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Abstract - This paper presents three ant colony optimization 
(ACO) approaches for a difficult graph theoretic problem 
formulated from the task of computing load-balanced 
clusters in ad hoc networks. These three approaches contain 
novel strategies for adapting the search process to the new 
problem structure whenever an environment change occurs. 
An environment change occurs when nodes in the network 
move. Dynamic changes in problem structure pose a great 
challenge for ACO algorithms because the pheromone 
information is rendered inaccurate and inconsistent. Hence, 
all three strategies to enable ACO to work in a dynamic 
setting have a common objective, that is, to adapt the 
pheromone information to closely reflect the new problem 
structure. The first approach is the population-based ACO 
algorithm (P-ACO) that incorporates a novel solution repair 
procedure. The second approach, which we call PAdapt, 
works by adapting three major algorithm parameters 
following an innovative strategy. The third approach, which 
we term GreedyAnts, uses a greedy solution construction 
strategy to bias the pheromone information towards the new 
problem structure. Empirical results show that GreedyAnts is 
very competitive with P-ACO, while PAdapt is less 
impressive.  The GreedyAnts approach is advantageous over 
P-ACO because it does not require a solution repair heuristic 
that incurs additional processing.   
 
Keywords - Ant colony optimization, search and 
optimization, dominating set problem. 
 
 

I. INTRODUCTION 
 
The ant colony optimization (ACO) metaheuristic [1] is a 
stochastic search and optimization technique that has been 
successfully used to address a wide array of combinatorial 
optimization problems. Some examples include the 
traveling salesman problem [2], quadratic assignment 
problem [3], job-shop scheduling [4], vehicle routing [5], 
sequential ordering [6], graph coloring [7], and shortest 
common super-sequence [8].  The majority of results 
reported in the literature were derived from the 
applications of ACO on static problems. A static problem 
is one in which the structural definition of the problem and 
the problem related data remain unchanged while the 
problem is being solved. 

ACO can be regarded as a collaborative, multi-agent 
approach to problem solving. It maintains a colony (i.e. 
population) of artificial ants. ACO is iterative. In every 
iteration, each ant constructs a complete solution to the 
problem. The entire search experience of the colony is 
encoded in a global data structure commonly known as the 
pheromone trails. The pheromone associated to each 
solution component indicates how it has contributed in the 
construction of good solutions in the past. Each ant 
depends on two key factors in selecting a solution 
component. The first is of course the pheromone 
associated to that component. The second factor is a 
heuristic (normally greedy) measure giving the desirability 
of that component.  

Recently, there has been increasing interests on 
designing ACO algorithms for dynamic problems. These 
are problems whose structure changes while the problem is 
being solved.  This change in problem structure is termed 
as an ‘environment change’. This is challenging to an 
ACO algorithm because an environment change would 
render certain portions of the pheromone trails inaccurate 
with respect to the new problem structure. In recognition 
of this, many research efforts [9, 10, 11, 12] for designing 
ACO algorithms for dynamic environments has focused on 
devising strategies for adapting the pheromone information 
so that ants are not misled by the outdated search 
experience.  

The aim of this paper is to describe three ACO 
approaches, each of which incorporates a specific strategy 
for responding to environment changes. These three 
approaches are assessed on a variant of the dominating set 
problem [13], which is formulated from the load-balanced 
clustering problem in ad hoc networks.   
 
 

II. PROBLEM DESCRIPTION AND 
FORMULATION 

 
An ad hoc network [14] is modeled as an undirected graph 
G = (V, E), where V is the set of vertices representing the 
nodes of the network and E is the set of edges. Let 

�
ij

�
 

be the Euclidean distance between nodes i and j. An edge 
eij ∈ E exists between i and j if they can receive each 
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other’s transmission, i.e. if 
�

ij
�

 � R, where R is the 
transmission range of the nodes. Nodes are organized into 
clusters to enhance manageability. Each cluster is 
coordinated by a special node called the cluster head 
(abbreviated as CH). Cluster members are most commonly 
selected based on their distance from the candidate CH. 

The problem of load-balancing the clusters arises due 
to the limitation of resources available to CHs. CHs can 
efficiently support up to a certain number of nodes. It is 
desirable to have each CH support about the same number 
of nodes. A measure of the load of a CH is the number of 
ordinary nodes it has in its cluster [17, 18]. In actual ad 
hoc networks, the work load of a CH is directly 
proportional to its cluster size. The task of constructing 
load-balanced clusters can be formulated as follows: find a 
set of dominating nodes V’ (the CHs) such that the nodes 
in V – V’ can be distributed as evenly as possible among 
the members of V’ subject to the constraint that the number 
of dominated nodes per CH is at most max_load. The 
dominated node is said to be covered by its dominating 
node. The quality of the clustering can be measured by the 
variance of the load of the CHs, and is given by the 
following:  
 

n

x
LBF

c

i
i� −

=
)( 2µ

 
(1) 

 
where nc is the number of clusters, xi is the load of CH i, 
and µ = (N – nc)/nc. A smaller LBF signifies better load 
distribution.   
 
 

III. THE ACO APPROACHES FOR DYNAMIC 
ENVIRONMENTS – RELATED WORK 

 
Early work in this area saw researchers propose techniques 
that directly modify the pheromone information to reflect 
the new problem structure. One of such effort was reported 
in [11]. It proposed three pheromone modification methods 
for addressing the dynamic traveling salesman problem 
(TSP). The first two, known as the η-strategy and τ-
strategy perform local pheromone modifications. Both 
strategies rely on the knowledge of where the change in 
the problem structure occurred. The third strategy, known 
as the Restart-strategy performs global pheromone 
modification by reinitializing all pheromone values by the 
same computed quantity. The global strategy produced 
very good results. However, the authors commented that 
the success of the global strategy may be due to the very 
minute environment change – only one city was inserted or 
deleted.  

The population-based ACO (P-ACO) [9] which was 
originally proposed for static problems has been 

demonstrated to be promising in addressing dynamic 
problems.  It maintains a population of solutions that 
determines the updates to the pheromone intensities. 
Initially, the population is empty. The best solution from 
each cycle is added into the population until the maximum 
population size is reached. After this has occurred, a 
strategy is used to replace a population member with a new 
solution from the latest cycle. When the population 
member is removed, the pheromone contributed by it is 
also subtracted from the pheromone matrix. This gives P-
ACO the ability to undo previous pheromone updates. In a 
subsequent work [10], the authors showed how the original 
P-ACO can be adapted to dynamic problems. Whenever a 
change in the problem structure occurs, each solution in 
the population is repaired using a problem-specific 
heuristic. Changes to the population are then effected back 
to the pheromone matrix. 

A solution deconstruction strategy [12] has also been 
proposed for making ACO adapt to environment changes 
in the context of constraint satisfaction problems. When a 
change in environment occurs, the deconstruction process 
is performed on the best solution from the current colony. 
This process is iterative. In each iteration, a solution 
component from the best solution is selected based on the 
nature of the event that occurred, and this component is 
removed from the solution. If this action results in worse 
violations of constraints, the solution component will be 
reinserted, and another different component will be tried. 
This process continues until zero constraint violation is 
achieved. In the worst case, all solution components 
making up the best solution will be processed. 
 
 

IV. THE PROPOSED APPROACHES FOR 
HANDLING DYNAMIC ENVIRONEMTS 

 
An ACO metaheuristic for the static version of this 
problem has been recently published in [15]. For the sake 
of completeness, a brief description of this metaheuristic is 
presented here.  

Each ant begins with an empty solution, and 
incrementally constructs a complete solution by selecting 
CHs. After the selection of a CH, cluster members will be 
assigned to the CH. This process continues until every 
node is either a CH or already has been assigned to a CH. 
The selections of CHs are probabilistic, with the selection 
probability of each node determined by the product of its 
pheromone value and the visibility measure. The visibility 
measure is a function formulated by first assigning a 
weight to each node. The weight of a node tells the number 
of uncovered nodes it can cover if it is selected as a CH. 
The visibility measure will give a higher preference value 
to nodes whose weight is closer to the median of 1, 2, … 
max_load. The objective function is the LBF measure 
given in eq. (1).  
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The dynamic version of the problem arises as a result 
of node mobility. The composition of clusters can change 
under two scenarios. Firstly, a cluster member may move 
beyond the transmission range of its current CH. Secondly, 
a CH may move, resulting in at least one of its current 
cluster members to be out of its transmission range.  

In the ensuing three subsections, we explain how three 
strategies for handling dynamic environments are 
incorporated into this ACO metaheuristic.  
 
 
A.  Approach 1: Population Based ACO (P-ACO) 
 
Our contribution here is the design of the repair heuristic 
for the intended problem. This repair heuristic takes the 
following form: 
 
For each node v that leaves its current cluster Ci, do 

i. Find a neighbor cluster Cj with the smallest 
load(Cj), i.e. the smallest number of cluster 
members. 

ii. If load(Cj) < max_load, then assign v to Cj. 
Stop and process the next node that moved. 
Otherwise, go to iii. 

iii. If load(Cj) ≥ max_load, break Cj and form 
two new clusters Cs and Ct. This is done by 
first selecting a new CH each for Cs and Ct. 
Assign node v and the remaining nodes of Cj 
to  Cs and Ct such that the cardinality of the 
new clusters are as close as possible.  

 
For the P-ACO implementation, we use the age-based 

population update policy. This policy replaces the oldest 
solution in the population, and has been proven to be 
effective in [10].  
 
 
B.  Approach 2: PAdapt – Responding by Parameter 

Adaptation 
 
The aim of this approach is to modify the outdated 
pheromone information by firstly reducing the influence of 
pheromone (which by convention is controlled via a 
parameter called α� in solution construction, and at the 
same time increasing the influence of the visibility 
measure (controlled by parameter β ��. Secondly, the PAdapt 
approach also introduces a higher pheromone evaporation 
rate to allow ants to ‘forget’ knowledge from the outdated 
search experience. An environment change will trigger p% 
of the ants to construct solutions using the new parameter 
values (given in Table 1, column titled ‘Adapted values’). 
For this work, p is set to 50%. This modified behavior will 
persists for a predetermined number of cycles (we use 
parameter max_cycle to refer to this value), which we set 
to five after conducting parameter tuning. This implies that 
there exist two groups of ants within the five cycles 

following an environment change. The iteration-best ant 
from each group is allowed to update the pheromone.  
 

Parameter Normal 
values 

Adapted 
values 

α 1 0.1 
β 3 5 
ρ 0.1 0.4 

 
 
 
 
C.  Approach 3: GreedyAnts – A Greedy Approach 
 
The key idea behind the GreedyAnts is to have p% (p is set 
to 50% as in PAdapt) of the ants disregard the pheromone 
information, and deterministically select the node with the 
highest visibility value as the next CH. We call this group 
of ants greedy ants. The remaining 50% of the ants will 
behave in the usual way. Similar to PAdapt, both the 
iteration-best greedy and ordinary ant will update the 
pheromone information. The greedy behavior will persist 
for five iterations (max_cycle = 5) following an 
environment change, after which the greedy ants will go 
back to their normal behavior.  
 
 

V. COMPUTATIONAL SETUP 
 
The performance of the proposed ACO approaches is 
evaluated on 12 problem instances representing four ad 
hoc networks.  Each network is generated by randomly 
placing N nodes in an area of size M x M meters. From 
each network, four problem instances are obtained by 
varying the transmission range. The characteristics of the 
problem instances are given in Table 2. Each approach is 
run 50 times for each problem instance. Altogether, there 
are 600 runs for each approach. Each run takes a maximum 
of 200 cycles. Under normal operations, the three major 
parameters are given in Table 1 (see the ‘Normal Values’ 
column). All approaches uses a colony size of 30 ants. For 
P-ACO, the size of the solution population is set to 7 based 
on our parameter tuning effort.  

For each run, node mobility takes place at the 50th, 
100th and 150th cycle. This gives a window of 50 cycles for 
recovery. In each mobility event (i.e. environment change), 
5% out of the total number of nodes will move. The 
severity of environment change here is larger than those 
employed in previous efforts [9, 10, 11, 12]. We label the 
51st to 100th cycle as Interval1, the 101th to 150th cycle as 
Interval2, and the 151st to 200th cycle as Interval3. Each 
approach will attempt to recover in these intervals.  

 
 
 
 

Table 1. Adapted values for three main 
parameters: α, β and ρ. 
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Network 

Size 
Area (m x m) Transmission 

Range (m) 
400 nodes 3000 x 3000 210, 220, 230 
350 nodes 2500 x 2500 200, 210, 220 
300 nodes 2000 x 2000 180, 190, 200 
250 nodes 1500 x 1500 130, 140, 150 

 
 
 
 
A. Performance Measures 
 
The following measures are used to gauge the performance 
of each approach: 
 
• Reactivity [16]. This is defined by eq. (2). It measures 

the number of cycles required to recover from any 
solution quality degradation. m is the cycle in which an 
environment change occurred, ε� is a performance 
threshold parameter set to 0.01, m′ is the earliest cycle 
after an environment change in which the inequality in 
eq. (2) can be satisfied. If this happens, we say that 
recovery has been achieved. If there is any failure to 
recover, the reactivity is set to 50, i.e. the recovery 
window size.  

    

��

�
�
�

��

�
�
�
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−−
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' ε
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where N is the set of natural numbers, fm’ is the cost of the 
best solution at cycle m’, and min f[m-5, m-1] is the best 
solution cost found in the five cycles preceding the 
environment change. 
 
• LBF at Recovery. This is the best solution for cycle m′. 

Should an approach fail to recover within the permitted 
window, the value for this measure will be set to the 
average iteration-best LBF across the recovery window.  

 
• Best LBF. This gives the best solution within each 

interval. This measure is useful in two ways. Firstly, it 
can be compared against that of LBF at Recovery to 
determine if solution quality improves beyond the point 
of recovery. Secondly, it gives an indication of the best 
performance if an approach failed to recover in an 
interval.  

 
In order to compare results among different problem 
instances, a reference approach called Control is used. 
Control is simply the original ACO approach that contains 
no strategy to respond to environment changes. The 
performance of an approach X with respect to a 

performance measure P, denoted P(X), is computed as the 
gain over Control: 
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(3) 

 
Smaller values for each performance measure indicate 
better performance. Eq. (3) computes, as percentage, the 
ratio of the measured performance difference to the larger 
of the two values. A positive gain means X performs better 
than Control.  
 
 
B. Parameter Tuning 
 
The following parameters are tuned: α, β, ρ, p, and 
max_cycle. The problem instance with the smallest 
transmission range for each of the four network sizes is 
selected for use in tuning. Tuning is performed with 
respect to two performance measures: Reactivity and LBF 
at Recovery. Each approach is run 20 times on a tuning 
instance, and the two performance measures are averaged 
over these 20 runs. For each tuning instance, each 
combination of parameter values is ranked according to 
Reactivity (Rank A) and LBF at Recovery (Rank B). The 
best rank is one. The best parameter setting for each 
strategy is determined by computing the overall rank, 
Rank(ci), as follows: 
 

size
kcRankBkcRankAcRank

size

k
i

size

k
ii
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11

⋅
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�
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=

�
=

(4) 

 
where size is the number of tuning instances, ci is the ith 
combination of parameter values.  We select the ci that 
gives the smallest value for Eq. 4.  
 
 

VI. RESULTS AND DISCUSSION 
 
The results for each performance measure are presented 
for the three intervals using boxplots. Fig. 1, Fig. 2 and 
Fig. 3 shows the boxplots for the Reactivity, LBF at 
Recovery and Best LBF measures respectively. The plot for 
each approach is constructed using the gains computed in 
the 600 runs.   

We first analyze the performance of the proposed 
approaches with respect to the Recovery measure. The 
corresponding boxplot is Fig. 1. During Interval1, both P-
ACO and GreedyAnts performed slightly better than 
Control, with medians close to 10%. During Interval2, 
there was significant increase in the ability of both P-ACO 
and GreedyAnts to recover. In this interval, GreedyAnts 

Table 2. Characteristics of the problem instances. There are 
four problem instances for each network created from 
different transmission ranges. 
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emerged the better approach with median of 50% 
compared to 40% for P-ACO. Even though the 

performance of P-ACO and GreedyAnts decreased in 
Interval3, the medians were maintained at above 20%. The  

-100 -80 -60 -40 -20 0 20 40 60 80 100

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

1

-100 -80 -60 -40 -20 0 20 40 60 80 100

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

2

-100 -80 -60 -40 -20 0 20 40 60 80 100

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

3

 
 
 
 

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

1

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

2

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

3

 
 

Fig. 1. Gains for P-ACO, PAdapt and GreedyAnts over Control for performance measure 
Reactivity. 

Fig. 2. Gains for P-ACO, PAdapt and GreedyAnts over Control for performance measure LBF at 
Recovery. 
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PAdapt approach, however, did not manage to outperform 
Control as its medians are all zero for the three intervals.  

For the second performance measure, i.e. LBF at 
Recovery, P-ACO, PAdapt and GreedyAnts were superior 
to Control in all three intervals. Fig. 2 shows that the 
performance for three approaches has consistently 
increased from Interval to Interval3. The better LBF 
produced at the point of recovery can be attributed to the 
pheromone adaptation strategies incorporated in the three 
approaches.  

For the Best LBF measure (see Fig. 3), a similar 
performance trend can be observed. There are gradual 
improvements for all three approaches from Interval1 to 
Interval3. This result is important because it shows that the 
solution quality attained at recovery is maintained even 
after the recovery strategies is no longer in force after the 
first five cycles following the environment change. The 
best LBF recorded in each interval has, on average, made 
improvements over the LBF recorded at recovery. The 
average improvements were 11.97%, 12.22% and 11.96% 
for P-ACO, PAdapt and GreedyAnts respectively.  

The empirical results did not indicate if any approach is 
generally more preferable with respect to network size. 
However, a frequently occurring trend is that GreedyAnts 
tend to show better reactivity for Interval2 and Interval3. 
This observation provides a hint that GreedyAnts may be 
the better approach to handle higher mobility rate.  

The parameter tuning process revealed that p = 50% is 
the best setting for both PAdapt and GreedyAnts. We have 

also investigated the effects of selecting a higher (p = 
70%) or lower (p = 30%) value. We measure, across all 
problem instances, the improvement rate as the difference 
between the number of runs that gave better and worse 
results for the Reactivity and LBF at Recovery measures. 
This difference is expressed as percentage over the total 
number of runs, and is formulated in  Eq. 5 with respect to 
a performance measure Y.   

 

              100×−=
−+

R

RR
tImprovemen totalY

   (5) 

 
where R+ is the number of runs that saw improvement, R- 
is the number of runs that saw degradation, and Rtotal is the 
total number of runs. Table 3 shows the results of this 
study. For PAdapt, reducing the value of p to 30% 
produced degradation for both performance measures. 
Increasing p to 70% showed a small improvement for the 
Reactivity measure, but a large 11% degradation for the 
LBF at Recovery measure. Now, for the GreedyAnts 
approach, changing the value of p to both 30% or 70% 
produced inferior results. A smaller value for p causes 
degradation of a larger magnitude. This trend is similar to 
that observed for PAdapt with reduced p value. Using a 
smaller value for p means that a majority of the ants are 
oblivious to the environment changes, therefore still 
placing the same emphasis on the outdated pheromone. 
 
 

Fig. 3. Gains for P-ACO, PAdapt and GreedyAnts over Control for performance measure Best 
LBF. 
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PAdapt GreedyAnts 

p Reactivity 
(%) 

LBF at  
Recovery 

(%) 

Reactivity 
(%) 

LBF at  
Recovery 

(%) 
30% -12 -7 -9 -6 
70% + 4 -11 -4 -3 

 
 
 
 

Overall, the parameter adaptation strategy was the least 
effective. Both P-ACO and GreedyAnts were consistently 
superior to PAdapt for all three performance measures. 
Even though P-ACO is competitive with GreedyAnts, the 
GreedyAnts approach has a distinct advantage. It depends 
only on the updated visibility measure for adapting the 
pheromone information. This introduces no additional 
processing requirements. On the other hand, for P-ACO, 
we first need to design a good heuristic to perform solution 
repair. The application of the repair heuristic uses 
additional processing time, which is directly proportional 
to the population size and severity of the environment 
change. 
 
 

VII. CONCLUSIONS 
 
We have presented three ACO approaches for dynamic 
environments. PAdapt and GreedyAnts are original 
contributions originating from our research work. P-ACO 
is a framework that has been proposed earlier, and we have 
developed a repair heuristic for the load-balanced 
clustering problem. All three approaches are inspired by 
one common objective, that is, to adapt the partially 
outdated pheromone information so that it is consistent 
with the new problem structure.  

Empirical results reveal that GreedyAnts and P-ACO 
yielded similar performance, while PAdapt was more 
inferior. Interestingly, the response from each approach 
was less impressive for the first environment change. 
However, improvements were evident in subsequent 
environment changes. In terms strategies to respond to 
environment changes, three conclusions can be asserted. 
Firstly, repairing previous good solutions, and then using 
them to influences future pheromone deposits – i.e. the P-
ACO approach - is verified to be effective. Secondly, 
results for GreedyAnts showed that it is viable to use 
groups of ants with different behavior to collectively solve 
a common problem. Thirdly, simply adjusting the major 
ACO parameter values is insufficient for the algorithm to 
respond to environment changes.  
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