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Abstract— Penalty methods are often used to handle
constraints in optimization problems. However, to find the
optimal or near optimal set of penalty parameters is a hard task.
Also, such values are problem dependent. This paper introduces
the stochastic ranking approach to balance objective and penalty
functions stochastically in a rank-based ACO metaheuristic. The
results presented show that the simple inclusion of the procedure
leads to an improved search performance, with respect to the
standard penalty technique, when applied to discrete structural
optimization problems.

I. INTRODUCTION

Structural design is the art and science of designing those
components of an artifact (building, bridge, vehicle, tool, etc)
which are responsible for sustaining all the mechanical actions
which are expected to be applied to such artifact during its
projected life time.

The structural optimization process tries to produce the best
structural solution in the sense of finding a good compromise
between cost and performance. The designer seeks the set
of values of the design variables which maximizes (or
minimizes) a certain objective function while satisfying a set
of constraints.

For a truss structure (such as those depicted in Figures 1, 2,
and 3) the design variables can be the value of the cross-
sectional area of a bar or group of bars. In practice the
cross-sectional areas are often chosen from commercially
available sizes, thus characterizing a discrete optimization
problem, which can be solved in principle by nonlinear integer
programming techniques [1] as well as by heuristics, such as
genetic algorithms [2] and ant systems [3].

A typical objective function (to be minimized) is the total
weight of the structure. Besides reducing material costs,
minimizing the structure weight allows for an increase in
the payload (for aerospatial applications, for example) thus
enhancing the artifact’s (e.g. aircraft) overall performance.

Constraints can be associated with critical aspects, such as
structural safety, performance indexes, such as a minimum
level of vibration and deformation, durability, etc, as well
as aesthetical/architectural considerations. An example of a
critical constraint is that each bar of a given framed structure
must be subject to stresses not superior to an allowable value
which depends on the type of material used.

The class of discrete constrained optimization problems
considered here can be written as

minimize f(x) subject to x ∈ S ∩ F with
x = (x1, . . . , xn),
S = S1 × · · · × Sn,
xi ∈ Si, i = 1, . . . , n
Si = {si,1, . . . , si,di

}, i = 1, . . . , n

(1)

where f(x) is the objective function, n is the number of
variables of the problem, Si is a set of di discrete values, and
the feasible region F is defined by the m inequality constraints

F = {x ∈ S | gj(x) ≤ 0, j = 1, . . . ,m}. (2)

It should be noted that the gj are highly nonlinear implicit
functions of the design variables x.

It is often convenient to aggregate all contraint violations in
a single quantity

φ(x) =

m
∑

j=1

max{0, gj(x)} (3)

that measures the level of infeasibility of a candidate solution
x. Clearly a feasible solution x ∈ S∩F satisfies the constraints
from (2) and thus φ(x) = 0 in Eq. (3).

Inspired by the observation of the foraging behavior of
real ant colonies, the Ant Colony Optimization (ACO), is a
metaheuristic which uses the concept of stigmergy, the indirect
communication mediated by pheromone rates, in order to
construct increasingly better candidate solutions in a discrete
search space [3].

The ACO algorithm can be thought of as a set of
computational agents/ants that move through states of the
problem, using a stochastic local decision policy. After each
ant completes a trail/solution, the pheromone rates in that
particular trail are modified according to the quality of such
solution. The pheromone information will then affect the
decisions made by the following ants during the construction
of their trails.

Since the first ACO algorithm (Ant System) was
proposed [4], many variants have been reported in the
literature [5]: Ant Colony System, Max-Min Ant System,
Rank-Based Ant System and Best-Worst Ant System.
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Solving the problem (1) consists in assigning, to each design
variable xi, a value from the discrete set Si to form a solution
which minimizes f(x) and satisfies gj(x) = 0, j = 1, . . . ,m.
However, if the candidate solutions and move operators are
set up so that the constraints are not automatically satisfied,
nature inspired metaheuristics (such ACO algorithms) cannot
be directly applied to the solution of problem (1).

Besides that, constraints may transform an otherwise
relatively well behaved objective function into a rugged and
even disjoint landscape. In general, difficulties may arise as
the objective function may be undefined for some or all
infeasible elements, and checking for feasibility can be more
expensive than the computation of the objective function itself.
As a result, several techniques have been proposed in the
literature in order to enable nature inspired algorithms to tackle
constrained optimization problems which can be classified
either as direct (feasible or interior), when only feasible
elements are considered, or as indirect (exterior), when both
feasible and infeasible elements are used during the search
process [6]. Among the indirect techniques, a popular choice,
the penalty method, converts the constrained optimization
problem (1) into an unconstrained one by augmenting the
objective function with a penalty term that grows with the
infeasibility of the candidate solution x measured by φ(x)
from (3). The objective function is now given by

ψ(x) = f(x) + κφ(x) (4)

where κ is the penalty coefficient.
Solving an optimization problem combining the objective

function f and the infeasibility measure φ, as in (4), means
searching towards the best solution in the combined feasible
and infeasible search spaces. As κ → ∞ the solution of the
penalized problem tends to the solution of (1).

Although ACO algorithms have been applied to several
combinatorial optimization problems [3], not many papers can
be found in the literature where ACO algorithms are used to
solve structural optimization problems.

Bland [7] proposed an ACO algorithm which uses a tabu
search local improvement phase. This local search procedure
is applied to a given number of the best designs and can
reduce the number of infeasible designs. Infeasible designs
are penalized by inflating the associated weight. The procedure
(ACOTS) is applied to the 25-bar truss example.

Camp and Bichon [8] developed an ACO variant to optimize
the weight of space trusses by mapping the structural design
problem into a modified TSP problem. The traditional TSP
network is mapped into a sequence of nodes that are visited
in a predetermined order and the design variables are mapped
into a set of paths that connect each node in the network.
A penalty function is used to enforce design constraints and
three well known examples from the structural optimization
literature are presented. In [9] a Rank-Based ACO algorithm is
developed for discrete optimization of steel frames and in [10]
an ACO algorithm for volume optimization of planar trusses
is presented.

In a previous paper [11] five variants of the ACO algorithm
were applied to some structural and mechanical optimization
problems, and the Rank-Based algorithm presented the best
performance. In [12] the authors proposed a Rank-Based Ant
System planar and spatial trusses. Stress, displacements and
buckling constraints were handled using an additive penalty
technique as in Eq. (4). Because this ACO variant uses the
rank idea in the search process, it is the natural candidate to
test the application of the stochastic ranking procedure to an
ACO algorithm.

The penalty function method may work well for some
problems, but is usually sensitive to the value of the parameter
κ. If the penalty parameter is too small, the final result may be
an infeasible solution. If the parameter is too large, a feasible
solution is likely to be found, but could be of poor quality.

For constrained continuous optimization problems, an
alternative constraint handling technique –the stochastic
ranking procedure [13]– has produced good results in an
evolution strategy context. This procedure stochastically ranks
feasible and infeasible solutions, without requiring a problem
dependent penalty coefficient.

Its use within an ACO algorithm for discrete structural
optimization is proposed here. The procedure is then compared
to an ACO using the penalty method, and also a genetic
algorithm employing an adaptive penalty technique.

In fact, a more recent literature survey has shown us
that Meyer [14] was the first to introduce the stochastic
ranking procedure into the ACO arena. His paper investigates
the application of two ACO-stochastic ranking hybrids to a
different optimization problem (job scheduling with sequence
dependent setup times) together with constraint propagation
techniques.

The paper is organized as follows. In Section II the discrete
structural optimization problem is presented. Section III
contains the description of the ACO metaheuristic and the
rank-based Ant System. Section IV describes the stochastic
ranking procedure. The numerical experiments are reported in
Section V and the conclusions presented in Section VI.

II. THE DISCRETE STRUCTURAL OPTIMIZATION PROBLEM

The discrete structural optimization problem considered
here consists in finding the set of discrete design variables
x = {A1, A2, ..., An}, Ai ∈ Si, which minimizes the weight
of the truss structure:

f(x) = w(A1, A2, ..., An) =

n
∑

k=1

γAk





NG
∑

j=1

Lj



 (5)

subject to the normalized displacements constraints

|ul
i|

uadm

− 1 ≤ 0, i = 1, . . . ,M ; l = 1, . . . , NL (6)

and the normalized stress constraints

|sl
j |

sadm

− 1 ≤ 0, j = 1, . . . , N ; l = 1, . . . , NL (7)
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where γ is the specific weight of the material, Lj is the
length of jth bar of the structure, ul

i and sl
j are respectively,

for the load condition l, the nodal displacement of the ith
translational degree of freedom and the stress of the jth bar,
sadm is the allowable stress for each member and uadm is the
maximum displacement for each nodal point, M is the number
of translational degrees of freedom, N is the total number
of bars in the truss structure, NG is the number of member
groups which share the same cross-sectional area, and NL is
the number of load cases applied to the structure.

Although the function w(x) is linear, the constraints are
nonlinear implicit functions of the design variables x and
require the solution of the equilibrium equations of the discrete
model given by

K(x)ul = fl, l = 1, . . . , NL (8)

where K is the symmetric and positive definite stiffness matrix
of the structure, derived from the finite element formulation,
given by

K =
N

A
j=1

Kj (9)

where A denotes the operator used for assembling the matrix
contribution Kj of the jth bar, which is a linear function of x.
The vector of nodal displacements is denoted by u

l, and f
l is

the vector of applied nodal forces for the lth load condition.
For each one of the load conditions, the system is solved

for the displacement field

u
l = [K(a)]−1

f
l (10)

using a Gaussian elimination algorithm. The stress in the jth
bar is calculated according to Hooke’s Law

sl
j = Eε(ul) (11)

where E is the Young’s modulus and ε is the unit change in
length of the bar.

From the displacements at the nodal points, and the stresses
in the elements, the constraints can finally be checked. A
feasible design satisfies the constraints (6) and (7) while an
infeasible one has its degree of constraint violation φ(x) given
by

φ(x) =
NL
∑

l=1

N
∑

j=1

max{0,
|sl

j |

sadm
− 1} +

+
NL
∑

l=1

M
∑

i=1

max{0,
|ul

i|
uadm

− 1}

(12)

III. ANT COLONY OPTIMIZATION FOR STRUCTURAL

DESIGN

The Ant System Algorithm (AS) [15], the first example
of an ACO metaheuristic, was applied to the well known
Traveling Salesman Problem (TSP). The Ant Colony System
(ACS) [16] is an ACO algorithm based on AS with some
modifications to improve efficiency. The Rank-Based Ant
System developed by [17] is a modification to the ACS which
uses an elitist strategy. In this strategy, the ants corresponding
to the best solutions found during a given cycle are stored

in an elite. The pheromone update is performed by the elitist
ants and by the best solution found from all cycles, referred
as global best. This procedure introduces exploration among
the elitist ants instead of favoring only the best global route.

The objective in truss design is, for each design variable,
to select a cross-sectional area from the discrete set Si, and
assign the chosen value to the design variable, to form a
solution which minimizes the weight from (5) and satisfies
φ(x) = 0 in (12). The structural optimization problem has
some peculiarities: (i) the order in which the components are
assigned is not important, (ii) a solution is complete when an
ant covers all solution components (at this point discrete values
are assigned to all design variables) and (iii) a constructed
solution can violate some constraints, so feasibility is not
guaranteed. In the following, the Rank-Based Ant System for
structural optimization is described.

Consider xj representing the candidate solution constructed
by the jth ant, which is composed by n components
(xj

i , . . . , x
j
n) where xj

i ∈ Si. Let cj be a random permutation
that defines the order in which the variables are assigned (the
order in which the components will be covered by the jth
ant). Let also rj

i , i = 1, . . . , n, be the vector that stores
the indexes of the elements from the set Si associated with
xj

i . Each ant j works incrementally selecting (according to a
stochastic decision policy described later), for each component
i, an index rj

i from the discrete set Si, where 1 ≤ rj
i ≤ di,

and assigning the value s
i,r

j
i

corresponding to this index to the

design variable xj
i . At the component i an ant j must choose

a component k (one move) among di available ones. Let τi,k
be the amount of pheromone associated to this move and ηi,k

the desirability in choosing this move (a problem dependent
heuristic information associated with this move). An iteration
of the algorithm is defined as λ moves made by λ ants, each
ant making one move. A cycle is defined as n iterations, and it
is completed when the λ ants have incrementally constructed
a candidate solution.

The initialization is done setting all pheromone and heuristic
information to

τi,k ← 1/wmin, i = 1, . . . , n; k = 1, . . . , di

ηi,k ← 1/si,k, i = 1, . . . , n; k = 1, . . . , di

(13)

where wmin is the weight of the truss from (5) resulting
from assigning to the each design variable xi the smallest
value from Si. It is clear that, in the absence of constraints,
this solution would be the global optimum, considering the
linearity of (5). However, this is an infeasible solution, since
the constraints (6) and (7) are violated. The meaning of ηi,k

will be explained later.
The following steps are repeated until the maximum number

of cycles Ncycle is achieved.
For each ant j, the order in which the components are

assigned is given by random permutation cj .
Beginning at a randomly selected component i, 1 ≤ i ≤ n,

the ant must select an index rj
i among di available from the

set Si. The choice depends on the user defined parameter
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q0 ∈ [0, 1]. In each iteration a value q ∈ (0, 1) is generated
randomly. If q > q0 the ant chooses the index k with
probability

pi,k =
(τi,k)

α
(ηi,k)

β

di
∑

l=1

(τi,l)
α

(ηi,l)
β

, k = 1, . . . , di (14)

otherwise it chooses the value of k by

k = argmax
l

[

(τi,l)
α (ηi,l)

β
]

(15)

The parameters α and β weigh the relative importance of
the pheromone trail and the heuristic information, respectively.
For the structural weight minimization problem, ηi,k is the
inverse of the kth value available in the set Si, si,k. This
choice is due to the fact smaller cross-sectional areas lead
to lower weights, as can be seen in Eq. (5). As the values
of cross-sectional areas increase, the associated desirability in
choosing such areas decrease.

After the ant chooses rj
i then the ith component of the

candidate solution xj
i receives the value s

i,r
j
i
.

When adding a component xj
i to the candidate solution, the

pheromone trail associated to this move is updated by

τ
i,r

j
i
← ξτ

i,r
j
i
, (16)

where ξ ∈ (0, 1). This local update procedure reduces the
intensity of pheromone associated with the move chosen by
the ant. When subsequents ants arrive at this component,
the amount of pheromone associated with this move will
be smaller, leading to a smaller probability of selection of
the same move. The local update is intended to increase
exploration of the search space.

The procedure described above is repeated until all ants
have constructed their respective solutions.

After this, the values of the objective function fj = f(xj),
and the amount of violation φj = φ(xj), j = 1, . . . , λ of the
candidate solutions are computed.

From the values of fj and φj the candidate solutions are
ranked in order to determine which one solves better the
problem. The rank positions are stored in a list Ij , j =
1, . . . , λ. Among the λ solutions generated, I1 stores the index
of the best solution while Iλ stores the index of the worst
solution, and the σ best ranked solutions are selected to update
the pheromone trails.

The pheromone trail update is performed by the elitist ants
according to

τ
i,r

Iµ
i

← (1− ϕ) τ
i,r

Iµ
i

+ τµ, µ = 1, . . . , σ − 1 (17)

where ϕ ∈ (0, 1) is the evaporation rate.
The deposition τµ depends on the rank position µ and the

size of the elite σ:

τµ = (σ − µ)/fIµ
, µ = 1, . . . , σ − 1, (18)

where fIµ
= f(xIµ) is the objective function value of the µth

best ranked ant.

In this way, σ − 1 solutions are chosen for the addition of
pheromone in each cycle. Addittionaly, the global best solution
xgb deposit pheromone according to

τ
i,r

gb
i
← (1− ϕ) τ

i,r
gb
i

+ τ+ (19)

where
τ+ = σ/fgb (20)

and fgb = f(xgb).
For structural optimization problems, the common stopping

criterion is the maximum number of evaluations Neval, that
is equal to the the product of the number of ants λ by the
number of cycles Ncycles.

In rank-based ACO, when using the penalty approach (4) to
constraint handling, the solutions are ranked according to the
values of the combined function ψ(x), thus depending on the
penalty parameter κ. In this paper, instead of using penalty
parameters, the stochastic ranking procedure is proposed to
handle constraints in discrete structural optimization problems.

The detailed rank-based ACO algorithm for structural
optimization is shown in Algorithm 1. At line 11 it is shown
the procedure which returns a permutation of the integers
(1, . . . , n). The ant decision policy from (14) and (15) is
displayed at line 16. The evaluation procedure at line 22
returns the objective function value and the amount of
constraint violations for a candidate solution. The introduction
of the stochastic ranking procedure, described in Section IV,
is straightforward and occurs at line 24 of Algorithm 1.

IV. STOCHASTIC RANKING FOR CONSTRAINED

OPTIMIZATION

The bubblesort algorithm is a simple approach to the sorting
problem and consists of advancing through alist of values I ,
swapping adjacent values Ii and Ii+1 if Ii > Ii+1 holds. By
going through all of I elements in this manner λ times, one
is guaranteed to achieve the proper ordering.

In the stochastic ranking technique [13] the balance between
the objective and penalty functions is achieved through
a ranking procedure based on the stochastic bubble-sort
algorithm. In this approach is introduced a probability pf of
using only the objective function for comparing solutions in
the infeasible region of the search space. Given any pair of
two adjacent candidate solutions, the probability of comparing
them according to the objective function is 1 if both solutions
are feasible, and pf otherwise. The procedure is halted when
no change occurs in the rank ordering within a complete
sweep. The stochastic bubble sort procedure is displayed in
Algorithm 2.

Because one is interested at the end in feasible solutions,
pf should be less than 0.5, so that there is a pressure against
infeasible solutions. Two feasible solutions will always be
compared according to objective function value. When pf =
0 the ranking is equivalent to an over-penalization, where
all feasible solutions are ranked highest, according to their
objective value, followed by infeasible ones. Two infeasible
solutions will always be compared based on their amount of
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Algorithm 1 Rank-based ACO for Structural Optimization
1: procedure ACO
2: t← 0
3: for i = 1 : n do
4: for k = 1 : di do
5: τi,k = 1/wmin
6: ηi,k = 1/si,k

7: end for
8: end for
9: while t < Ncycles do

10: for j = 1 : λ do
11: cj=PERMUTATION(1, n)
12: end for
13: for l = 1 : n do
14: for j = 1 : λ do
15: i = cjl
16: rj

i = ANT DECISION(τi,:, ηi,:, di, q0, α, β)
17: xj

i = s
i,r

j
i

18: τ
i,r

j
i

= ξτ
i,r

j
i

19: end for
20: end for
21: for j = 1 : λ do
22: EVALUATE(xj, n, fj, φj)
23: end for
24: RANKING(I1:λ, f1:λ, φ1:λ, λ, pf )
25: if φI1 = 0 then
26: if fI1 < fgb then
27: xgb ← xI1 ; cgb ← cI1 ; rgb ← rI1 ;
28: end if
29: else
30: if φI1 < φgb then
31: xgb ← xI1 ; cgb ← cI1 ; rgb ← rI1 ;
32: end if
33: end if
34: for µ = 1 : (σ − 1) do
35: τµ = (σ − µ)/fIµ

36: for i = 1 : n do
37: τ

i,r
Iµ
i

= (1− ϕ)τ
i,r

Iµ
i

+ ϕτµ
38: end for
39: end for
40: τ+ = σ/fgb

41: for i = 1 : n do
42: τ

i,r
gb
i

= (1− ϕ)τ
i,r

gb
i

+ ϕτ+
43: end for
44: t = t+ 1
45: end while
46: end procedure

constraint violation. On the other hand, if pf = 1, all solutions
will always be compared based on the objective function value.

V. NUMERICAL EXPERIMENTS

In order to investigate the performance of the proposed
rank-based ant system coupled with stochatic ranking, some

Algorithm 2 Stochastic Ranking Algorithm
1: procedure STOCHASTIC RANKING(I, f, φ, λ, pf )
2: for j = 1 : λ do
3: Ij = j
4: end for
5: for j = 1 : λ do
6: swap← false
7: for j = 1 : λ− 1 do
8: u = RANDOM(0, 1)
9: if φIj

= φIj+1
= 0 or u < pf then

10: if fIj
> fIj+1

then
11: tmp = Ij+1

12: Ij+1 = Ij
13: Ij = tmp
14: swap← true
15: end if
16: else
17: if φIj

> φIj+1
then

18: tmp = Ij+1

19: Ij+1 = Ij
20: Ij = tmp
21: swap← true
22: end if
23: end if
24: end for
25: if not swap then
26: BREAK

27: end if
28: end for
29: end procedure

discrete structural optimization problems are considered, and
the results obtained are compared to those produced by
the same rank-based ant system equipped with a standard
penalty technique, as well as with the adaptive penalty method
(APM) [18].

Twenty-five independent runs were performed for each
value of the penalty coefficient κ and each value of the
parameter pf in the stochastic ranking procedure.

After some preliminary runs, the parameters α and β,
from (14), were set to 1.0 and 0.20 respectively, q0 was set to
0.70, ϕ from (17) was set to 0.10, and ξ from (16) was set to
0.80.

A. The 22-bar truss

The first structure considered is the plane truss shown
schematically in Fig. 1, where a vertical load P is applied
at the rightmost node. The weight of the structure is to be
minimized, and the design variables are the cross-sectional
areas of the bars.

As an isostatic structure, the force fi (negative or positive
value for compression or traction, respectively) in the ith bar
does not depend on the value of the cross-sectional area of
the bars. It follows that each bar should be working at the
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maximum allowable stress,

|si| = |fi|/Ai = sc or si = fi/Ai = st,

if the ith bar is in compression or tension, respectively, and sc

and st are the corresponding allowable limits for the material
used. The optimal design is thus a “fully stressed” structure. It
can also be shown that all vertical bars are working under the
same conditions, and that the same can be said of the diagonal
bars, resulting in 8 design variables x = {A1, . . . , A8}, each
Ai to be chosen from the set Si = {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,
2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2},
i = 1, . . . , 8.

Additionally, for the case of equal material behavior in
tension and compression, st = sc = sadm. A consistent set
of units is assumed and the following values are adopted:
P = 12, and sc = st = sadm = 25. The exact solution
for the optimization problem can be found analytically (the
minimum volume is equal to 68.20) and controlled numerical
experiments and comparisons can more easily be performed.

2
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Fig. 1. The 22-bar truss.

The results for the rank-based ACO using the penalty
method are presented in Table I for some values of κ, and the
results for the stochastic ranking, for some values of pf , are
shown in Table II. The results were obtained with a colony
of λ = 50 ants in 80 cycles, resulting in 4000 evaluations
performed for each run. The elite size σ is set to 5 ants.

In both tables, FR denotes the number of runs (among the
25) with a feasible final solution. Also displayed are the best
and worst weights found during the execution of the 25 runs, as
well as the mean, median and standard deviation observed. It
is important to notice that the mean and median are calculated
considering only the runs which produced feasible solutions.
In all Tables, entries assigned with a “–” indicate that all runs
produced infeasible solutions.

When compared to the penalty technique, the stochastic
ranking produced good results, independent of the value of pf ,
for all runs. As can be seen in Table I, κ = 100 is too small to
produce any feasible solutions. Although values κ = 101 and
κ = 102 produced feasible solutions in all runs, these solutions
presented poor quality, reflected in values of mean, median
and standard deviation. This example, with known solution,
illustrates the ability of the algorithm to find the exact solution.
Also, it is clear that one must set κ > 102 in order to get good
results when using the standard penalty technique.

TABLE I

RESULTS FOR THE 22-BAR TRUSS USING THE PENALTY METHOD.

κ FR best mean median std worst
10

0 0 – – – – –
10

1 9 75.10 93.54 94.80 13.22 112.80
10

2 25 68.20 74.15 73.90 4.43 86.20
10

3 25 68.20 68.38 68.20 0.35 69.40
10

4 25 68.20 68.38 68.20 0.25 68.80
10

5 25 68.20 68.38 68.20 0.27 68.80
10

6 25 68.20 68.43 68.20 0.28 69.10
10

7 25 68.20 68.48 68.50 0.27 68.80
10

8 25 68.20 68.36 68.20 0.25 68.80
10

9 25 68.20 68.39 68.20 0.29 69.10

TABLE II

RESULTS FOR THE 22-BAR TRUSS, USING STOCHASTIC RANKING.

pf FR best mean median std worst
0.00 25 68.20 68.40 68.20 0.28 69.10
0.05 25 68.20 68.44 68.20 0.30 69.10
0.10 25 68.20 68.31 68.20 0.21 68.80
0.15 25 68.20 68.42 68.20 0.28 68.80
0.20 25 68.20 68.50 68.50 0.32 69.40
0.25 25 68.20 68.54 68.50 0.30 69.10
0.30 25 68.20 68.39 68.20 0.32 69.40
0.35 25 68.20 68.52 68.20 0.46 69.70
0.40 25 68.20 68.50 68.20 0.37 69.40
0.45 25 68.20 68.97 69.10 0.66 70.60

B. The 10-bar truss

This test-problem corresponds to the weight minimization
of the classic 10-bar truss shown in the Fig. 2.

The constraints involve the stress in each member and the
displacements at the nodal points. The design variables are the
cross-sectional areas of the bars x = {A1, A2, . . . , A10}. The
stress is limited to the ±25 ksi range and displacements are
limited to 2 in, in the x and y directions. The density of the
material is 0.10 lb/in3, Young modulus is E = 104 ksi and
vertical nodal loads of 100 kips are applied at nodes 2 and 4.

The value of each cross-sectional area, Ai, i = 1, . . . , 10,
in square inches, is to be chosen from the set Si = {1.62,
1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38,
3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80,
4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50,
16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50},
i = 1, . . . , 10, resulting in 42 options for each bar in the
structure. The best known solution is 5490.74.

Twenty-five independent runs were performed for each
value of the penalty coefficient κ using the penalty method,
and each value of the parameter pf in the stochastic ranking
procedure. Using a colony of λ = 100 ants in 40 cycles, a
total of 40000 evaluations were performed. The parameter σ
was set to λ/10, resulting in a elite of 10 ants.

The results for the rank-based ACO using the penalty
method and stochastic ranking are presented in Tables III and
IV, respectively.

In order to allow for a comparison with a different
technique, in those tables the last line displays the results
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Fig. 2. The 10-bar truss.

obtained by a binary coded genetic algorithm equipped
with the adaptive penalty method (APM) [18], using 90000
objective function evaluations (more than double of the
number used here).

TABLE III

RESULTS FOR THE 10-BAR TRUSS USING THE PENALTY METHOD.

κ FR best mean median std worst
10

0 0 – – – – –
10

1 0 – – – – –
10

2 0 – – – – –
10

3 0 – – – – –
10

4 25 5490.734 5490.734 5490.734 0.000 5490.734
10

5 25 5490.734 5497.162 5490.734 14.777 5536.965
10

6 25 5490.734 5495.813 5490.734 11.903 5533.656
10

7 25 5490.734 5509.795 5491.717 23.592 5545.559
10

8 25 5490.734 5510.825 5498.375 25.380 5569.510
10

9 25 5490.734 5536.421 5518.191 54.907 5708.312
APM – 5490.74 5545.48 n.a. n.a. 5567.84

TABLE IV

RESULTS FOR 10-BAR TRUSS, USING STOCHASTIC RANKING.

pf FR best mean median std worst
0.00 25 5490.734 5499.930 5491.717 13.774 5540.159
0.05 25 5490.734 5498.358 5490.734 14.773 5536.965
0.10 24 5490.734 5495.899 5490.734 12.214 5533.656
0.15 25 5490.734 5500.213 5490.734 17.459 5543.805
0.20 25 5490.734 5495.347 5490.734 13.687 5546.161
0.25 25 5490.734 5500.458 5491.717 13.307 5538.342
0.30 25 5490.734 5503.515 5490.734 20.611 5557.106
0.35 25 5490.734 5501.442 5491.717 15.245 5540.205
0.40 25 5490.734 5502.900 5491.717 17.849 5548.444
0.45 25 5500.881 5530.467 5530.438 18.233 5562.052
APM – 5490.74 5545.48 n.a. n.a. 5567.84

For this test problem, the penalty method failed to reach
feasible final solutions for κ equal to 100, 101, 102 and 103.
The best known solution is found in all runs only when using
κ = 104. For κ > 104, although this solution is always found
in some of the runs, it can be seen that the variance of the
results increases as κ grows.

It can be seen that the stochastic ranking procedure is much
less sensitive to the value of its parameter pf , when compared
to κ parameter of the standard penalty technique.

C. The 25-bar truss

This classical problem is the weight minimization of a truss
with 25 bars shown in the Fig. 3. The allowable stress for
each member is sadm = 40 ksi and the displacements must
not exceed uadm = 0.35 in, in the x and y directions. The
material has a Young modulus E = 107 psi and density of
0.10 lb/in3. The loads applied in the structure are displayed in
the Table V.
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Fig. 3. The 25-bar truss.

The design variables are the cross-sectional areas which
are organized into eight groups, as shown in Table VI. This
arrangement results in a structural optimization problem with
eight discrete variables, Ai, i = 1, . . . , 8, each one to be
chosen from the set Si = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9, 3.0, 3.1, 3.2, 3.3, 3.4},
i = 1, . . . , 8, with 34 values in square inches. The best known
solution is 484.854.

TABLE V

LOAD CASE FOR 25-BAR TRUSS.

Node Fx (kips) Fy (kips) Fz (kips)
1 1.00 -10.00 -10.00
2 – -10.00 -10.00
3 0.50 – –
6 0.60 – –

The results for the rank-based ACO using the penalty
method are presented in Table VII for some values of κ, and
the results for the stochastic ranking, for some values of pf ,
are shown in Table VIII.

The results were obtained with a colony of λ = 100 ants in
200 cycles. For each run, 2000 evaluations were performed,
and σ = λ/10, resulting in a elite size of 10 ants.

From Table VII it can be seen that using κ equal to 100, 101

and 102 did not produce a single final feasible solution. For
κ = 103 and κ = 104 all runs produced final feasible solutions.
Increasing κ leads to a slight decrease in FR.
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TABLE VI

MEMBER GROUPS FOR 25-BAR TRUSS.

Group Connectivities
A1 1-2
A2 1-4, 2-3, 1-5, 2-6
A3 2-5, 2-4, 1-3, 1-6
A4 3-6, 4-5
A5 3-4, 5-6
A6 3-10, 6-7, 4-9, 5-8
A7 3-8, 4-7, 6-9, 5-10
A8 3-7, 4-8, 5-9, 6-10

TABLE VII

RESULTS FOR 25-BAR TRUSS USING THE PENALTY METHOD.

κ FR best mean median std worst
10

0 0 – – – – –
10

1 0 – – – – –
10

2 0 – – – – –
10

3 25 484.854 485.600 485.049 0.767 486.998
10

4 25 484.854 485.381 485.380 0.465 486.218
10

5 24 484.854 485.316 485.049 0.785 488.438
10

6 24 484.854 485.360 485.049 0.395 487.000
10

7 21 484.854 485.419 485.049 0.626 486.743
10

8 23 484.854 485.218 485.049 0.410 487.000
10

9 21 484.854 485.279 485.049 0.359 485.905
APM – 484.854 485.967 n.a. n.a. 490.742

TABLE VIII

RESULTS FOR 25-BAR TRUSS USING STOCHASTIC RANKING.

pf FR best mean median std worst
0.00 19 485.049 485.379 485.049 0.562 486.998
0.05 19 484.854 485.339 485.049 0.483 486.218
0.10 22 484.854 485.382 485.049 0.574 486.625
0.15 23 484.854 485.206 485.049 0.415 486.294
0.20 23 484.854 485.168 485.049 0.414 486.625
0.25 22 484.854 485.373 485.049 0.582 487.269
0.30 24 484.854 485.505 485.214 0.958 489.371
0.35 23 484.854 485.431 485.380 0.594 486.820
0.40 25 484.854 485.403 485.049 0.592 486.625
0.45 25 484.854 486.797 486.519 1.363 491.221
APM – 484.854 485.967 n.a. n.a. 490.742

Again, the stochastic ranking technique is shown to be less
sensitive to the value of its pf parameter.

VI. CONCLUSION

Discrete structural optimization problems usually involve
a large number of constraints which are highly nonlinear
implicit functions of the design variables. Those constraints
are often enforced by means of a penalty technique, due
to its generality and simplicity. For constrained continuous
optimization problems, the stochastic ranking procedure,
originated in the evolutionary computation comunity, has
produced good results [13]. Here, such procedure was
introduced in a rank-based ant colony optimization technique
and applied to discrete structural optimization problems.

The numerical experiments show that the results obtained
by the stochastic ranking procedure present good quality when
compared to those produced by the adaptive penalty method
by Lemonge and Barbosa [18].

Besides that, the stochastic ranking procedure presents less
variance in the results with respect to the value of the single
parameter (pf ) involved in the procedure. It is also clear
that the penalty technique is more dependent on the penalty
coefficient (κ) which can have a large variation from one
problem to another.
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