
Ant Colony Optimization Approaches for the Dynamic Load-Balanced Clustering
Problem in Ad Hoc Networks

Chin K. Ho, Member, IEEE, & Hong T. Ewe, Sr. Member, IEEE
Faculty of Information Technology

Multimedia University,
Persiaran Multimedia, 63100 Cyberjaya, Malaysia.

ckho@mmu.edu.my, htewe@mmu.edu.my

Abstract - This paper presents three ant colony optimization
(ACO) approaches for a difficult graph theoretic problem
formulated from the task of computing load-balanced
clusters in ad hoc networks. These three approaches contain
novel strategies for adapting the search process to the new
problem structure whenever an environment change occurs.
An environment change occurs when nodes in the network
move. Dynamic changes in problem structure pose a great
challenge for ACO algorithms because the pheromone
information is rendered inaccurate and inconsistent. Hence,
all three strategies to enable ACO to work in a dynamic
setting have a common objective, that is, to adapt the
pheromone information to closely reflect the new problem
structure. The first approach is the population-based ACO
algorithm (P-ACO) that incorporates a novel solution repair
procedure. The second approach, which we call PAdapt,
works by adapting three major algorithm parameters
following an innovative strategy. The third approach, which
we term GreedyAnts, uses a greedy solution construction
strategy to bias the pheromone information towards the new
problem structure. Empirical results show that GreedyAnts is
very competitive with P-ACO, while PAdapt is less
impressive. The GreedyAnts approach is advantageous over
P-ACO because it does not require a solution repair heuristic
that incurs additional processing.

Keywords - Ant colony optimization, search and
optimization, dominating set problem.

I. INTRODUCTION

The ant colony optimization (ACO) metaheuristic [1] is a
stochastic search and optimization technique that has been
successfully used to address a wide array of combinatorial
optimization problems. Some examples include the
traveling salesman problem [2], quadratic assignment
problem [3], job-shop scheduling [4], vehicle routing [5],
sequential ordering [6], graph coloring [7], and shortest
common super-sequence [8]. The majority of results
reported in the literature were derived from the
applications of ACO on static problems. A static problem
is one in which the structural definition of the problem and
the problem related data remain unchanged while the
problem is being solved.

ACO can be regarded as a collaborative, multi-agent
approach to problem solving. It maintains a colony (i.e.
population) of artificial ants. ACO is iterative. In every
iteration, each ant constructs a complete solution to the
problem. The entire search experience of the colony is
encoded in a global data structure commonly known as the
pheromone trails. The pheromone associated to each
solution component indicates how it has contributed in the
construction of good solutions in the past. Each ant
depends on two key factors in selecting a solution
component. The first is of course the pheromone
associated to that component. The second factor is a
heuristic (normally greedy) measure giving the desirability
of that component.

Recently, there has been increasing interests on
designing ACO algorithms for dynamic problems. These
are problems whose structure changes while the problem is
being solved. This change in problem structure is termed
as an ‘environment change’. This is challenging to an
ACO algorithm because an environment change would
render certain portions of the pheromone trails inaccurate
with respect to the new problem structure. In recognition
of this, many research efforts [9, 10, 11, 12] for designing
ACO algorithms for dynamic environments has focused on
devising strategies for adapting the pheromone information
so that ants are not misled by the outdated search
experience.

The aim of this paper is to describe three ACO
approaches, each of which incorporates a specific strategy
for responding to environment changes. These three
approaches are assessed on a variant of the dominating set
problem [13], which is formulated from the load-balanced
clustering problem in ad hoc networks.

II. PROBLEM DESCRIPTION AND
FORMULATION

An ad hoc network [14] is modeled as an undirected graph
G = (V, E), where V is the set of vertices representing the
nodes of the network and E is the set of edges. Let

�
ij

�

be the Euclidean distance between nodes i and j. An edge
eij ∈ E exists between i and j if they can receive each

76

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

other’s transmission, i.e. if
�

ij
�

 � R, where R is the
transmission range of the nodes. Nodes are organized into
clusters to enhance manageability. Each cluster is
coordinated by a special node called the cluster head
(abbreviated as CH). Cluster members are most commonly
selected based on their distance from the candidate CH.

The problem of load-balancing the clusters arises due
to the limitation of resources available to CHs. CHs can
efficiently support up to a certain number of nodes. It is
desirable to have each CH support about the same number
of nodes. A measure of the load of a CH is the number of
ordinary nodes it has in its cluster [17, 18]. In actual ad
hoc networks, the work load of a CH is directly
proportional to its cluster size. The task of constructing
load-balanced clusters can be formulated as follows: find a
set of dominating nodes V’ (the CHs) such that the nodes
in V – V’ can be distributed as evenly as possible among
the members of V’ subject to the constraint that the number
of dominated nodes per CH is at most max_load. The
dominated node is said to be covered by its dominating
node. The quality of the clustering can be measured by the
variance of the load of the CHs, and is given by the
following:

n

x
LBF

c

i
i� −

=
)(2µ

(1)

where nc is the number of clusters, xi is the load of CH i,
and µ = (N – nc)/nc. A smaller LBF signifies better load
distribution.

III. THE ACO APPROACHES FOR DYNAMIC
ENVIRONMENTS – RELATED WORK

Early work in this area saw researchers propose techniques
that directly modify the pheromone information to reflect
the new problem structure. One of such effort was reported
in [11]. It proposed three pheromone modification methods
for addressing the dynamic traveling salesman problem
(TSP). The first two, known as the η-strategy and τ-
strategy perform local pheromone modifications. Both
strategies rely on the knowledge of where the change in
the problem structure occurred. The third strategy, known
as the Restart-strategy performs global pheromone
modification by reinitializing all pheromone values by the
same computed quantity. The global strategy produced
very good results. However, the authors commented that
the success of the global strategy may be due to the very
minute environment change – only one city was inserted or
deleted.

The population-based ACO (P-ACO) [9] which was
originally proposed for static problems has been

demonstrated to be promising in addressing dynamic
problems. It maintains a population of solutions that
determines the updates to the pheromone intensities.
Initially, the population is empty. The best solution from
each cycle is added into the population until the maximum
population size is reached. After this has occurred, a
strategy is used to replace a population member with a new
solution from the latest cycle. When the population
member is removed, the pheromone contributed by it is
also subtracted from the pheromone matrix. This gives P-
ACO the ability to undo previous pheromone updates. In a
subsequent work [10], the authors showed how the original
P-ACO can be adapted to dynamic problems. Whenever a
change in the problem structure occurs, each solution in
the population is repaired using a problem-specific
heuristic. Changes to the population are then effected back
to the pheromone matrix.

A solution deconstruction strategy [12] has also been
proposed for making ACO adapt to environment changes
in the context of constraint satisfaction problems. When a
change in environment occurs, the deconstruction process
is performed on the best solution from the current colony.
This process is iterative. In each iteration, a solution
component from the best solution is selected based on the
nature of the event that occurred, and this component is
removed from the solution. If this action results in worse
violations of constraints, the solution component will be
reinserted, and another different component will be tried.
This process continues until zero constraint violation is
achieved. In the worst case, all solution components
making up the best solution will be processed.

IV. THE PROPOSED APPROACHES FOR
HANDLING DYNAMIC ENVIRONEMTS

An ACO metaheuristic for the static version of this
problem has been recently published in [15]. For the sake
of completeness, a brief description of this metaheuristic is
presented here.

Each ant begins with an empty solution, and
incrementally constructs a complete solution by selecting
CHs. After the selection of a CH, cluster members will be
assigned to the CH. This process continues until every
node is either a CH or already has been assigned to a CH.
The selections of CHs are probabilistic, with the selection
probability of each node determined by the product of its
pheromone value and the visibility measure. The visibility
measure is a function formulated by first assigning a
weight to each node. The weight of a node tells the number
of uncovered nodes it can cover if it is selected as a CH.
The visibility measure will give a higher preference value
to nodes whose weight is closer to the median of 1, 2, …
max_load. The objective function is the LBF measure
given in eq. (1).

77

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

The dynamic version of the problem arises as a result
of node mobility. The composition of clusters can change
under two scenarios. Firstly, a cluster member may move
beyond the transmission range of its current CH. Secondly,
a CH may move, resulting in at least one of its current
cluster members to be out of its transmission range.

In the ensuing three subsections, we explain how three
strategies for handling dynamic environments are
incorporated into this ACO metaheuristic.

A. Approach 1: Population Based ACO (P-ACO)

Our contribution here is the design of the repair heuristic
for the intended problem. This repair heuristic takes the
following form:

For each node v that leaves its current cluster Ci, do

i. Find a neighbor cluster Cj with the smallest
load(Cj), i.e. the smallest number of cluster
members.

ii. If load(Cj) < max_load, then assign v to Cj.
Stop and process the next node that moved.
Otherwise, go to iii.

iii. If load(Cj) ≥ max_load, break Cj and form
two new clusters Cs and Ct. This is done by
first selecting a new CH each for Cs and Ct.
Assign node v and the remaining nodes of Cj
to Cs and Ct such that the cardinality of the
new clusters are as close as possible.

For the P-ACO implementation, we use the age-based

population update policy. This policy replaces the oldest
solution in the population, and has been proven to be
effective in [10].

B. Approach 2: PAdapt – Responding by Parameter

Adaptation

The aim of this approach is to modify the outdated
pheromone information by firstly reducing the influence of
pheromone (which by convention is controlled via a
parameter called α� in solution construction, and at the
same time increasing the influence of the visibility
measure (controlled by parameter β ��. Secondly, the PAdapt
approach also introduces a higher pheromone evaporation
rate to allow ants to ‘forget’ knowledge from the outdated
search experience. An environment change will trigger p%
of the ants to construct solutions using the new parameter
values (given in Table 1, column titled ‘Adapted values’).
For this work, p is set to 50%. This modified behavior will
persists for a predetermined number of cycles (we use
parameter max_cycle to refer to this value), which we set
to five after conducting parameter tuning. This implies that
there exist two groups of ants within the five cycles

following an environment change. The iteration-best ant
from each group is allowed to update the pheromone.

Parameter Normal
values

Adapted
values

α 1 0.1
β 3 5
ρ 0.1 0.4

C. Approach 3: GreedyAnts – A Greedy Approach

The key idea behind the GreedyAnts is to have p% (p is set
to 50% as in PAdapt) of the ants disregard the pheromone
information, and deterministically select the node with the
highest visibility value as the next CH. We call this group
of ants greedy ants. The remaining 50% of the ants will
behave in the usual way. Similar to PAdapt, both the
iteration-best greedy and ordinary ant will update the
pheromone information. The greedy behavior will persist
for five iterations (max_cycle = 5) following an
environment change, after which the greedy ants will go
back to their normal behavior.

V. COMPUTATIONAL SETUP

The performance of the proposed ACO approaches is
evaluated on 12 problem instances representing four ad
hoc networks. Each network is generated by randomly
placing N nodes in an area of size M x M meters. From
each network, four problem instances are obtained by
varying the transmission range. The characteristics of the
problem instances are given in Table 2. Each approach is
run 50 times for each problem instance. Altogether, there
are 600 runs for each approach. Each run takes a maximum
of 200 cycles. Under normal operations, the three major
parameters are given in Table 1 (see the ‘Normal Values’
column). All approaches uses a colony size of 30 ants. For
P-ACO, the size of the solution population is set to 7 based
on our parameter tuning effort.

For each run, node mobility takes place at the 50th,
100th and 150th cycle. This gives a window of 50 cycles for
recovery. In each mobility event (i.e. environment change),
5% out of the total number of nodes will move. The
severity of environment change here is larger than those
employed in previous efforts [9, 10, 11, 12]. We label the
51st to 100th cycle as Interval1, the 101th to 150th cycle as
Interval2, and the 151st to 200th cycle as Interval3. Each
approach will attempt to recover in these intervals.

Table 1. Adapted values for three main
parameters: α, β and ρ.

78

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Network

Size
Area (m x m) Transmission

Range (m)
400 nodes 3000 x 3000 210, 220, 230
350 nodes 2500 x 2500 200, 210, 220
300 nodes 2000 x 2000 180, 190, 200
250 nodes 1500 x 1500 130, 140, 150

A. Performance Measures

The following measures are used to gauge the performance
of each approach:

• Reactivity [16]. This is defined by eq. (2). It measures

the number of cycles required to recover from any
solution quality degradation. m is the cycle in which an
environment change occurred, ε� is a performance
threshold parameter set to 0.01, m′ is the earliest cycle
after an environment change in which the inequality in
eq. (2) can be satisfied. If this happens, we say that
recovery has been achieved. If there is any failure to
recover, the reactivity is set to 50, i.e. the recovery
window size.

��

�
�
�

��

�
�
�

+≤Ν∈−=
−−

)1(
min

,'|')(
]1,5[

' ε
f

f
mmmmReactivity

mm

m (2)

where N is the set of natural numbers, fm’ is the cost of the
best solution at cycle m’, and min f[m-5, m-1] is the best
solution cost found in the five cycles preceding the
environment change.

• LBF at Recovery. This is the best solution for cycle m′.

Should an approach fail to recover within the permitted
window, the value for this measure will be set to the
average iteration-best LBF across the recovery window.

• Best LBF. This gives the best solution within each

interval. This measure is useful in two ways. Firstly, it
can be compared against that of LBF at Recovery to
determine if solution quality improves beyond the point
of recovery. Secondly, it gives an indication of the best
performance if an approach failed to recover in an
interval.

In order to compare results among different problem
instances, a reference approach called Control is used.
Control is simply the original ACO approach that contains
no strategy to respond to environment changes. The
performance of an approach X with respect to a

performance measure P, denoted P(X), is computed as the
gain over Control:

�
�
�

�
�
�

�

−−

≤−

=
otherwise

XP
ControlPXP

ControlPXP
ControlP

XPControlP

ControlXGainP

 100 x
)(

)()(

)()(if 100 x
)(

)()(

),(

(3)

Smaller values for each performance measure indicate
better performance. Eq. (3) computes, as percentage, the
ratio of the measured performance difference to the larger
of the two values. A positive gain means X performs better
than Control.

B. Parameter Tuning

The following parameters are tuned: α, β, ρ, p, and
max_cycle. The problem instance with the smallest
transmission range for each of the four network sizes is
selected for use in tuning. Tuning is performed with
respect to two performance measures: Reactivity and LBF
at Recovery. Each approach is run 20 times on a tuning
instance, and the two performance measures are averaged
over these 20 runs. For each tuning instance, each
combination of parameter values is ranked according to
Reactivity (Rank A) and LBF at Recovery (Rank B). The
best rank is one. The best parameter setting for each
strategy is determined by computing the overall rank,
Rank(ci), as follows:

size
kcRankBkcRankAcRank

size

k
i

size

k
ii

1),(),()(
11

⋅
	

�
�

� += �
=

�
=

(4)

where size is the number of tuning instances, ci is the ith
combination of parameter values. We select the ci that
gives the smallest value for Eq. 4.

VI. RESULTS AND DISCUSSION

The results for each performance measure are presented
for the three intervals using boxplots. Fig. 1, Fig. 2 and
Fig. 3 shows the boxplots for the Reactivity, LBF at
Recovery and Best LBF measures respectively. The plot for
each approach is constructed using the gains computed in
the 600 runs.

We first analyze the performance of the proposed
approaches with respect to the Recovery measure. The
corresponding boxplot is Fig. 1. During Interval1, both P-
ACO and GreedyAnts performed slightly better than
Control, with medians close to 10%. During Interval2,
there was significant increase in the ability of both P-ACO
and GreedyAnts to recover. In this interval, GreedyAnts

Table 2. Characteristics of the problem instances. There are
four problem instances for each network created from
different transmission ranges.

79

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

emerged the better approach with median of 50%
compared to 40% for P-ACO. Even though the

performance of P-ACO and GreedyAnts decreased in
Interval3, the medians were maintained at above 20%. The

-100 -80 -60 -40 -20 0 20 40 60 80 100

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

1

-100 -80 -60 -40 -20 0 20 40 60 80 100

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

2

-100 -80 -60 -40 -20 0 20 40 60 80 100

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

3

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

1

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

2

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

3

Fig. 1. Gains for P-ACO, PAdapt and GreedyAnts over Control for performance measure
Reactivity.

Fig. 2. Gains for P-ACO, PAdapt and GreedyAnts over Control for performance measure LBF at
Recovery.

80

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

1

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

2

-80 -60 -40 -20 0 20 40 60 80

GreedyAnts

PAdapt

P-ACO

Gain over Control (%)

In
te

rv
al

3

PAdapt approach, however, did not manage to outperform
Control as its medians are all zero for the three intervals.

For the second performance measure, i.e. LBF at
Recovery, P-ACO, PAdapt and GreedyAnts were superior
to Control in all three intervals. Fig. 2 shows that the
performance for three approaches has consistently
increased from Interval to Interval3. The better LBF
produced at the point of recovery can be attributed to the
pheromone adaptation strategies incorporated in the three
approaches.

For the Best LBF measure (see Fig. 3), a similar
performance trend can be observed. There are gradual
improvements for all three approaches from Interval1 to
Interval3. This result is important because it shows that the
solution quality attained at recovery is maintained even
after the recovery strategies is no longer in force after the
first five cycles following the environment change. The
best LBF recorded in each interval has, on average, made
improvements over the LBF recorded at recovery. The
average improvements were 11.97%, 12.22% and 11.96%
for P-ACO, PAdapt and GreedyAnts respectively.

The empirical results did not indicate if any approach is
generally more preferable with respect to network size.
However, a frequently occurring trend is that GreedyAnts
tend to show better reactivity for Interval2 and Interval3.
This observation provides a hint that GreedyAnts may be
the better approach to handle higher mobility rate.

The parameter tuning process revealed that p = 50% is
the best setting for both PAdapt and GreedyAnts. We have

also investigated the effects of selecting a higher (p =
70%) or lower (p = 30%) value. We measure, across all
problem instances, the improvement rate as the difference
between the number of runs that gave better and worse
results for the Reactivity and LBF at Recovery measures.
This difference is expressed as percentage over the total
number of runs, and is formulated in Eq. 5 with respect to
a performance measure Y.

 100×−=
−+

R

RR
tImprovemen totalY

 (5)

where R+ is the number of runs that saw improvement, R-
is the number of runs that saw degradation, and Rtotal is the
total number of runs. Table 3 shows the results of this
study. For PAdapt, reducing the value of p to 30%
produced degradation for both performance measures.
Increasing p to 70% showed a small improvement for the
Reactivity measure, but a large 11% degradation for the
LBF at Recovery measure. Now, for the GreedyAnts
approach, changing the value of p to both 30% or 70%
produced inferior results. A smaller value for p causes
degradation of a larger magnitude. This trend is similar to
that observed for PAdapt with reduced p value. Using a
smaller value for p means that a majority of the ants are
oblivious to the environment changes, therefore still
placing the same emphasis on the outdated pheromone.

Fig. 3. Gains for P-ACO, PAdapt and GreedyAnts over Control for performance measure Best
LBF.

81

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

PAdapt GreedyAnts

p Reactivity
(%)

LBF at
Recovery

(%)

Reactivity
(%)

LBF at
Recovery

(%)
30% -12 -7 -9 -6
70% + 4 -11 -4 -3

Overall, the parameter adaptation strategy was the least
effective. Both P-ACO and GreedyAnts were consistently
superior to PAdapt for all three performance measures.
Even though P-ACO is competitive with GreedyAnts, the
GreedyAnts approach has a distinct advantage. It depends
only on the updated visibility measure for adapting the
pheromone information. This introduces no additional
processing requirements. On the other hand, for P-ACO,
we first need to design a good heuristic to perform solution
repair. The application of the repair heuristic uses
additional processing time, which is directly proportional
to the population size and severity of the environment
change.

VII. CONCLUSIONS

We have presented three ACO approaches for dynamic
environments. PAdapt and GreedyAnts are original
contributions originating from our research work. P-ACO
is a framework that has been proposed earlier, and we have
developed a repair heuristic for the load-balanced
clustering problem. All three approaches are inspired by
one common objective, that is, to adapt the partially
outdated pheromone information so that it is consistent
with the new problem structure.

Empirical results reveal that GreedyAnts and P-ACO
yielded similar performance, while PAdapt was more
inferior. Interestingly, the response from each approach
was less impressive for the first environment change.
However, improvements were evident in subsequent
environment changes. In terms strategies to respond to
environment changes, three conclusions can be asserted.
Firstly, repairing previous good solutions, and then using
them to influences future pheromone deposits – i.e. the P-
ACO approach - is verified to be effective. Secondly,
results for GreedyAnts showed that it is viable to use
groups of ants with different behavior to collectively solve
a common problem. Thirdly, simply adjusting the major
ACO parameter values is insufficient for the algorithm to
respond to environment changes.

REFERENCES

[1] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive Feedback as a

Search Strategy,” Technical Report 91-016, Politecnico di Milano,
Italy (1991).

[2] M. Dorigo, and L.M. Gambardella, “Ant Colony System:

Optimization by a colony of cooperating agents,” IEEE Trans.
Systems, Man, and Cybernetics – Part B, Vol. 26, No. 1, 29-41,
1996.

[3] V. Maniezzo, and A. Colorni, “The ant system applied to the

quadratic assignment problem,” IEEE Trans. Knowledge and Data
Engineering, Vol. 11, No. 5, 769-778, 1999.

[4] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, “Ant system

for job-shop scheduling,” Belgian Journal of Operations Research,
Statistics and Computer Science (JORBEL), Vol. 34, 39-53, 1994.

[5] L.M. Gambardella, E. Taillard, and G. Agazzi, “Ant colonies for

vehicle routing problems,” In Corne, D., Dorigo, M. and Glover, F.,
editors, New Ideas in Optimization, McGraw-Hill, 1999.

[6] L.M. Gambardella, and M. Dorigo, “HAS-SOP: An hybrid ant

system for the sequential ordering problem,” Technical Report 11-
97, IDSIA, Lugano, CH, 1997.

[7] D. Costa, and A,.Hertz, “Ants can color graphs,” Journal of the

Operations Research Society, Vol. 48, 295-305, 1997.

[8] R. Michel, and M. Middendorf, “An island model based ant system

with lookahead for the shortest supersequence problem,” In: Eiben,
A.E., Back, T., Schoenauer, M., and Schwefel, H.P. (eds.):
Proceedings of PPSN-V, Fifth International Conference on Parallel
Problem Solving from Nature, 692-701, 1998.

[9] M. Guntsch, and M. Middendorf, “A Population Based Approach

for ACO,” Proceedings of EvoWorkshops, Lecture Notes in
Computer Science, Vol. 2279. Springer-Verlag, Berlin Heidelberg
New York, 72-81, 2002.

[10] M. Guntsch, and M. Middendorf, “Applying Population Based ACO

to Dynamic Optimization Problems,” In: Dorigo, M., Di Caro, G.,
Sampels, M. (eds.): Proceedings of Ant Algorithms, Third
International Workshop, ANTS 2002, Lecture Notes in Computer
Science, Vol. 2463. Springer-Verlag, Berlin Heidelberg New York,
111-122, 2002.

[11] M. Guntsch, and M. Middendorf, “Pheromone Modification

Strategies for Ant Algorithms Applied to Dynamic TSP,” In: Boers,
E.J.W. et al. (eds.): Proceedings of EvoWorkshops, Lecture Notes in
Computer Science, Vol. 2037. Springer-Verlag, Berlin Heidelberg
New York, 213-222, 2001.

[12] M. Randall, “Generalizing Ant Colony Optimization for Dynamic

Optimization Problems,” Technical Report 05-01, Faculty of
Information Technology, Bond University, Australia, 2005.

[13] G. Chartrand, and L. Lesniak, Graphs and Digraphs. Chapman &

Hall/CRC, Boca Raton, 2005.

[14] C.K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and

Systems. Prentice Hall, 2001.

Table 3. Net improvements for p = 30% and 70%. Positive entries mean
there are more runs that showed improvement than degradation.

82

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

[15] C.K. Ho, and H.T. Ewe, “A Hybrid Ant Colony Optimization
Approach for Creating Load-Balanced Clusters,” In Proceedings of
the IEEE Congress on Evolutionary Computation, Edinburgh,
Scotland, 2010-2017, 2005.

[16] K. Weicker, “Performance Measures for Dynamic Environments,”

Lecture Notes in Computer Science, Vol. 2439. Springer-Verlag,
Berlin Heidelberg, 64-73, 2002.

[17] M. Charterjee, S.K. Das, and D. Turgut, “WCA: A Weighted

Clustering Algorithm for Mobile Ad Hoc Networks,” Cluster
Computing, Vol 5, 193-204, 2002.

[18] D. Turgut, S.K. Das, R. Elmasri, and B. Turgut, “Optimizing

Clustering Algorithm in Mobile Ad Hoc Networks using Genetic
Algorithmic Approach,” In Proceedings of IEEE Globecomm, 62-
66, 2002.

83

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

