot of communications among the 

robots if each robot had to wait for movement 

commands from a central source.  Thus, the search 

algorithm needs to be de-centralized. 

The search algorithm should be computationally 

simple.  The processor on each bot is small, has 

limited memory, and there is a limited power source 

(a battery) so the processor needs to be power 

efficient.  Therefore, the processor will be a simple 

processor.  The search algorithm needs to be tailored 

to such a processor.

The search algorithm should have a minimum amount 

of communications among the robots.  The algorithm 

needs to be scalable from one robot up to 10’s, 100’s, 

even 1000’s of robots.  The upper limit on the 

number of robots will be set by the communication 

links among the robots.  If each robot has to wait for 

information from other robots, then the system will 

break down as the number of robots increases.  

Instead, there needs to be a way to share information 

among the robots without requiring lots of 

communication traffic. 

The search algorithm must allow for contiguous 

movement of the robots.  There are search algorithms 

that work well in simulation (e.g., genetic algorithms) 

but require “step” changes in the solutions at each 

iteration.  This would not be feasible in this 

application. 

This paper describes the results from programming a suite of 

robots to search for the brightest spot of light in a room.  

The algorithm is based on the Particle Swarm Optimization 

(PSO) algorithm that has proven successful in optimization 

type searches.  The algorithm, described in [Hereford 2006], 

allows each bot to calculate its new position based on its 

present measurement and present position.  In section 2, we 

give a brief overview of the modified PSO algorithm and 

summarize simulation results.  In section 3, we describe the 

robots that we will use to implement the PSO (mitEBots).  

Section 4 gives the results of experimental runs using the 
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PSO with the bots.  The results show that the PSO + bot 

swarm is able to find a target, even in the presence of 

obstacles.  Section 5 gives the conclusions for this paper. 

II. BACKGROUND

A. Classic PSO 

In Particle Swarm Optimization (PSO) [Eberhart 1995, 

Eberhart 2001, Eberhart 2004], the potential solutions, 

called particles, “fly” through the problem space by 

following some simple rules.  All of the particles have 

fitness values based on their position and have velocities 

which direct the flight of the particles.  PSO is initialized 

with a group of random particles (solutions), and then 

searches for optima by updating generations. In every 

iteration, each particle is updated by following two "best" 

values. The first one is the best solution (fitness) the particle 

has achieved so far.  This value is called pbest. Another 

"best" value that is tracked by the particle swarm optimizer 

is the best value obtained so far by any particle in the 

population. This best value is a global best and called gbest.  

After finding the two best values, the particle updates its 

velocity and positions with following equations: 

vn+1 = wivn + c1*rand*(pbestn – pn) + c2*rand*(gbestn–pn)

pn+1 = pn + vn+1    

wi is the inertia coefficient which slows velocity over time; 

vn is the particle velocity; pn is the current particle position 

in the search space; pbestn and gbestn are defined as the 

“personal” best and global best; rand is a random number 

between (0,1); c1, c2 are learning factors.  The stop 

condition is usually the maximum number of allowed 

iterations for PSO to execute or the minimum error 

requirement.  As with the other parameters, the stop 

condition depends on the problem to be optimized.   

In summary, the advantages of the PSO over other 

algorithms are that (a) it is computationally simple and 

efficient; (b) each agent only needs to know its own local 

information and the global best to compute the new position, 

so there is a minimal amount of data transfer among the 

agents; and (c) the results from all agents in the population 

are not required to form the next generation, so a centralized 

processor is not required. 

Because of the required search algorithm characteristics 

listed in section I, we chose the PSO as the starting point for 

the search control algorithm.  The PSO is computationally 

simple.  It requires only four multiplies and four 

add/subtracts to update the velocity and then one add to 

update the position.  There is no complicated iterative 

equation solving required and no exponential or trig 

functions to implement.  The PSO is also a distributed 

algorithm.  Each agent/particle/bot can update its own 

velocity and position.  The only external information is the 

global best – the best value by any particle within the 

population.  The calculation of the global best can be done 

with a simple comparative statement.  Thus, each bot does 

not need to know the results from each member of the 

population as in many traditional schemes. 

The PSO also allows the contiguous movement of the bots.  

The updated position is relative to the current position so 

there is no jump changes in position or random movements.  

If there are constraints on the movement of the bot during 

each iteration, then limitations can be placed on the 

maximum and minimum velocity that is allowed for each 

particle/Bot.   

B. Modified PSO 

The idea of the distributed PSO (dPSO) algorithm is to have 

each particle/bot make measurements, update its own 

position and velocity, update its own personal best 

measurement (pbest) and personal best location (if 

necessary), and broadcast to the other bots if it has found a 

global best measurement/position.  Thus, all velocity and 

position updates are done locally by each bot and only 

global best updates are broadcast.  This reduces the amount 

of information that is communicated among the bots and 

increases the scalability of the algorithm. 

There are several modifications that have to be made to the 

classic PSO algorithm for it to work effectively for the 

distributed search scenario.  First, each bot has limited 

mobility (a limited turning radius, a small maximum velocity 

and it can not move backwards).  The classic PSO assumes 

that the particles can move in any direction and with any 

velocity up to a stated Vmax.  The bots, however, have to 

move within a limited cone.   

A second modification is introduced to reduce the amount of 

communications traffic; the dPSO only broadcasts a new 

gbest location after it has been determined that the bot has 

indeed found an overall global best.  Frequently, especially 

at the beginning of a search, more than one bot will find a 

new global best within a particular time interval.  Rather 

than broadcast both the new value of gbest and the location, 

the local bot will only broadcast the gbest value.  If it is 

determined that it indeed has the gbest, it will then broadcast 

the location of the global best so the other bots can use the 

new value in their velocity update equations.   

Simulation results showed that the dPSO is a very good way 

of coordinating simple bots for a search operation.  For 

target locations in the middle of the search space, bots 

utilizing the dPSO find the target 99 or 100 % of the time.  
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A lower maximum velocity for each bot leads to slightly 

more effective searches (2-3 % more effective), but it then 

takes longer (on average) to reach the target.  The algorithm 

is scalable to large numbers of bots since the 

communications requirements do not increase as the number 

of bots is increased. 

We note that the dPSO has potential to also be used as a 

parallel (multiprocessor) version of the PSO.  However, the 

dPSO has not been optimized to provide speed or good test 

results with complex search functions like other parallel 

PSO techniques [Chang 2005].  Instead, the goal of the 

dPSO is to minimize the communications among the 

particles/bots and thus make it easily scalable to large 

numbers of particles.  

C. Related Work 

Other authors have investigated using multiple (simple) 

robots for search type applications.  Hayes et al. report using 

autonomous mobile robots for beacon localization [Hayes 

2000] and plume tracking/odor source localization [Hayes 

2002]; they base their search techniques on biological 

principles (surge “upwind”) but do not use the PSO 

algorithm directly.  Doctor et al. [Doctor 2004] discuss 

using the PSO for multiple robot searches.  Their focus is on 

optimizing the parameters of the search PSO and do not 

consider the scalability of the standard PSO to large 

numbers of robots.  Pugh et al. [Pugh 2005, Pugh 2006] 

explore using PSO on problems in noisy environments, 

focusing on unsupervised robotic learning.  They use the 

PSO to evolve a robot controller that avoids obstacles, but it 

does not appear that the distributed robots communicate 

with each other.

There is at least one other research group that is 

investigating using mobile robots as particles within a PSO 

search framework.  Jatmiko et al. [Jatmiko 2006] use mobile 

robots for plume detection and traversal.  They utilize a 

modified form of the PSO to control the robots and consider 

how the robots respond to search space changes such as 

turbulence and wind changes.  They do not, however, 

consider how well the process will scale to large numbers of 

robots.  Also, they have not yet published results of 

implementing their PSO variants in actual hardware robot 

swarms. 

III. DESCRIPTION OF MITEBOTS

To embed the dPSO algorithm into a swarm of robots, each 

robot in the swarm must have a certain minimal set of 

abilities.  Each robot must be able to (a) make a 

measurement of the surrounding environment, (b) perform 

calculations, (c) determine accurate position information, (d) 

move to a new location in the search space and (e) 

(wirelessly) communicate with other bots.  Each of these 

operations is required to implement the dPSO operations of 

function evaluation (make measurement), velocity and 

intended position update (simple calculations), move to the 

new position (move and position information), and 

communicate the global best value and location to other bots 

in the neighborhood or swarm (communication with other 

bots).  

In addition to the required characteristics above, there are 

several desired characteristics for each bot.  Each bot should 

be small, both in size and in weight, which also means the 

processor must be small and have limited computational 

capability.  The bot must be self-contained in terms of 

power.  Each bot may have an array of sensors that can 

make measurements.  As mentioned above, the sensors 

could measure temperature, chemical density, radiation, 

sound level or electromagnetic radiation within a specific 

band.

We have built a set of robots to demonstrate a proof-of-

principle experiment for the dPSO.  We call our robots 

mitEBots.  The mitEBots use Motes [Culler 2004] to 

provide sensing, processing, and communications and an 

electric car to provide movement.  They are based on the 

CotsBots design [Bergbreiter 2003], but the mitEBots 

designed by Murray State University feature a Cricket mote 

[Teller 2003] as the design center point.  Like the CotsBots, 

the primary locomotive hardware is a radio-controlled car 

that has been disemboweled of its electronics.  There is a 

motor board to interface the Mote to the car’s steering and 

drive motors.  Each of the mitEBots contains a simple 

processor (Atmega 128L 8-bit microprocessor, 4 MHz 

clock) so each bot can perform calculations locally.   

The Cricket board, developed at MIT’s Computer Science 

and Artificial Intelligence Laboratory, attaches to a sensor 

board and comes equipped with a combination of RF and 

ultrasound technologies to provide location information.  

Three beacons (other Cricket motes) are mounted in the 

search space so each mitEBot can determine its x, y (and z if 

desired) position.  Even in the presence of several competing 

beacon transmissions, Cricket achieves good precision and 

accuracy.  Its decentralized architecture makes the system 

easy to deploy.   

An alternative method to determine position information is 

suggested by Spears et al. [Spears 2006] that is based on 

trilateration.  In the trilateration method, each bot is 

equipped with a radio frequency (RF) transceiver and three 

ultrasound transceivers.  Each bot is able to determine how 

far away it is from neighboring bots and thus determine its 

position, assuming that the positions of the other bots are 

known.  This method has the attractive feature of 

eliminating the need for stationary beacons at known 
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locations.  However, it would require more communications 

packets be exchanged among the bots and there is a concern 

that position errors would grow over time since there are no 

fixed reference points. 

Murray State University has built and tested three mitEBots 

for use with the PSO algorithm.  (See Figure 1.) Each 

mitEBot can only turn a maximum of 36 degrees to the right 

or left and has a turning radius of approximately 17 cm.  The 

maximum velocity is approximately 1.0 m/s when the 

batteries are fully charged but the bots do not move at 

maximum velocity during the search operations.  Each Bot 

is approximately 16 cm long, 8.5 cm wide, and 7 cm tall.  

Two of the mitEBots weigh 364 grams and the third bot 

(built using a different model of remote-control car) weighs 

387 grams which is about three times the weight of a 

handheld scientific calculator.  No steps were taken to 

minimize the weight of the mitEBots as shown by the fact 

that three different battery systems are used: AA for the 

cricket mote, AAA for the motors and 9V for the interface 

board.

Figure 1: Murray State’s mitEBot. 

IV. RESULTS

A. Test conditions 

To investigate the effectiveness of the dPSO algorithm, we 

did several experiments.  In the experiments, a diffuse light 

source was placed near the ceiling of a dark room and 

pointed downward.  Bots with light sensors were placed at 

various starting positions about 2 m apart to see (a) how 

often and (b) how quickly they could find the brightest spot 

of light in the room. 

The layout of the test area is shown in Figure 2.  The boxes 

in the middle represent the obstacles that we placed in the 

search space for the second half of the testing. The circles 

indicate the starting positions of the bots and the highest 

concentration of light is immediately to the left of the 

vertical obstacle. Since we are using a diffuse light source, 

the global best is actually a rectangle approximately .25 m 

by .3 m. 

Figure 2: Graphical representation of test area.  Dimensions shown are in 

meters. 

B. Algorithm adjustments 

To apply the dPSO to a robotic swarm search, we had to 

make several adjustments to the algorithm.  First, the bots 

determine their position by triangulating from three cricket 

motes set up as beacons. For the bots to obtain accurate 

position measurements they must receive several data 

packets from each beacon.  Missed packets from the beacons 

cause faulty distance measurements which leads to 

inaccurate position information for the local bot.  To correct 

for any missed packets, the bots are programmed to move to 

the next position and then wait for two consecutive “clean” 

measurements (distance measurements within 2 cm) from all 

three beacons.  This wait leads to relatively long search 

times. 

A second algorithm adjustment had to be made because of 

mechanical faults in each bot.  In general, the bots move in 

arcs even when the algorithm directs them to move in 

straight lines.  Each bot moves toward the desired position 

in the search space but upon arrival at the destination point, 

the orientation direction is usually skewed relative to the 

movement.  To compensate, we update the bot’s orientation 

angle at each iteration based on the bot’s current position 

and its previous position.  This eliminates the buildup of 

orientation errors that occur when a strict dead reckoning 

system for orientation is used. We also orient the front 

wheels on the bot to point straight ahead after each move. 

Unlike a simulation-only PSO, the hardware bots can get 

“stuck” at an obstacle or collide with another bot (particle).  

Once a bot got stuck or collided, we programmed the bot to 

back up and turn right. This allows the bot to move around 

long obstacles, such as a wall, even though it may require 

more than one cycle of backing up and turning to avoid. 
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C. Qualitative results 

During the hardware experiments, we programmed each 

mitEBot with identical nesC programs.  (The only difference 

is that each bot was programmed with a different 

identification number.)  The PSO parameters used were c1 = 

2, c2 = 2, and wi = 1.0.  We tried using wi = 0.8 but it 

slowed the bots down considerably and led to many failed 

searches.  The value of Vmax was set based on the hardware 

limitations of each bot.  The value varied slightly from bot 

to bot but it was approximately 0.8 m/s for each one.  Each 

bot was programmed to move in the desired direction for 

approximately 0.5 sec.  The bot would then make a 

measurement, determine its new position, calculate its 

desired movement direction based on the PSO update, orient 

its wheels to that direction, if possible, and then move for 

0.5 sec. The search was ended when there had been 20 

iterations of the algorithm with no new global best 

discovered.  We made some test runs using a stop condition 

with 10 iterations with no new gbest but we determined that 

10 was insufficient.

Qualitative results for the robotic search are shown in 

Figures 3 and 4.  Figure 3 shows the path traced out by 1 bot 

and Figure 4 shows the path traced out by 2 bots.  Note that 

these are not simulation results. These are plots of the 

movement of the bot(s) through the search space where the 

(x,y) position of the bot(s) were monitored throughout the 

search.  The x and y axes are to scale and the axes are in cm. 

The asterisks (*) marks in the figures represent positions 

where a new global best was found.  The rectangular box is 

peak area of the search space.  The plots only show the 

search up till the peak light value was found. 

Figure 3: Path in search space with no obstacles for 1 bot. 

In the one bot case (Figure 3), the bot starts in lower right 

corner. It moves up (north), finds new global bests and 

continues upward. When it starts to move away from the 

peak, it circles clockwise and then begins moving to the left 

(westward).  When the light intensity measurements begin to 

taper off again, the bot circles counterclockwise.  The circle 

behavior is because the bot is limited in its turning radius – 

it can not make a sharp turn.  Thus, it must move toward the 

global best in a roundabout fashion. Eventually, it settles on 

to the peak light value. 

Figure 4: Path in search space with no obstacles for 2 bots in a 3 bot search. 

Figure 4 shows the paths traced by two bots in a three bot 

search.  (Only two bots are shown to simplify the figure.) In 

the multi bot case (Figure 4), the bots start at different 

locations (lower right and lower left) and proceed to move 

and take light intensity measurements.  As seen with only 1 

bot, if any of the bots starts moving away from the global 

best, then they circle around to return to the vicinity of the 

best value.  In this search, there was a global best that 

occurred within the rectangular box, but a superior gbest 

was discovered within the next 20 iterations.   

D. Quantitative results 

The PSO algorithm was tested using swarm sizes of 1, 2 and 

3 bots.  (The 1-bot swarm was merely for baseline 

comparison.)  Ten runs were made for each of the three 

cases.  We tracked how many times the bots found the 

brightest spot and how long it took for the bots to locate the 

peak.

The bots were timed by a cricket mote which was not part of 

the swarm. This mote transmitted a radio signal which 

allowed all the bots to start searching simultaneously. This 

mote then listened for radio communication between the 

bots in the swarm.  If twenty iterations of the algorithm 

passed with no new global best, then we presume the search 

is over and the external mote reported the length of time it 

took the first bot to find the highest light value.   

The quantitative results are shown in Table 1.  The results 

are for two different search spaces: one with no obstacles 

and one with obstacles.  The table shows the number of bots 

in the swarm, the number of successful runs and the average 
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time to find the peak.  The average time is for only the 

successful searches. 

TABLE 1: INITIAL RESULTS FROM USING PSO TO PROGRAM A SUITE OF BOTS

Runs without obstacles 
Number 

of bots 

Successful

runs (out of 

10)

Average

time of 

successful

runs (sec) 

Standard 

deviation 

(sec)

1 8 205.1 88.7

2 10 200.3 65.5

3 10 132 72.1

Runs with obstacles 
Number 

of bots 

Successful

runs (out of 

10)

Average

time of 

successful

runs (sec) 

Standard 

deviation 

(sec)

1 6 205.9 152.9

2 9 225.1 151.4

3 9 150.2 93.9

Increasing the number of bots does two things.  It leads to 

more successful searches and (usually) reduces the time to 

find the peak/best value.  We see that even with the 

obstacles in the search space, the swarm is still able to find 

the “target” or peak light intensity (almost) every time.  In 

general, the searches take longer when there are obstacles in 

the search space but the search is still successful.  The times 

should be used for comparison purposes and not necessarily 

as an absolute reference.  As mentioned in section 4.B, 

sketchy communications with the beacons forced the bots to 

wait for two consecutive good data points at each iteration.  

This waiting time greatly increased the search time.  

The only data point that is counter-intuitive is the average 

time values of the one bot case with obstacles. The average 

search time actually is less than the two bot case, though 

there were far fewer successful searches. This implies that 

the one bot case with obstacles either finds the target 

relatively quickly, or not at all.     

The standard deviation for the test runs is relatively large, 

especially for the 1 and 2 bot cases, with obstacles.  

Generally, one really large search time in each set of 10 test 

runs skewed the average and standard deviation times.  For 

the search with obstacles, in both the 1 and 2 bot cases, there 

was one test case with a search time in excess of 500 

seconds.  We attribute these extremely long search times 

primarily to low battery levels.  Low battery levels leads to 

longer wait times to get clean packets from the beacons 

(transmission signals from the most-distant beacon are 

weaker) and then slower movement of the bots.  

To overcome the weak signal from one of the beacons, we 

modified the position algorithm to allow the bot to calculate 

its position with distance data from only two beacons.  The 

bot initially tried to get two consecutive good measurements 

from all three beacons.  If after seven seconds there was still 

not good distance information, then the bot would use the 

distance measurements from two beacons to calculate its 

(x,y) position.  

During our initial experiments, we noticed that the light 

sensors on the bots were mismatched.  That is, different bots 

would read different values for the same light level.  This 

imbalance led to some stray values for the time to find the 

target.  Specifically, if the bot with the lowest light readings 

found the peak value first, then other bots would circle 

toward that point.  When another bot (with a light sensor 

that recorded higher light values) moved to the same 

location, it would record a higher light value and the 

algorithm would think a “new” target had been found.   

To correct for the different sensor readings, we used linear 

splines for each individual sensor to adjust and match the 

light sensor outputs of the three bots.  Thus, each bot will 

give the same (corrected) output for the equivalent light 

level.  The results for 10 test runs with the position and 

sensor algorithm corrections are shown in Table 2. 

TABLE 2: RESULTS FROM USING PSO TO PROGRAM A SUITE OF BOTS WITH 

SENSOR AND POSITION CORRECTIONS

Runs without obstacles 
Number 

of bots 

Successful

runs (out of 

10)

Average

time of 

successful

runs (sec) 

Standard 

deviation 

(sec)

1 6 180.2 101

2 10 176.1 68.9

3 10 109.6 55.0

Runs with obstacles 
Number 

of bots 

Successful

runs (out of 

10)

Average

time of 

successful

runs (sec) 

Standard 

deviation 

(sec)

1 8 250.2 108.6

2 10 181.7 76.1

3 10 125.8 65.2

As expected, the sensor and position corrections improve the 

average and standard deviation of the search times.  The 

multi-bot test runs are all finding the peak value, even in the 

presence of obstacles.  As with the previous results, more 

bots leads to more successful searches and faster search 

times.   

V. CONCLUSIONS

We have developed a version of the PSO that “distributes” 

the processing among several, simple, compact, mobile bots.  
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We have called our algorithm the distributed PSO (dPSO).  

In the dPSO algorithm, all the calculations are done 

“locally”, that is, on each local bot.  The only data that is 

potentially needed from other bots is the value and location 

of the global best, gbest.  Thus, there are no communications 

unless one of the bots finds a point in the search space that is 

better than any point found up to that time during the search.   

We have tested the distributed PSO algorithm using three 

bots.  The tests show that using the PSO to control a swarm 

can successfully find the target (in this case, the brightest 

point of light in the search space), even in the presence of 

obstacles.
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