
(a) (b)

(d) (f)

(c)

(e)

Figure 2: Examples for some classes of graceful graphs and their
graceful labelings: (a) a cycle C7, (b) a tree T10, (c) a wheel W4, (d) a

helm H5, (e) a crown R5 and (f) a windmill K3
(4)

Figure 1: Examples of graceful graphs

A Metaheuristic Approach to the Graceful Labeling Problem of Graphs

Houra Mahmoudzadeh1 , Kourosh Eshghi 2
1,2 Industrial Engineering Department, Sharif University of Technology, Tehran, Iran.

1 h_mahmoudzadeh@alum.sharif.edu, 2 eshghi@sharif.edu

 Abstract: In this paper, an algorithm based on Ant Colony
Optimization metaheuristic is proposed for finding solutions to
the well-known graceful labeling problem of graphs. Despite
the large number of papers published on the theory of this
problem, there are few particular techniques introduced by
researchers for gracefully labeling graphs. The proposed
algorithm is applied to many classes of graphs, and the results
obtained have proven satisfactory when compared to those of
the existing methods in the literature.

Keywords: Graph Labeling, Graceful Graphs, Metaheuristic,
Ant Colony Optimization.

1. GRACEFUL LABELING PROBLEM

Let G = (V, E) be an undirected graph without loops or
double connections between vertices. A graceful labeling of
G, with n vertices and m edges, is a one-to-one mapping f
of the vertex set V into the set {0, 1, 2, ... , m}, so that if we
assign an edge label | f (x) - f (y) | to any edge (x,y), each
edge receives a distinct positive integer label. A graph that
can be gracefully labeled is called a graceful graph [11].
Examples of graceful graphs are shown in Figure 1.

Interest in graceful labeling began with a conjecture by
Kötzig-Ringel and a paper by Rosa in 1966 [11]. Many
variations of graph labeling have been introduced in recent
years by researchers. Various classes of graphs have been
proven mathematically to be graceful or non-graceful. A
detailed survey of graph labeling problems and related
results is presented in a survey by Gallian [8]. There is an
unproved conjecture that all trees are graceful. Although, it
is shown that trees with up to 27 vertices are graceful. All
cycles Cn are graceful if and only if n 0 or 3 (mod 4). All
wheels Wn, Helms Hn, and Crowns Rn are graceful. The
complete graphs Kn are graceful if and only if n 4. The
necessary condition for a windmill Kn

(m) (n 3) to be
graceful is that n 5; a windmill Kn

(m) consists of m
complete graphs Kn with one common vertex [8]. An
example for each class of the graphs mentioned above and
their graceful labelings are shown in Figure 2.

The graceful labeling problem is to find out whether a
given graph is graceful or not, and if it is, how to label the
vertices. The process of gracefully labeling a graph is a very
tedious and difficult task for many classes of graphs [7].

In this paper, the graceful labeling problem is
encountered as an assignment-type problem with the aim of
finding a feasible solution, and a metaheuristic approach
based on ACO for gracefully labeling graphs is presented.

Since today many methods have been applied for proving
gracefulness of different classes of graphs, but most of them
don’t apply a general method for finding the graceful
labeling of the graphs to be studied. There are only two
mathematical programming methods in the literature for
finding graceful labeling of graphs. The first is a constraint
programming approach [10], and the second is based on
integer programming [7]. It is shown that the mathematical
programming method outperforms the constraint
programming method for graceful labeling [7].

The rest of this paper is organized as follows: In section
2, Ant Colony Optimization is briefly introduced. In section
3 a problem representation of graceful labeling problem in
the framework of ACO is defined and the proposed
metaheuristic algorithm is introduced. Section 4 shows the
obtained results and compares them with those of the
existing methods in the literature.

2. ANT COLONY OPTIMIZATION

Many problems of practical importance can be modeled
as combinatorial optimization problems. It is known that the
majority of these problems cannot be solved by a
polynomial time algorithm. For this reason, heuristics have

84

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

been invented to find solutions for these problems in a
reasonable amount of time. Some of these heuristic
algorithms are not restricted to specific problem types, but
may be applied, with suitable modifications, to a broad class
of optimization problems. Often, these “general-purpose”
algorithms are called metaheuristics [5].

Metaheuristics are usually inspired by a natural process
such as genetic algorithms or simulated annealing. Recently
one of the most successful metaheuristics is Ant Colony
Optimization (ACO), which was first introduced by Marco
Dorigo [3]. Many ACO based algorithms have been
proposed to solve different types of combinatorial
optimization problems such as symmetric and asymmetric
traveling salesman problems [3], the graph coloring problem
[1], the knight’s tour problem in graphs [9] and the adaptive
routing in packet-switched communications networks [2].

An important insight of early research on ants’ behavior
was that in many ant species the visual perceptive faculty is
very rudimentarily developed (there are even ant species
which are completely blind) and that most communication
among individuals, or between individuals and their
environment, is based on the use of chemicals, called
pheromones, produced by the ants. Particularly important
for the social life of some ant species is the trail pheromone,
a pheromone that individuals deposit while walking in
search for food. While walking, ants deposit pheromone on
the ground, and follow, probabilistically, pheromones
previously deposited by other ants. By sensing pheromone
trails, ants can follow the path to food discovered by other
ants. This collective pheromone-laying / pheromone-
following behavior whereby an ant is influenced by a
chemical trail left by other ants was the inspiring source of
Ant Colony Optimization [5].

In ACO, artificial ants make walks on a graph, and lay
artificial pheromone trails on the vertices and/or edges of
the graph. This artificial pheromone is accumulated at run-
time through a learning mechanism that gives reward to
good problem solutions. Artificial ants start from random
states: next, each ant chooses probabilistically the new state
to visit using a probabilistic function mainly based on the
pheromone intensity. At the end of each iteration, the
pheromone on the best solution is increased according to a
learning rule. The rationale is that in this way the structure
of ''preferred sequences'' emerges in the pheromone trail and
future ants will use this information to generate new and
better solutions [4].
Ants can be characterized as stochastic construction
procedures which build solutions moving on the
construction graph G = (C, L). The construction graph, G ,
is not always the original problem graph, specially in
assignment-type problems like graph coloring. Ants do not
move arbitrarily on G , but rather follow a construction
policy which is a function of the problem constraints .

In general, artificial ants try to build feasible solutions,
but, if necessary, they can generate infeasible solutions. The
constraints that must be satisfied necessarily are called hard
constraints, and others that may be ignored when not

possible to be satisfied are called soft constraints [5].
Components ci C and connections lij L can have
associated a pheromone trail (i if associated to
components, ij if associated to connections) encoding a
long-term memory about the whole ant search process that
is updated by the ants themselves, and a heuristic value (i
and ij , respectively) representing a priori information about
the problem instance definition or run-time information
provided by a source different from the ants. In many cases
heuristic information are used to make the ants satisfy the
problem constraints. These values are used by the ants’
heuristic rule to make probabilistic decisions on how to
move on the graph [5].

After the ants complete their solutions at each iteration, a
procedure called pheromone evaporation occurs. This
procedure is designed to avoid a too rapid convergence of
the algorithm towards a sub-optimal region. It implements a
useful form of forgetting, favoring the exploration of new
areas of the search space [4].

3. PROPOSED ALGORITHM

In this section first a representation for the graceful labeling
problem is defined and next an ACO-algorithm for
gracefully labeling graphs is proposed. The graceful
labeling problem can be represented in the framework of
ACO as it will appear in this section. The main features to
be defined are the construction graph G , pheromone trails
and their update rules, heuristic information and the
probabilistic decision rule. Remember that unlike most
combinatorial optimization problems, the goal in the
graceful labeling problem is just to find a feasible solution
among all possibilities.

3.1. Construction Graph

The task in assignment-type problems (for example graph
coloring problem) is to assign a set of items to a given
number of objects or resources subject to some constraints.
A solution which satisfies the constraints is said to be a
feasible solution [1].
In this paper, graceful labeling problem is seen as an
assignment-type problem in which a set of numbers are
assigned to the vertices of a graph. In the framework of
ACO, the construction graph is defined to be a complete
bipartite graph, G = (C, L), where C, the set of components,
consists of two parts: the first part is V, the set of vertices of
graph G, and the second is the set {0, 1, … , m}. The best
solution is the one with the least number of repeated edge
labels. This number shows the solution quality in each
iteration. Depending on the solution quality, at each
iteration, ants update pheromone trails on the connections L
which fully connect the two parts of C. The pheromone
update rule will be explained in section 3.2. The amount of
pheromone on each connection (i, j), where i V and j {0,
1, …, m}, shows the desirability of assigning label j to vertex

85

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

i. The connections which are part of a good solution
previously made, receive more and more pheromone, and
pheromones on bad solution connections evaporate. When
iterations continue, the feasible solution will have the most

desirability to be chosen by ants. As an example, the
construction graph for the complete graph K3 and an
example of pheromone accumulation on connections
corresponding to a feasible solution are shown in Figure 3.

3.2. Pheromones

Different types of pheromones, their update rules, the
corresponding decision probabilities, and the pheromone
evaporation procedure are defined in this section.

3.2.1. Different types of pheromones

Three types of artificial pheromones are defined and used
by foraging ants to make probabilistic decisions for making
solutions. Each pheromone j)(v,k shows the desirability
of assigning label j to vertex i. The difference among them
is the definition of a desirable assignment and the
corresponding update rule.

Pheromone type 1: The first pheromone (j)(v,1) shows
the desirability of assigning label j to vertex i, considering
the number of repeated edge labels produced in the
neighborhood of vertex v by making such an assignment in
past iterations. After a solution is completed, the artificial
ant checks every vertex to see whether there are repeated
edge labels produced in the edges adjacent to it. Whenever a
repeated edge label is recognized, a part of pheromone 1 for
the corresponding assignment is evaporated, otherwise some
additional pheromone is deposited on the connection related
to the assignment on the construction graph G .

 Pheromone type 2: By means of pheromone 2, the
assignments with those edge labels that are less produced in
total iterations, are more desirable. While deciding which
label to assign to vertex v, the assignment in which an edge
label in the neighborhood of vertex v is not yet produced,
will be made with more probability by the artificial ant.
Thus, the second pheromone (j)(v,2) is updated during
each step of the solution construction.

Pheromone type 3: The third type of pheromones
(j)(v,3) checks the role of assigning label j to vertex v in
the total infeasibility of solutions in past iterations. After
completing a solution, the artificial ant checks the partial
role of the edge labels adjacent to every vertex in the total
infeasibility; if all the edge labels adjacent to a vertex are
not repeated in the whole graph, the amount of pheromone 3
for the corresponding assignment is increased, otherwise if
labels in the neighborhood of vertex v are repeated
somewhere in the graph, a part of pheromones on the edge
connecting label j to vertex v on the construction graph is
evaporated.

3.2.2. Pheromone Probability

The probability of assigning label j to vertex v according to
each type of pheromones is calculated by equation (3.1).

Figure 3: the construction graph for the complete graph K3, and an example of pheromone accumulation on
connections corresponding to a feasible solution.

3K

A

B C

A

B

C

0

1

2

3

A

B

C

0

1

2

3

…
A

B C

0

31

A

B

C

0

1

2

3

Iteration 2:

Iteration k:

Graceful labeling

Set of vertices Set of vertex labels

Iteration 1:

86

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

(3.1)

All these pheromone probabilities affect the final
probability of assigning label j to vertex v at each step of
labeling.

3.2.3. Pheromone Evaporation

We saw in the previous section that whenever a solution is
desirable, the amount of pheromone on the corresponding
edges on the construction graph increases, and otherwise the
amount of pheromones decreases (i.e. we have both positive
and negative pheromones in each step of solution
construction). Therefore in the proposed algorithm the
definition of evaporation should be different, because it
should avoid accumulation of both positive and negative
pheromones. Pheromone evaporation occurs after each
iteration. The evaporation procedure doesn’t always
decrease the amount of pheromones; instead, whenever the
amount of pheromone on a connection is more than 1 (the
initial value of pheromone on all connections is set to be 1),
evaporation occurs by a rate of , which means the amount
of pheromone is decreased by being multiplied to (1-); on
the other hand, if the amount of pheromone on a connection
is less than 1, it’s value will be divided by (1-) and so it
will be increased. As we see, the evaporation procedure is
modified to a avoid too rapid convergence to good but still
infeasible solutions and also to implement a useful form of
forgetting to avoid the complete elimination of the search
areas which have not resulted in good solutions in past
iterations.

3.3. Heuristic Information

Four types of heuristic information are defined to be used by
artificial ants in their probabilistic decision making. These
information are defined according to the special
characteristics of the graceful labeling problem, and are
calculated at each step of the algorithm. Heuristics help ants
to avoid making infeasible assignments in the early steps of
the algorithm. The two first heuristic information are used to
satisfy the problem constraints, and the next two help the
ants to make better decisions. First heuristic information
includes a hard constraint which must be satisfied in all
solutions made by ants, but the other three are soft
constraints which may be ignored if they can’t be satisfied
with the hard constraint simultaneously.

Heuristic value type 1: The first heuristic information is
defined to implement a hard constraint. This constraint says
that all vertex labels must be distinct. Heuristic value 1 for
assigning label j to vertex v ()j(v,1) is set to be zero if
label j is already used for another vertex in this iteration.
Otherwise, for all labels that are not yet used in this
iteration, it is set equal to a positive constant value.

Heuristic value type 2: The constraint of edge labels to be
distinct is considered in the second heuristic value. Heuristic
value 2 for assigning label j to vertex v ()j(v,2) is set to be
zero if the edge labels produced by such an assignment are
used before in this iteration. This constraint is a soft
constraint and at each step, if the remaining vertex labels
(according to the hard constraint) can’t satisfy this
constraint, this heuristic value is ignored and ants can build
infeasible solutions.

Heuristic value type 3: This heuristic value makes the
ants prefer to produce the edge label ‘m’ if possible in any
step. To explain the necessity of this heuristic value let us
consider a graph E)(V,G with m edges and n vertices.
For G to be graceful, all the edge labels ‘1’, ‘2’, … , ‘m’
must be assigned to the edges of G. Therefore, for a solution
made by artificial ants in the metaheuristic algorithm, all the
labels ‘1’, ‘2’, … , ‘m’ must be produced. The remarkable
point is that the edge label ‘1’ can be produced in m
different ways: by assigning one of the following pairs of
vertex labels to adjacent vertices:

(0, 1), (1, 2), … , (m-1, m)
Similarly, the edge label ‘2’ can be produced in m-1
different ways by assigning one of the following pairs of
vertex labels to adjacent vertices:

(0, 2), (1, 3), … , (m-2, m)
Unlike the edge labels mentioned above, there is only one
way for edge label ‘m’ to be produced; by assigning vertex
labels ‘0’ and ‘m’ to adjacent vertices. Therefore, heuristic
value 3 is defined to help the ants make better solutions by
necessarily assigning labels ‘0’ and ‘m’ to adjacent vertices.
If at a step of solution construction, edge label ‘m’ is not yet
produced and can be produced at this step by a certain
assignment, and by losing this opportunity, the edge label
‘m’ cannot be produced anywhere else in the graph, the ants
prefer the assignment that produces it. Experimental results
in section 4 show how efficient this heuristic value is in
finding the graceful labeling of graphs.

Heuristic value type 4: Similar to heuristic value type 3,
the fourth heuristic value is defined for edge label ‘m-1’ to
be preferred. Edge label ‘m-1’ can be produced by assigning
one of the two pairs (0, m-1) or (1, m) of vertex labels to
adjacent vertices. Heuristic value 4 works exactly like
heuristic value 3 except that it prefers making edge label
‘m-1’. Experimental results show that in many iterations,
the cause of infeasibility was that edge label ‘m-1’ could not
be produced. By adding this heuristic value, the results were
noticeably improved as it can be seen in section 4.

3.4. Probabilistic Decision Rule

The probability distribution function for choosing a label for
a vertex depends on pheromone and heuristic information
values for the corresponding assignment on the construction
graph. Equation (3.2) shows the probability for assigning
label ‘l’ to vertex ‘v’ in any step.

32,1,i
k)(v,

j)(v,
j)(v,pr m

0k
i

i
i

87

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

(3.2)

The weights b1, b2 and b3 are considered for controlling the
effect of each type of pheromones. For different classes of
graphs, different values for these weights prove more
efficiency as it will be shown in section 4.

3.5. Stopping Criteria

The algorithm stops when one of the following criteria are
met:

1. A feasible solution is found. A solution with no
repeated vertex or edge labels is a feasible solution.
If such a solution is found, it will be the output of
the algorithm.

2. The number of iterations reach a maximum limit. If
no feasible solution is found during a certain
number of iterations, the best solution found yet
will be the output of the algorithm, mentioning that
the result shows that no graceful labeling is found
in a certain number of iterations.

3.6. Algorithmic Structure

The main steps of the proposed algorithm are the following:
Step 0. Start
Step 1. Input the adjacency matrix of graph G.
Step 2. Calculate the number of vertices (n) and edges (m)

according to the adjacency matrix.
Step 3. Initialize pheromones and heuristic information

according to the adjacency matrix.
Step 4. Choose next vertex (v) to be labeled.
Step 5. Calculate heuristic values j)(v,k for every label j

to be assigned to vertex v for k = 1, 2, 3, 4 and j =
0, 1, 2, … , m.

Step 6. Calculate pheromone probabilities j)(v,Prt for
every label j to be assigned to vertex v for t = 1, 2,
3 and
j = 0, 1, 2, … , m.

Step 7. Calculate total probability for assigning any label j
to vertex v, according to equation (2).

Step 8. Choose a label probabilistically for vertex v.
Step 9. Save the partial solution found until this step.
Step 10. Check the solution to find out whether it is

complete or not.
a. If all vertices are labeled, go to step 11.
b. Otherwise, if the partial solution isn’t worse

than the best solution ever found, go back to
step 4, else go to step 11.

Step 11. Calculate the degree of infeasibility of the current
solution and update the best solution found until
now.

Step 12. Update pheromones according to the quality of the
current solution.

Step 13. Check the stopping criteria:
a. If any of the stopping criteria are met, go

to step 14.
b. Otherwise, go back to step 3.

Step 14. Output the feasible solution or the best solution
found.

Step 15. End

4. COMPUTATIONAL RESULTS

In this section, first the effects of heuristic information and
each type of pheromones are discussed, and next the results
obtained for different classes of graphs will be presented
and compared with those of the existing methods.

In this section, first the effects of heuristic information and
each type of pheromones are discussed, and next the results
obtained for different classes of graphs will be presented
and compared with those of the existing methods.

4.1. The Effect of Heuristic Values

As mentioned in section 3, the first two heuristic values are
defined for implementing the problem constraints, but the
third and fourth heuristics help the algorithm find solutions
faster. This latter effect is illustrated here by an example.
The algorithm is applied for three random trees with 10
vertices (an example is shown in Figure 4), and the results
for the algorithm with and without heuristics are compared.
As shown in Figure 4, a tree with 10 vertices has 9 edges, so
for a labeling to be graceful, the edges must receive the
labels 1 through 9 distinctively. Without using heuristic
values 3 and 4, in more than 80 percent of iterations the
edge label ‘9’ (which here corresponds to ‘m’ in section 3)
is not used. Similarly, in more than 55 percent of iterations
edge label ‘8’ is not produced. After implementing heuristic
values 3 and 4, both of these percentages decrease to about
40 percent. Although the procedure of calculating heuristic
values 3 and 4 at each step of the algorithm takes running
time, but it remarkably decreases the average number of
iterations before finding the feasible solution. Table 4.1
summarizes these results for 30 times runs of the algorithm.

TABLE 4.1: USEFULNESS OF THE HEURISTIC VALUES 3 & 4
Running time

(seconds)
Number of
iterations

Without heuristic values 3 and 4 1.72 23

With heuristic values 3 and 4 1.03 8

Figure 4: A random tree with 10 vertices

m

0j

4

1k
k

3

1t

b
t

4

1k
k

3

1t

b
t

)l)(v,l)(v,pr(

l)(v,l)(v,pr
l)(v,Pr

t

t

88

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25

iteration number

C8

H12

W10

T10

nu
m

be
r o

f r
ep

ea
te

d
ed

ge
 la

be
ls

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23 25

iteration number

K3(5)

P10

T14

R5

nu
m

be
r o

f r
ep

ea
te

d
ed

ge
 la

be
ls

4.2. The Effect of Pheromones

The effect of each type of pheromones has been studied for
different classes of graphs. We have seen by trial and error
that for certain classes of graphs, a specific setting for
pheromone weights (see section 4.4) gives the best results.
One may obtain better results by modifying the weights for
other special classes of graphs. We have studied three
classes of graphs to check the effect of pheromones. These
classes include cycle-related graphs, trees and combined
complete graphs. The best parameter settings found for each
class of graphs are summarized in Table 4.2.

TABLE 4.2: BEST PARAMETER SETTINGS FOUND FOR EACH
CLASS OF GRAPHS

Graph class Parameter settings
Cycle-related graphs b1=5; b2=10; b3=5
Trees b1=5; b2=5; b3=5
Combined complete graphs b1=2; b2=2; b3=10

These parameter settings have been derived according to
a sensitivity analysis and have proven to be almost best
settings found for the related classes of graphs. It has been
seen during algorithm runs that by increasing any parameter
more than the proposed settings, the algorithm performance
becomes less effective. By increasing the parameters much
more than appropriate settings, the algorithm fails to find
the graceful labeling, because it continues searching within
the initial ‘good’ but still ‘infeasible’ solutions.

As you see in Table 4.2, for cycle-related graphs like
simple cycles, wheels, helms, etc. by partially increasing the
effect of the second pheromone, better results are obtained.
It seems that this effect is because the second pheromone
doesn’t insist on the absolute position of labels, but it rather
provides information for searching the unexplored solution
space. This ability, for cycle graphs which are completely
symmetric and the absolute position of labels is not
important, is very useful. On the other hand, for other
classes like combined complete graphs, there exist some
vertices that always get a certain label in a graceful labeling
(like the common middle vertex). This causes the third
pheromone to be useful more than the others for this class of
graphs. The third pheromone pays extra attention to the
absolute position of each label. However, for the class of
trees, all tree types of pheromone seem to be equally
efficient.

The proposed algorithm tries to decrease the number of
repeated edge labels in the ongoing iterations. If, during an
iteration, a solution made is worse than the best solution
found yet, the algorithm doesn’t continue making the
solution and starts a new iteration. By using this feature and
also pheromones, the algorithm always continues to find
better solutions. Figure 5 shows the performance of sample
algorithm runs on random graphs of 8 different classes of
graphs. The vertical axis corresponds to the number of
repeated edge labels and the horizontal axis shows the
number of iterations. Each bolded dot with coordination
(x,y) represents one or more points at which in iteration x of

algorithm, the number of repeated edge labels was equal to
y. The lines show the iterative improvement in solutions
during the algorithm run time.

Although the random graphs used had up to 40 edges, it
can be seen that in the worst case, the starting solution has
at most 8 repeated edge labels and the degree of infeasibility
decreases with use of pheromones when the iterations
continue. The maximum number of iterations in which the
graceful solution was found for these 8 classes of graphs
was 26 iterations, and the graceful labeling was found in all
cases.

4.3. Experimental Results

The proposed algorithm program was written by
MATLAB 7.0 software. The program receives the
adjacency matrix of a given graph, and outputs the graceful
labeling of its vertices in a row vector wherein the i-th
component shows the label of the i-th vertex according to
the adjacency matrix. The average time of 20 runs of the
algorithm for instances from different classes of graphs are
shown in Table 4.3. The graceful labeling is found in all
mentioned cases.

Figure 5: Decrease in the number of repeated edge labels when the
proposed ACO algorithm is run on random graphs from 8 different classes

of graphs

89

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

An advantage of the proposed graph labeling software is
that it is very easy to use, and can be applied for gracefully
labeling different types of graphs with entering only its
adjacency matrix. As it can be seen from Table 4.3, the ant-
based algorithm for graceful labeling provides solutions in a
reasonable run time for different graph types.

The current exact method for graceful labeling of
different types of graphs is a mathematical programming
model which can be solved by a branch and bound method
[7]. This method is very efficient for the classes of trees and
cycles, but for more complex graphs like wheels, helms and
windmills, etc. where the ratio of the number of edges to the
number of vertices (m/n) increases, our algorithm performs
much better than the exact method.

The results of our algorithm are compared with those of
the mathematical programming model [7] in Table 4.4. The
shorter running time in each case is indicated by bold
letters. Both methods were performed on computers with
same specifications.

Table 4.4 shows that the results of our metaheuristic
algorithm are comparable with those of the exact method
which is based on mathematical programming. In some
classes of graphs, like wheels and helms, the comparison
shows that our algorithm finds the solution very faster than
the exact algorithm.

TABLE 4.3: AVERAGE RUN TIMES OF OUR ALGORITHM FOR
DIFFERENT GRAPHS

Graph type Graph name Average running time
(seconds)

C8 0.00
C10 4.26 Cycles
C15 166.26
K3 0.00
K4 0.00

K3
(4) 0.25 Complete graphs

K3
(5) 2.57

W4 0.10
W5 0.21
W8 3.50
W10 12.03
W15 139.37

Wheels

W20 1057.34
H5 0.75
H8 22.4
H10 37.71
H12 120.55

Helms

H15 897.36
R5 0.76
R8 3.14
R10 20.10 Crowns

R15 235.54
T5 0.00
T10 0.05
T15 120.64
T20 368.42

Trees

T25 1288.24

For the largest wheel tested in the mathematical
programming method, our algorithm performs about 25
times faster than the exact method, and for the largest helm
it is about 90 times faster. The largest wheel that is tested by
the exact algorithm has 10 vertices and the largest helm has

15 vertices, therefore comparison was not possible for larger
graphs on these classes.

TABLE 4.4: THE RESULTS OF OUR ALGORITHM COMPARED
WITH THOSE OF THE MATHEMATICAL PROGRAMMING

MODEL
Average run time (seconds)

Graph type Graph name Proposed
ACO

algorithm

Mathematical
programming

method
W10 12.03 55.50 Wheels W15 139.37 3358.11
H8 22.4 1585.44 Helms H10 37.71 3471.22
C10 4.26 0.00 Cycles C15 166.26 0.65
T20 368.42 149.12 Trees T25 1288.24 2898.14

VI. FUTURE RESEARCH DIRECTIONS

As it can be seen in Table 4.4, the only class of graphs
where the mathematical programming method outperforms
the proposed ACO algorithm, is the class of cycles which
are completely symmetric graphs. Finding symmetry
breaking methods in gracefully labeling graphs may be a
suitable research area, and will increase the effectiveness of
the proposed ant based algorithm for gracefully labeling
symmetric graphs. Also one may propose an ACO
algorithm for a certain class of graphs by defining additional
heuristic information considering their special
characteristics in order to increase algorithm efficiency.
Another research area may be applying other metaheuristic
methods like Genetic Algorithm, Simulated Annealing and
Neural Networks, etc. to the graceful labeling problem and
comparing the results with the ant based algorithm.
Furthermore, ACO will probably be efficient when applied
to other types of graph labeling problems like harmonious
or magic labeling of graphs.

VII. CONCLUSION

The graceful labeling problem is one of the best known
labeling methods in graphs. Despite the large number of
papers published on this subject, there are few techniques
for finding graceful labelings of a given graph. In this paper
an ant based algorithm is proposed for gracefully labeling
the vertices of a graph. The proposed algorithm was tested
on a set of randomly generated graphs from different classes
of graphs. The computational results showed that ACO
metaheuristic was a powerful tool for finding solutions for
the graceful labeling problem of graphs and outperforms the
other existing methods in some certain classes of graphs.

REFERENCES

[1] D. Costa and A. Hertz , “Ants can colour graphs”, Journal of the
Operational Research Society, Vol. 48, pp. 295-305, 1997.

90

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

[2] G. Di Caro and M. Dorigo , “AntNet: Distributed stigmergetic control
for communications networks”, Journal of Artificial Intelligence
Research, Vol. 9, pp. 317– 365, 1998.

[3] Dorigo M., Gambardella L. M., “Ant colonies for the traveling salesman
problem”, Biosystem, Vol. 43, pp. 73-81, 1997.

[4] Dorigo M. and Stutzle T., “Ant Colony Optimization: algorithms,
applications and advances”,. Metaheuristics Handbook, International
Series in Operations Research and Management Science, Kluwer, 2001.

[5] Dorigo M. and Stützle T., “Ant Colony Optimization”, MIT press,
Cambridge, Massachusetts, 2004.

[6] Eshghi K., “Existence and construction of -labeling of 2-regular
graphs with three components”, Ph.D. Thesis, University of Toronto,
Ontario, Canada, 1997.

[7] Eshghi K. and Azimi P., “Application of mathematical programming in
graceful labeling problem of graphs”, Journal of Applied Mathematics
Vol. 2004:1, pp. 1-8, 2004.

[8] Gallian J. A., “A Dynamic survey of graph labeling”, Electronic Journal
of Combinatorics Vol. 5, 2005.

[9] Hingston Ph. And Kendall G., “Ant colonies discover knight tours”,
Springer-Verlag, Berlin Heidelberg, 2004.

[10] Redl T. A., “Graceful graphs and graceful labelings: two mathematical
programming formulations and some other new results”, Technical
Report TR03-01, Department of Computational and Applied
Mathematics, Rice University, Houston, Texas, 2003.

[11] Rosa A. On certain valuation of the vertices of a graph, Theory of
Graphs (International Symposium, Rome, July 1996) Gordon and
Breach, New York and Dund Paris, 349-355, 1967.

91

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

