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ABSTRACT

The sequential ordering problem is a version of the asym-
metric traveling salesman problem where precedence con-
straints on vertices are imposed. A tour is feasible if these
constraints are respected, and the objective is to find a fea-
sible solution with minimum cost.

The sequential ordering problem models a lot of real
world applications, mainly in the fields of transportation and
production planning.

In this paper we propose an extension of a well known
ant colony system for the problem, aiming at making the
approach more efficient on large problems. The extension
is based on a problem manipulation technique that heuristi-
cally reduces the search space.

Computational results, where the extended ant colony
system is compared to the original one, are presented.

KEYWORDS: Problem manipulation techniques, ant
colony optimization, asymmetric traveling salesman,
scheduling.

1. INTRODUCTION

The Sequential Ordering Problem (SOP), also referred to as
Asymmetric Traveling Salesman Problem with Precedence
Constraints, can be modeled in graph theoretical terms as
follows. A complete directed graph D = (V,A), where V
is the set of nodes and A = {(i, j)|i, j ∈ V } is the set of
arcs, is given. A cost cij ∈ N is associated with each arc
(i, j) ∈ A. Without loss of generality we assume that a fixed
starting node 1 ∈ V is given. It has to precede all the other
nodes. The tour is also closed at node 1, after all the other
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nodes have been visited. This to create an analogy with the
asymmetric traveling salesman problem (ci1 = 0 ∀i ∈ V ).
Furthermore we are given an additional precedence digraph
P = (V,R), defined on the same node set V as D. An arc
(i, j) ∈ R, represents a precedence relationship, i.e. i has to
precede j in every feasible tour. We will denote such a rela-
tion as i ≺ j in the remainder of the paper. The precedence
digraph P must be acyclic in order for a feasible solution to
exist. We also assume it is transitively closed, since i ≺ k
can be inferred from i ≺ j and j ≺ k. Notice that for the
last arc traversed by a tour (entering node 1), precedence
constraints do not apply. A tour that satisfies precedence re-
lationships is called feasible. The objective of the SOP is to
find a feasible tour with the minimal total cost.

It is interesting to observe that SOP reduces to the clas-
sical asymmetric traveling salesman problem (ATSP) in the
case where no precedence constraint is given. This obser-
vation implies that SOP is NP-hard, being a generalization
of the ATSP.

The SOP models real-world problems such as produc-
tion planning (Escudero [7]), single vehicle routing prob-
lems with pick-up and delivery constraints (Pulleyblank and
Timlin [13], Savelsbergh [14]) and transportation problems
in flexible manufacturing systems (Ascheuer [1]).

Sequential ordering problems were initially solved as
constrained versions of the ATSP, especially for the de-
velopment of exact algorithms. The main effort has been
put into extending the mathematical definition of the ATSP
by introducing new classes of valid inequalities to model
the additional constraints. The first mathematical model
for the SOP was introduced in Ascheuer et al. [2] where
a cutting plane approach was proposed to compute lower
bounds on the optimal solution. In Escudero et al [8], a La-
grangean relaxation method was described and embedded
into a branch and cut algorithm. Ascheuer [1] has proposed
a new class of valid inequalities and has described a new
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branch-and-cut method for a broad class of SOP instances.
This is based on the polyhedral investigation carried out on
ATSP problems with precedence constraints by Balas et al.
[3]. The approach in [1] also investigates the possibility to
compute and improve sub-optimal feasible solutions start-
ing from the upper bound provided by the polyhedral in-
vestigation. The upper bound is the initial solution of a
heuristic phase based on well-known ATSP heuristics that
are iteratively applied in order to improve feasible solutions.
These heuristics do not handle constraints directly: infeasi-
ble solutions are simply rejected. A branch and bound algo-
rithm with lower bounds obtained from homomorphic ab-
stractions of the original search space has been presented in
Hernàdvölgyi [11] (see also [12]). A genetic algorithm has
been proposed in Chen and Smith [4]. The method works
in the space of feasible solutions by introducing a sophisti-
cated crossover operator that preserves the common schema
of two parents by identifying their maximum partial order
through matrix operations. The new solution is completed
using constructive heuristics. A hybrid genetic algorithm
based on complete graph representation has been discussed
in Seo and Moon [15]. A parallelized roll-out algorithm has
been described in Guerriero and Mancini [10]. Gambardella
and Dorigo [9] presented an approach based on Ant Colony
Optimization enriched with sophisticated local search pro-
cedures. This last method can be classified as state-of-the-
art for the sequential ordering problem and will be described
in detail in Section 2.

The contribution of the present article will be an exten-
sion of the method described in [9], aiming at improving the
performance of the method on large problems. The novel
idea at the basis of the extension is a problem manipulation
technique.

2. ANT COLONY OPTIMIZATION

The Ant Colony System (ACS) algorithm is an element of the
Ant Colony Optimization (ACO) family of methods (Dorigo
et al. [5]). These algorithms are based on a computational
paradigm inspired by real ant colonies and the way they
function. The main underlying idea was to use several con-
structive computational agents (simulating real ants). A dy-
namic memory structure, which incorporates information
on the effectiveness of previous choices, based on the ob-
tained results, guides the construction process of each agent.
The behavior of each single agent is therefore inspired by
the behavior of real ants.

The paradigm is based on the observation, made by
ethologists, that the medium used by ants to communicate
information regarding shortest paths to food, consists of
pheromone trails. A moving ant lays some pheromone on
the ground, thus making a path by a trail of this substance.
While an isolated ant moves practically at random (explo-

ration), an ant encountering a previously laid trail can de-
tect it and decide, with high probability, to follow it, thus
reinforcing the trail with its own pheromone (exploitation).
What emerges is a form of autocatalytic process where the
more the ants follow a trail, the more attractive that trail be-
comes to be followed. The process is thus characterized by
a positive feedback loop, where the probability with which
an ant chooses a path increases with the number of ants that
previously chose the same path. The mechanism above is
the inspiration for the algorithms of the ACO family.

2.1. Ant Colony Optimization for the SOP

As said in the previous section, application of an ACO al-
gorithm to a combinatorial optimization problem requires
definition of a constructive algorithm and possibly a local
search. Accordingly, a constructive algorithm called ACS-
SOP in which a set of artificial ants builds feasible solutions
to the SOP has been designed, together with a local search
specialized for the SOP that takes these solutions to their
local optimum. The resulting algorithm is a Hybrid Ant
System for the SOP called HAS-SOP, which is described
in detail in Gambardella and Dorigo [9].

2.1.1. Construction phase (ACS-SOP)

ACS-SOP is strongly based on the Ant Colony System algo-
rithm (Dorigo and Gambardella [6]). ACS-SOP implements
the constructive phase of HAS-SOP, and its goal is to build
feasible solutions for the SOP. It generates feasible solu-
tions with a computational cost of order O(|V |2).

Informally, ACS-SOP works as follows. Ants are sent
out sequentially (not in parallel). Each ant iteratively starts
from node 1 and adds new nodes until all nodes have been
visited. When in node i, an ant applies a so-called transition
rule, that is, it probabilistically chooses the next node j from
the set F (i) of feasible nodes. F (i) contains all the nodes j
still to be visited and such that all nodes that have to precede
j, according to precedence constraints, have already been
inserted in the sequence.

The ant in node i chooses the next node j to visit on
the basis of two factors: the heuristic desirability ηij here
defined as 1/cij , and the pheromone trail τij , that contains
a measure of how good it has been in the past to include
arc (i, j) into a solution (it is the “memory” of the colony).
The next node to visit is chosen with probability q0 as the
node j, j ∈ F (i), for which the product τij · ηij is highest
(deterministic rule), while with probability 1 − q0 the node
j is chosen with a probability given by

pijj∈F (i) =
τij · ηij∑

l∈F (i)(τil · ηil)

(i.e., nodes connected by arcs with higher values of
τij · ηij , j ∈ F (i), have higher probability of being chosen).
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The value q0 is given by q0 = 1−s/|V |. The parameter
s represents the number of nodes we would like to choose
using the probabilistic transition rule, independently of the
number of nodes of the problem.

In ACS-SOP only the best ant, that is the ant that built
the shortest tour since the beginning of the computation, is
allowed to deposit pheromone trail. The rationale is that in
this way a “preferred route” is memorized in the pheromone
trail matrix, and future ants will use this information to gen-
erate new solutions in a neighbourhood of this preferred
route. If we refer to the shortest path generated since the
beginning of the computation as OptPathBest, and to its
cost as LBest, ∀{i, j} ∈ OptPathBest, we have the fol-
lowing formula for pheromone update:

τij = (1− ρ) · τij +
ρ

Lbest
(1)

Pheromone is also updated during solution building. In
this case, however, it is removed from visited arcs. In other
words, each ant, when moving from node i to node j, ap-
plies a pheromone updating rule that causes the amount of
pheromone trail on arc (i, j) to decrease.

The rule is:

τij = (1− ψ) · τij + ψ · τ0 (2)

where τ0 is the initial value of trails. It was found that
good values for the algorithm’s parameters are τ0 = (First-
Solution ·n)−1, ρ = ψ = 0.1, s = 10, where FirstSolu-
tion is the length of the shortest solution generated by the
ant colony following the ACS-SOP algorithm without using
the pheromone trails. Experience has shown these values
to be robust. The number of ants in the population was set
to 10. The rationale for using formula (2) is that it causes
ants to eat away pheromone trail while they build solutions
so that a certain variety in generated solutions is assured (if
pheromone trail was not consumed by ants, they would tend
to generate very similar tours).

2.1.2. Complete algorithm (HAS-SOP)

The HAS-SOP algorithm is the ACS-SOP algorithm aug-
mented by local search. Local search is an optional compo-
nent of ACO algorithms, although it has been shown since
early implementations that it can greatly improve the overall
performance of the ACO metaheuristic when static combi-
natorial optimization problems are considered (Dorigo and
Gambardella [6]).

In HAS-SOP, local search is applied once each ant has
built its solution: the solution is carried to its local optimum
by an application of the extremely efficient SOP-3-exchange
local search routine. This local search routine is a special-
ization to the sequential ordering problem of a known local
search method for the asymmetric traveling salesman prob-
lem (Savelsbergh [14]). It is able to directly handle multiple

constraints without increasing the computational complex-
ity of the original local search. Since the description of such
a local search method is out of the scope of this paper (al-
though the local search routine is used by the algorithm we
propose) we refer the interested reader to Gambardella and
Dorigo [9] for its detailed description. Locally optimal so-
lutions are then used to update pheromone trails on arcs,
according to the pheromone trail update rule (1).

The algorithm stops when a fixed CPU time has elapsed.

3. ARTIFICIAL PRECEDENCE CONSTRAINTS

It is trivial to observe that adding precedence constraints to a
given problem reduces its search space, making the problem
potentially easier to solve. Starting from this observation,
we developed the method described in the remainder of this
section.

The underlying idea is to monitor the solutions gener-
ated by HAS-SOP, and to identify precedence patterns com-
mon to solutions with a low cost. Once such precedence
patterns are identified, they can be added to the original
problem as artificial precedence constraints. The resulting
problem is likely to be easier than the original one, as it has
a reduced solution space. Of course such a heuristic method
may cut out all the optimal solutions of the original prob-
lem, leading to suboptimal solutions even in the case that
the best solution of the modified problem is retrieved.

Formally, the methodology we propose is integrated into
the HAS-SOP method and makes use of an additional set
of variables m. Variable mij will be an indicator for the
“quality” of the solutions in which node i is visited before
node j. We also need the following additional parameters:

u : number of solutions generated (ants sent out) before
the first artificial precedence constraints are added to
the problem;

v : number of solutions generated (ants sent out) be-
tween two consecutive creations of artificial prece-
dence constraints;

w : (approximate) number of artificial precedence con-
straints added each time group of new artificial prece-
dence constraints is generated;

The method we propose is integrated into the clas-
sical HAS-SOP algorithm as follows. We initialize
mij = 0 ∀(i, j) ∈ A.

Each time a new solution OptPathk, with cost Lk, is
generated by an ant of the colony (and taken down to its
local optimum), matrix m is updated as follows:

mij = mij+
L1

Lk
∀i, j ∈ V, πk(i) < πk(j) ≤ πk(i)+z (3)
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mji = mji−
L1

Lk
∀i, j ∈ V, πk(i) < πk(j) ≤ πk(i)+z (4)

where L1 is the cost of the solution generated by the very
first ant and πk(i) is the index of the position occupied by
node i in solution OptPathk. z is not a listed parameter
(see next page). Its value regulates the width of the window
considered for updates.

The first update (equation (3)) reinforces the entry cor-
responding to a sequence which is in solution OptPathk.
The update is proportional to the inverse of the cost of the
solution itself. Equation (4) decreases the value on arcs that
are traversed in the opposite direction in the current solu-
tion. This second update has been inserted to make those
pairs of nodes that do not seem to have a clear ordering re-
lationship less attractive. Notice that only pairs with a pos-
itive entry in matrix m will be potentially transformed into
artificial precedence constraints.

We need now to briefly comment on z . Values of z that
are too small might lead to a method where only arcs com-
mon to many solutions are identified, and not pairs of nodes
that are in the same order (but not necessarily contiguous)
in many solutions, as we would like. On the other hand, val-
ues of z that are too large might make the method too sensi-
tive, and lead to a large number of negative entries in matrix
m. Notwithstanding these considerations, we decided not
to list z among the parameters because preliminary results
suggest that the method is not sensitive at all to changes to
(reasonable values of) z. In particular, values within the in-
terval [4, 10] seem to guarantee the best performance. In our
method we set z = 5.

After the first u solutions are created by ants (and taken
down to their local optimum), a first set of (approximately)
w artificial precedence constraints are added to matrix P .
The new constraints are selected as the ones not yet present
in the precedence digraph P with the highest entries in ma-
trix m, plus those implied by them by transitivity. If there
are less than w entries of m with a positive value, then only
the precedence constraints corresponding to them will be
added to P (together with those implied by transitivity).
The next set of artificial constraints will be added every time
v new solutions have been generated, following the same
logic.

The new hybrid ant colony system that makes use of Ar-
tificial Precedence Constraints will be referred to as HAS-
SOPAPC . It is summarized by the pseudo-code of Figure
1.

After some preliminary tests, we identified two promi-
nent (and promising) settings of the parameters of HAS-
SOPAPC . These settings suggest the following two algo-
rithms arising from method HAS-SOPAPC :

• HAS-SOPP
APC: parameters are set as follows:

u = 20, v = ∞, w = 10. This parameter set-
ting leads to the configuration that we will refer to

as method HAS-SOPP
APC , where P stands for prepro-

cessing.

The artificial precedence constraints are added all at
once at the beginning of the execution of the con-
ventional HAS-SOP algorithms, which then runs on a
steady problem, that has more precedence constraints
than the original one.

In detail, 20 solutions (i.e. 2 for each ant) are gener-
ated (and taken down to their local optima). The 10
most promising artificial constraints (according to the
values in matrix m) are added to the precedence di-
graph P (together with those implied by transitivity).
The HAS-SOP algorithm runs on the modified prob-
lem for the available computational time remaining.

• HAS-SOPC
APC: Parameters are set up as follows:

u = 100, v = 1000, w = 1. This parameter set-
ting leads to the configuration that we will identify as
HAS-SOPC

APC in the remainder of the paper, where
C stands for cumulative. In this case artificial prece-
dence constraints are added in a cumulative fashion
during the whole execution of the conventional HAS-
SOP algorithm. In particular, every time 1000 new
solutions are generated, matrix m is examined and
the precedence constraints associated with the entry
of the matrix with the highest positive value (if any)
is added to the precedence digraph P (together with
constraints implied by transitivity). The precedence
digraph P evolves therefore during the whole com-
putation, getting more and more restrictive.

The two methods listed above will be considered for the
computational experiments described in Section 4.

4. COMPUTATIONAL RESULTS

The aim of this section is to compare the original HAS-
SOP algorithm with the modified methods HAS-SOPP

APC

and HAS-SOPC
APC , described in Section 3.

All the methods have been coded in C++ (starting
from the original implementation of HAS-SOP, see [9]) and
all the experiments have been run on a Intel Pentium 4
1.5GHz / 256MB machine. The maximum computation
time was set to 600 seconds for all the problems. This com-
putation time should be long enough to let all the methods
reach a steady state, where further improvements are un-
likely to be found.

4.1. Benchmark problems

The benchmark problems available at TSPLIB1 have been
initially used for testing the new algorithms we propose.

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
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Unfortunately it was impossible to observe any significant
difference in performance between HAS-SOP and HAS-
SOPAPC methods, since the problems tend to be rather easy
for modern heuristics (for most of the problems the best so-
lutions have been proven to be optimal, and for the remain-
ing ones no improvement has been registered in the last ten
years, and very good lower bounds are available). For this
reason, we decided to generate new random problems, big-
ger and harder to solve than those contained in the (dated)
TSPLIB.

The problems we generated, that are publicly available2,
were named n-r-p, where the meaning of each element is as
follows:

n: the number of nodes of the problem, i.e.
V = {1, 2, . . . , n};

r: the cost range, i.e. 0 ≤ cij ≤ r ∀i, j ∈ V ;

p: the approximate percentage of precedence con-
straints, i.e. the number of precedence constraints of
the problem will be about p

100 ·
n(n−1)

2 .

We considered the following values for the parameters
above, generating problems for all the possible combina-
tions of them:

• n ∈ {200, 300, 400, 500, 600, 700};

• r ∈ {100, 1000};

• p ∈ {1, 15, 30, 60}.

The resulting set of problems covers a wide range of
situations, with problems of different size, with different
granularity for costs, and with radically different percent-
ages of precedence constraints. The set should provide a
good testbed for modern SOP heuristic algorithms.

4.2. Experiments

Five runs are considered for each possible problem/method
combination. The results of the experiments are reported
in Table 1. The first three columns are parameters of the
problems, while the remaining columns are devoted to the
presentation of the average and best results obtained by
the methods considered. Percentage improvements over the
standard HAS-SOP method are reported for HAS-SOPP

APC

and HAS-SOPC
APC (both for average and best cases). Extra

lines have finally been inserted into the table to present av-
erages for percentage improvements on different subsets of
the testbed.

Table 1 confirms the intuition that adding artificial prece-
dence constraints, together with the associated search-space

2http://www.idsia.ch/˜roberto/SOPLIB06.zip.

reduction, can help ant colony system methods for the se-
quential ordering problem.

A deeper analysis of the results reported in Table 1 leads
to the observation that method HAS-SOPP

APC works bet-
ter than HAS-SOPC

APC . This result, which might be some-
how surprising, can be explained by observing that method
HAS-SOPC

APC , contrary to what happens for the simpler
method HAS-SOPP

APC , seems to have two main drawbacks
(revealed by other experiments not reported here). In some
situations (typically when just a few constraints are spec-
ified in the original problem) solutions with very different
characteristics are likely to be retrieved by the HAS-SOP
method, leading to many negative entries in matrix m. In
this case the algorithm is able to add just a few artificial
constraints. On the other hand, for problems with many
(original) precedence constraints, the strategy of adding
constraints during the whole computation tend to quickly
overrestrict the search space around a small set of solu-
tions, preventing the algorithm from exploring other (pos-
sibly promising) areas of the search-space.

Another interesting phenomenon emerging from Table 1
is that method HAS-SOPP

APC very rarely obtains worse re-
sults than the classic HAS-SOP algorithm. This observation
suggests that it is convenient to use HAS-SOPP

APC because
even if it does not provide improvements, it does not “hide”
good solutions that the classical method would be able to
retrieve.

A further analysis of Table 1 suggests that the improved
methods work better for the largest problems, for which the
standard method is likely to have more difficulties. This
proves once again that artificial precedence constraints help
in making the problem easier to handle. Another confirma-
tion of this intuition comes from the observation that the im-
provements guaranteed by the new methods tend to vanish
when p (percentage of precedence constraints in the origi-
nal problem) increases, and consequently the search-space
is already small and there is not an obvious convenience in
reducing it further.

5. CONCLUSIONS AND FUTURE WORK

A problem manipulation method, which creates and adds
artificial precedence constraints to the original problem, has
been embedded into a well-known ant colony system for the
sequential ordering problem.

The extended method induces small improvements in
the performance of the classical ant colony system, leading
to better results, especially on large and difficult problems.

It is important to observe that the problem manipulation
method we propose can be adapted to many other combina-
torial optimization methods, and that it is not applicable to
ant colony systems only. In our future research we will then
try to generalize the manipulation method. We will apply it
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to different problems, with different algorithms driving the
optimization.

Another stream of research will be dedicated to the de-
velopment of improved versions of HAS-SOPC

APC , in which
artificial constraints can be not only added, but also retracted
during the computation.
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1. For each pair (r, s)
τrs := τ0

# mrs := 0
EndFor

# counter := 1
2. For k:=1 to m do

Let rk be the node where ant k is located
rk := 1 /* All ants start from node 1 */

EndFor
/* The path of agent k is stored in Pathk */
For k:=1 to m do

For i:=1 to n− 1 do
Starting from rk compute the set F (rk) of feasible nodes
/* F (rk) contains all the nodes j still to be visited and such that all
nodes that have to precede j have already been inserted in the sequence */
Choose the next node sk according to the transition rule (see Section 2.1.1)
Pathk := (rk, sk)
τrksk := (1− ψ) · τrs + ψ · τ0 /* This is equation (2) */
rk := sk

EndFor
OptPathk := LocalSearchRoutine(Pathk)
Compute Lk /* Lk is the length of the path OptPathk */

# For each nodes r, s ∈ V such that πk(i) < πk(j) ≤ πk(i) + 5
# /* πk(i) is the index of the position of node i in solution OptPathk */
# mrs := mrs + L1/Lk /* This is equation (3) */
# msr := msr − L1/Lk /* This is equation (4) */
# EndFor
# counter := counter + 1
# If (counter mod v) == u)
# For i:=1 to w
# (r, s) = argmax(j,k)∈A,(j,k)/∈P {mjk}
# If (mrs ≥ 0)
# R := R ∪ (r, s)
# Else
# i := w /* Forcing the exit from the For loop */
# EndIf
# EndFor
# EndIf
# EndFor

Let Lbest be the shortest Lk from beginning and OptPathbest the corresponding path
For each arc (r, s) ∈ OptPathbest

τrs := (1− ρ) · τrs + ρ/Lbest /* This is equation (1) */
EndFor
If (Time > MaxTime)

then
Print Lbest and OptPathbest

else
repeat Step 2

EndIf

Figure 1. The HAS-SOPAPC algorithm. The omission of the steps marked with # leads to the conventional HAS-SOP algorithm.
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Table 1. Experimental results. Averages and best results over five runs. Maximum computation time 600 seconds.

                    P                     C                     P                     C                     P                     C                     P                     C
n r p HAS-SOP HAS-SOP HAS-SOP HAS-SOP HAS-SOP HAS-SOP HAS-SOP HAS-SOP HAS-SOP HAS-SOP
    APC APC APC APC  APC APC APC APC

200 100 1 91,8 88,8 90,0 3,27 1,96 88 87 87 1,14 1,14
300 100 1 77,6 72,6 72,6 6,44 6,44 74 65 65 12,16 12,16
400 100 1 63,8 63,8 66,0 0,00 -3,45 59 59 64 0,00 -8,47
500 100 1 55,2 55,6 56,4 -0,72 -2,17 51 51 54 0,00 -5,88
600 100 1 50,6 48,4 48,4 4,35 4,35 44 42 42 4,55 4,55
700 100 1 44,4 40,4 42,6 9,01 4,05 41 32 38 21,95 7,32

 3,72 1,86    6,63 1,80
200 1000 1 1568,6 1547,2 1580,4 1,36 -0,75 1542 1529 1546 0,84 -0,26
300 1000 1 1595,6 1591,2 1604,2 0,28 -0,54 1568 1533 1574 2,23 -0,38
400 1000 1 1812,6 1778,6 1814,0 1,88 -0,08 1783 1757 1798 1,46 -0,84
500 1000 1 1880,2 1864,6 1886,8 0,83 -0,35 1842 1786 1838 3,04 0,22
600 1000 1 1987,4 1962,4 1987,0 1,26 0,02 1948 1933 1934 0,77 0,72
700 1000 1 1956,4 1947,6 1963,2 0,45 -0,35 1912 1873 1873 2,04 2,04

 1,01 -0,34    1,73 0,25
2,37 0,76 4,18 1,02

200 100 15 2140,2 2107,8 2121,6 1,51 0,87 2002 1984 2004 0,90 -0,10
300 100 15 3835,6 3669,2 3830,2 4,34 0,14 3673 3455 3724 5,94 -1,39
400 100 15 5104,8 5070,0 5090,0 0,68 0,29 4852 4735 4735 2,41 2,41
500 100 15 7021,0 6857,4 7005,4 2,33 0,22 6610 6610 6749 0,00 -2,10
600 100 15 7885,0 7758,8 7854,8 1,60 0,38 7701 7702 7702 -0,01 -0,01
700 100 15 9633,0 9531,6 9670,0 1,05 -0,38 9324 9124 9124 2,15 2,15

 1,92 0,25    1,90 0,16
200 1000 15 22562,4 22275,2 22466,8 1,27 0,42 22220 21857 22224 1,63 -0,02
300 1000 15 35633,0 34276,4 36163,2 3,81 -1,49 34455 33148 34428 3,79 0,08
400 1000 15 48115,2 46541,0 47649,2 3,27 0,97 47076 45115 45615 4,17 3,10
500 1000 15 63895,8 63787,4 64022,4 0,17 -0,20 63104 62001 61138 1,75 3,12
600 1000 15 76766,2 71308,6 74246,0 7,11 3,28 76011 68219 71612 10,25 5,79
700 1000 15 88765,4 85522,0 88375,4 3,65 0,44 86689 83995 84195 3,11 2,88

 3,21 0,57    4,12 2,49
2,57 0,41 3,01 1,32

200 100 30 4262,8 4246,8 4251,4 0,38 0,27 4256 4216 4216 0,94 0,94
300 100 30 6275,4 6222,6 6234,4 0,84 0,65 6191 6186 6176 0,08 0,24
400 100 30 8506,4 8506,4 8448,4 0,00 0,68 8289 8289 8385 0,00 -1,16
500 100 30 10511,8 10261,0 10332,4 2,39 1,71 10098 10067 10098 0,31 0,00
600 100 30 13276,0 13125,4 13126,0 1,13 1,13 13152 12833 13058 2,43 0,71
700 100 30 15898,4 15850,2 15789,4 0,30 0,69 15756 15672 15647 0,53 0,69

 0,84 0,85    0,71 0,24
200 1000 30 41453,8 41387,0 41453,4 0,16 0,00 41372 41283 41367 0,22 0,01
300 1000 30 55747,8 54762,0 54752,4 1,77 1,79 55289 54452 54523 1,51 1,39
400 1000 30 86946,0 86476,2 86946,0 0,54 0,00 86311 85934 86311 0,44 0,00
500 1000 30 103318,4 103049,6 104190,8 0,26 -0,84 101365 101365 101485 0,00 -0,12
600 1000 30 135192,6 133749,0 133148,2 1,07 1,51 133984 132216 132141 1,32 1,38
700 1000 30 144310,4 143611,6 143904,2 0,48 0,28 141263 141263 140582 0,00 0,48

 0,71 0,46    0,58 0,52
0,78 0,66 0,65 0,38

200 100 60 71749,0 71749,0 71749,0 0,00 0,00 71749 71749 71749 0,00 0,00
300 100 60 9726,0 9726,0 9726,0 0,00 0,00 9726 9726 9726 0,00 0,00
400 100 60 15240,4 15235,6 15234,4 0,03 0,04 15228 15228 15228 0,00 0,00
500 100 60 18309,4 18291,6 18291,6 0,10 0,10 18279 18240 18240 0,21 0,21
600 100 60 23400,6 23387,8 23387,8 0,05 0,05 23371 23333 23362 0,16 0,04
700 100 60 24294,6 24264,2 24268,8 0,13 0,11 24247 24233 24189 0,06 0,24

 0,05 0,05    0,07 0,08
200 1000 60 71585,0 71585,0 71614,0 0,00 -0,04 71556 71556 71556 0,00 0,00
300 1000 60 109542,4 109494,8 109494,8 0,04 0,04 109471 109471 109471 0,00 0,00
400 1000 60 141121,0 141121,0 141161,0 0,00 -0,03 140920 140920 140963 0,00 -0,03
500 1000 60 178781,4 178781,4 178850,8 0,00 -0,04 178408 178408 178464 0,00 -0,03
600 1000 60 215642,2 215467,8 215467,8 0,08 0,08 214956 214850 214850 0,05 0,05
700 1000 60 247321,4 246785,2 247137,4 0,22 0,07 246759 246142 246142 0,25 0,25

 0,06 0,02    0,05 0,04
0,05 0,03 0,06 0,06
1,44 0,47 1,97 0,70

Averages for r = 100 and p = 1

Averages for r = 1000 and p = 15

Averages for r = 100 and p = 15

Averages for p = 1
Averages for r = 1000 and p = 1

Averages for p = 30
Averages for r = 1000 and p = 30

Averages for r = 100 and p = 30

Averages for p = 15

Overall averages
Averages for p = 60

Averages for r = 1000 and p = 60

Averages for r = 100 and p = 60

Problem Improvement over   
HAS-SOP (%)Results Improvement over   

HAS-SOP (%) Results

Average results Best results

67

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)


