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Figure 2: Examples for some classes of graceful graphs and their 
graceful labelings: (a) a cycle C7, (b) a tree T10, (c) a wheel W4, (d) a 

helm H5, (e) a crown R5 and (f) a windmill K3
(4)

Figure 1: Examples of graceful graphs 
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1. GRACEFUL LABELING PROBLEM 

Let G = (V, E) be an undirected graph without loops or 
double connections between vertices. A graceful labeling of 
G, with n vertices and m edges, is a one-to-one mapping  f
of the vertex set V into the set {0, 1, 2, ... , m}, so that if we 
assign an edge label | f (x) - f (y) | to any edge (x,y), each 
edge receives a distinct positive integer label. A graph that 
can be gracefully labeled is called a graceful graph [11]. 
Examples of graceful graphs are shown in Figure 1.  

Interest in graceful labeling began with a conjecture by 
Kötzig-Ringel and a paper by Rosa in 1966 [11]. Many 
variations of graph labeling have been introduced in recent 
years by researchers. Various classes of graphs have been 
proven mathematically to be graceful or non-graceful. A 
detailed survey of graph labeling problems and related 
results is presented in a survey by Gallian [8]. There is an 
unproved conjecture that all trees are graceful. Although, it 
is shown that trees with up to 27 vertices are graceful. All 
cycles Cn are graceful if and only if n  0 or 3 (mod 4). All 
wheels Wn, Helms Hn, and Crowns Rn are graceful. The 
complete graphs Kn are graceful if and only if n  4. The 
necessary condition for a windmill Kn

(m)  (n  3) to be 
graceful is that n  5; a windmill Kn

(m) consists of m 
complete graphs Kn with one common vertex [8]. An 
example for each class of the graphs mentioned above and 
their graceful labelings are shown in Figure 2. 

The graceful labeling problem is to find out whether a 
given graph is graceful or not, and if it is, how to label the 
vertices. The process of gracefully labeling a graph is a very 
tedious and difficult task for many classes of graphs [7]. 

In this paper, the graceful labeling problem is 
encountered as an assignment-type problem with the aim of 
finding a feasible solution, and a metaheuristic approach 
based on ACO for gracefully labeling graphs is presented.

Since today many methods have been applied for proving 
gracefulness of different classes of graphs, but most of them 
don’t apply a general method for finding the graceful 
labeling of the graphs to be studied. There are only two 
mathematical programming methods in the literature for 
finding graceful labeling of graphs. The first is a constraint 
programming approach [10], and the second is based on 
integer programming [7]. It is shown that the mathematical 
programming method outperforms the constraint 
programming method for graceful labeling [7].  

The rest of this paper is organized as follows: In section 
2, Ant Colony Optimization is briefly introduced. In section 
3 a problem representation of graceful labeling problem in 
the framework of ACO is defined and the proposed 
metaheuristic algorithm is introduced. Section 4 shows the 
obtained results and compares them with those of the 
existing methods in the literature. 

2. ANT COLONY OPTIMIZATION 

Many problems of practical importance can be modeled 
as combinatorial optimization problems. It is known that the 
majority of these problems cannot be solved by a 
polynomial time algorithm. For this reason, heuristics have 

84

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE



been invented to find solutions for these problems in a 
reasonable amount of time. Some of these heuristic 
algorithms are not restricted to specific problem types, but 
may be applied, with suitable modifications, to a broad class 
of optimization problems. Often, these “general-purpose” 
algorithms are called metaheuristics [5]. 

Metaheuristics are usually inspired by a natural process 
such as genetic algorithms or simulated annealing. Recently 
one of the most successful metaheuristics is Ant Colony 
Optimization (ACO), which was first introduced by Marco 
Dorigo [3]. Many ACO based algorithms have been 
proposed to solve different types of combinatorial 
optimization problems such as symmetric and asymmetric 
traveling salesman problems [3], the graph coloring problem 
[1], the knight’s tour problem in graphs [9] and the adaptive 
routing in packet-switched communications networks [2].

An important insight of early research on ants’ behavior 
was that in many ant species the visual perceptive faculty is 
very rudimentarily developed (there are even ant species 
which are completely blind) and that most communication 
among individuals, or between individuals and their 
environment, is based on the use of chemicals, called 
pheromones, produced by the ants. Particularly important 
for the social life of some ant species is the trail pheromone,
a pheromone that individuals deposit while walking in 
search for food. While walking, ants deposit pheromone on 
the ground, and follow, probabilistically, pheromones 
previously deposited by other ants. By sensing pheromone 
trails, ants can follow the path to food discovered by other 
ants. This collective pheromone-laying / pheromone-
following behavior whereby an ant is influenced by a 
chemical trail left by other ants was the inspiring source of 
Ant Colony Optimization [5].  

In ACO, artificial ants make walks on a graph, and lay 
artificial pheromone trails on the vertices and/or edges of 
the graph. This artificial pheromone is accumulated at run-
time through a learning mechanism that gives reward to 
good problem solutions. Artificial ants start from random 
states: next, each ant chooses probabilistically the new state 
to visit using a probabilistic function mainly based on the 
pheromone intensity. At the end of each iteration, the 
pheromone on the best solution is increased according to a 
learning rule. The rationale is that in this way the structure 
of ''preferred sequences'' emerges in the pheromone trail and 
future ants will use this information to generate new and 
better solutions [4]. 
Ants can be characterized as stochastic construction 
procedures which build solutions moving on the 
construction graph G = (C, L). The construction graph, G ,
is not always the original problem graph, specially in 
assignment-type problems like graph coloring. Ants do not 
move arbitrarily on G , but rather follow a construction 
policy which is a function of the problem constraints .

In general, artificial ants try to build feasible solutions, 
but, if necessary, they can generate infeasible solutions. The 
constraints that must be satisfied necessarily are called hard
constraints, and others that may be ignored when not 

possible to be satisfied are called soft constraints [5].
Components ci  C and connections lij  L can have 
associated a pheromone trail  ( i if associated to 
components, ij if associated to connections) encoding a 
long-term memory about the whole ant search process that 
is updated by the ants themselves, and a heuristic value  ( i
and ij , respectively) representing a priori information about 
the problem instance definition or run-time information 
provided by a source different from the ants. In many cases 
heuristic information are used to make the ants satisfy the 
problem constraints. These values are used by the ants’ 
heuristic rule to make probabilistic decisions on how to 
move on the graph [5]. 

After the ants complete their solutions at each iteration, a 
procedure called pheromone evaporation occurs. This 
procedure is designed to avoid a too rapid convergence of 
the algorithm towards a sub-optimal region. It implements a 
useful form of forgetting, favoring the exploration of new 
areas of the search space [4].

3. PROPOSED ALGORITHM 

In this section first a representation for the graceful labeling 
problem is defined and next an ACO-algorithm for 
gracefully labeling graphs is proposed. The graceful 
labeling problem can be represented in the framework of 
ACO as it will appear in this section. The main features to 
be defined are the construction graph G , pheromone trails 
and their update rules, heuristic information and the 
probabilistic decision rule. Remember that unlike most 
combinatorial optimization problems, the goal in the 
graceful labeling problem is just to find a feasible solution 
among all possibilities. 

3.1. Construction Graph 

The task in assignment-type problems (for example graph 
coloring problem) is to assign a set of items to a given 
number of objects or resources subject to some constraints. 
A solution which satisfies the constraints is said to be a 
feasible solution [1]. 
In this paper, graceful labeling problem is seen as an 
assignment-type problem in which a set of numbers are 
assigned to the vertices of a graph. In the framework of 
ACO, the construction graph is defined to be a complete 
bipartite graph, G = (C, L), where C, the set of components, 
consists of two parts: the first part is V, the set of vertices of 
graph G, and the second is the set {0, 1, … , m}. The best
solution is the one with the least number of repeated edge 
labels. This number shows the solution quality in each 
iteration. Depending on the solution quality, at each 
iteration, ants update pheromone trails on the connections L 
which fully connect the two parts of C. The pheromone 
update rule will be explained in section 3.2. The amount of 
pheromone on each connection (i, j), where i V and j {0,
1, …, m}, shows the desirability of assigning label j to vertex 
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i. The connections which are part of a good solution 
previously made, receive more and more pheromone, and 
pheromones on bad solution connections evaporate. When 
iterations continue, the feasible solution will have the most 

desirability to be chosen by ants. As an example, the 
construction graph for the complete graph K3 and an 
example of pheromone accumulation on connections 
corresponding to a feasible solution are shown in Figure 3. 

3.2. Pheromones 

Different types of pheromones, their update rules, the 
corresponding decision probabilities, and the pheromone 
evaporation procedure are defined in this section.  

3.2.1. Different types of pheromones 

Three types of artificial pheromones are defined and used 
by foraging ants to make probabilistic decisions for making 
solutions. Each pheromone j)(v,k  shows the desirability 
of assigning label j to vertex i. The difference among them 
is the definition of  a desirable assignment and the 
corresponding update rule.  

Pheromone type 1: The first pheromone ( j)(v,1 ) shows 
the desirability of assigning label j to vertex i, considering 
the number of repeated edge labels produced in the 
neighborhood of vertex v by making such an assignment in 
past iterations. After a solution is completed, the artificial 
ant checks every vertex to see whether there are repeated 
edge labels produced in the edges adjacent to it. Whenever a 
repeated edge label is recognized, a part of pheromone 1 for 
the corresponding assignment is evaporated, otherwise some 
additional pheromone is deposited on the connection related 
to the assignment on the construction graph G .

 Pheromone type 2: By means of pheromone 2, the 
assignments with those edge labels that are less produced in 
total iterations, are more desirable. While deciding which 
label to assign to vertex v, the assignment in which an edge 
label in the neighborhood of vertex v is not yet produced, 
will be made with more probability by the artificial ant. 
Thus, the second pheromone ( j)(v,2 ) is updated during 
each step of the solution construction.

Pheromone type 3:  The third type of pheromones 
( j)(v,3 ) checks the role of assigning label j to vertex v in 
the total infeasibility of solutions in past iterations. After 
completing a solution, the artificial ant checks the partial 
role of the edge labels adjacent to every vertex in the total 
infeasibility; if all the edge labels adjacent to a vertex are 
not repeated in the whole graph, the amount of pheromone 3 
for the corresponding assignment is increased, otherwise if 
labels in the neighborhood of vertex v are repeated 
somewhere in the graph, a part of pheromones on the edge 
connecting label j to vertex v on the construction graph is 
evaporated.

3.2.2. Pheromone Probability 

The probability of assigning label j to vertex v according to 
each type of pheromones is calculated by equation (3.1). 

Figure 3: the construction graph for the complete graph K3, and an example of pheromone accumulation on 
connections corresponding to a feasible solution.

3K

A

B C

A

B

C

0

1

2

3

A

B

C

0

1

2

3

…
A

B C

0

31

A

B

C

0

1

2

3

Iteration 2:  

Iteration k:  

Graceful labeling 

Set of vertices Set of vertex labels 

Iteration 1: 

86

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



(3.1)

All these pheromone probabilities affect the final 
probability of assigning label j to vertex v at each step of 
labeling. 

3.2.3. Pheromone Evaporation 

We saw in the previous section that whenever a solution is 
desirable, the amount of pheromone on the corresponding  
edges on the construction graph increases, and otherwise the 
amount of pheromones decreases (i.e. we have both positive 
and negative pheromones in each step of  solution 
construction). Therefore in the proposed algorithm the 
definition of evaporation should be different, because it 
should avoid accumulation of both positive and negative 
pheromones. Pheromone evaporation occurs after each 
iteration. The evaporation procedure doesn’t always 
decrease the amount of pheromones; instead, whenever the 
amount of pheromone on a connection is more than 1 (the 
initial value of pheromone on all connections is set to be 1), 
evaporation occurs by a rate of , which means the amount 
of pheromone is decreased by being multiplied to (1- ); on 
the other hand, if the amount of pheromone on a connection 
is less than 1, it’s value will be divided by (1- ) and so it 
will be increased. As we see, the evaporation procedure is 
modified to a avoid too rapid convergence to good but still 
infeasible solutions and also to implement a useful form of 
forgetting to avoid the complete elimination of the search 
areas which have not resulted in good solutions in past 
iterations. 

3.3. Heuristic Information 

Four types of heuristic information are defined to be used by 
artificial ants in their probabilistic decision making. These 
information are defined according to the special 
characteristics of the graceful labeling problem, and are 
calculated at each step of the algorithm. Heuristics help ants 
to avoid making infeasible assignments in the early steps of 
the algorithm. The two first heuristic information are used to 
satisfy the problem constraints, and the next two help the 
ants to make better decisions. First heuristic information 
includes a hard constraint which must be satisfied in all 
solutions made by ants, but the other three are soft 
constraints which may be ignored if they can’t be satisfied 
with the hard constraint simultaneously. 

Heuristic value type 1: The first heuristic information is 
defined to implement a hard constraint. This constraint says 
that all vertex labels must be distinct. Heuristic value 1 for 
assigning label j to vertex v ( )j(v,1 ) is set to be zero if 
label j is already used for another vertex in this iteration. 
Otherwise, for all labels that are not yet used in this 
iteration, it is set equal to a positive constant value.  

Heuristic value type 2: The constraint of edge labels to be 
distinct is considered in the second heuristic value. Heuristic 
value 2 for assigning label j to vertex v ( )j(v,2 ) is set to be 
zero if the edge labels produced by such an assignment are 
used before in this iteration. This constraint is a soft 
constraint and at each step, if the remaining vertex labels 
(according to the hard constraint) can’t satisfy this 
constraint, this heuristic value is ignored and ants can build 
infeasible solutions.  

Heuristic value type 3: This heuristic value makes the 
ants prefer to produce the edge label ‘m’ if possible in any 
step. To explain the necessity of this heuristic value let us 
consider a graph E)(V,G  with m edges and n vertices. 
For G to be graceful, all the edge labels ‘1’, ‘2’, … , ‘m’ 
must be assigned to the edges of G. Therefore, for a solution 
made by artificial ants in the metaheuristic algorithm, all the 
labels ‘1’, ‘2’, … , ‘m’ must be produced. The remarkable 
point is that the edge label ‘1’ can be produced in m
different ways: by assigning one of the following pairs of 
vertex labels to adjacent vertices:

(0, 1), (1, 2), … , (m-1, m) 
Similarly, the edge label ‘2’ can be produced in m-1
different ways by assigning one of the following pairs of 
vertex labels to adjacent vertices: 

(0, 2), (1, 3), … , (m-2, m) 
Unlike the edge labels mentioned above, there is only one 
way for edge label ‘m’ to be produced; by assigning vertex 
labels ‘0’ and ‘m’ to adjacent vertices. Therefore, heuristic 
value 3 is defined to help the ants make better solutions by 
necessarily assigning labels ‘0’ and ‘m’ to adjacent vertices. 
If at a step of solution construction, edge label ‘m’ is not yet 
produced and can be produced at this step by a certain 
assignment, and by losing this opportunity, the edge label 
‘m’ cannot be produced anywhere else in the graph, the ants 
prefer the assignment that produces it. Experimental results 
in section 4 show how efficient this heuristic value is in 
finding the graceful labeling of graphs. 

Heuristic value type 4: Similar to heuristic value type 3, 
the fourth heuristic value is defined for edge label ‘m-1’ to 
be preferred. Edge label ‘m-1’ can be produced by assigning 
one of the two pairs (0, m-1) or (1, m) of vertex labels to 
adjacent vertices. Heuristic value 4 works exactly like 
heuristic value 3 except that it prefers making edge label 
‘m-1’. Experimental results show that in many iterations, 
the cause of infeasibility was that edge label ‘m-1’ could not 
be produced. By adding this heuristic value, the results were 
noticeably improved as it can be seen in section 4. 

3.4. Probabilistic Decision Rule 

The probability distribution function for choosing a label for 
a vertex depends on pheromone and heuristic information 
values for the corresponding assignment on the construction 
graph. Equation (3.2) shows the probability for assigning 
label ‘l’ to vertex ‘v’ in any step. 

32,1,i
k)(v,

j)(v,
j)(v,pr m

0k
i

i
i
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(3.2)

The weights b1, b2 and b3 are considered for controlling the 
effect of each type of pheromones. For different classes of 
graphs, different values for these weights prove more 
efficiency as it will be shown in section 4. 

3.5. Stopping Criteria 

The algorithm stops when one of the following criteria are 
met: 

1. A feasible solution is found. A solution with no 
repeated vertex or edge labels is a feasible solution. 
If such a solution is found, it will be the output of 
the algorithm.  

2. The number of iterations reach a maximum limit. If 
no feasible solution is found during a certain 
number of iterations, the best solution found yet 
will be the output of the algorithm, mentioning that 
the result shows that no graceful labeling is found 
in a certain number of iterations. 

3.6. Algorithmic Structure 

The main steps of the proposed algorithm are the following: 
Step 0. Start
Step 1. Input the adjacency matrix of graph G. 
Step 2. Calculate the number of vertices (n) and edges (m) 

according to the adjacency matrix. 
Step 3. Initialize pheromones and heuristic information 

according to the adjacency matrix. 
Step 4. Choose next vertex (v) to be labeled. 
Step 5. Calculate heuristic values j)(v,k  for every label j 

to be assigned to vertex v for k = 1, 2, 3, 4 and j = 
0, 1, 2, … , m. 

Step 6. Calculate pheromone probabilities j)(v,Prt  for 
every label j to be assigned to vertex v for t = 1, 2, 
3 and  
j = 0, 1, 2, … , m. 

Step 7. Calculate total probability for assigning any label j 
to vertex v, according to equation (2).

Step 8. Choose a label probabilistically for vertex v. 
Step 9. Save the partial solution found until this step.
Step 10. Check the solution to find out whether it is 

complete or not.  
a. If all vertices are labeled, go to step 11. 
b. Otherwise, if the partial solution isn’t worse 

than the best solution ever found, go back to 
step 4, else go to step 11.  

Step 11. Calculate the degree of infeasibility of the current 
solution and update the best solution found until 
now.

Step 12. Update pheromones according to the quality of the 
current solution. 

Step 13. Check the stopping criteria: 
a. If any of the stopping criteria are met, go 

to step 14. 
b. Otherwise, go back to step 3. 

Step 14. Output the feasible solution or the best solution 
found.

Step 15. End

4. COMPUTATIONAL RESULTS 

In this section, first the effects of heuristic information and 
each type of pheromones are discussed, and next the results 
obtained for different classes of graphs will be presented 
and compared with those of the existing methods.  

In this section, first the effects of heuristic information and 
each type of pheromones are discussed, and next the results 
obtained for different classes of graphs will be presented 
and compared with those of the existing methods.  

4.1. The Effect of Heuristic Values 

As mentioned in section 3, the first two heuristic values are 
defined for implementing the problem constraints, but the 
third and fourth heuristics help the algorithm find solutions 
faster. This latter effect is illustrated here by an example. 
The algorithm is applied for three random trees with 10 
vertices (an example is shown in Figure 4), and the results 
for the algorithm with and without heuristics are compared. 
As shown in Figure 4, a tree with 10 vertices has 9 edges, so 
for a labeling to be graceful, the edges must receive the 
labels 1 through 9 distinctively. Without using heuristic 
values 3 and 4, in more than 80 percent of iterations the 
edge label ‘9’ (which here corresponds to ‘m’ in section 3) 
is not used. Similarly, in more than 55 percent of iterations 
edge label ‘8’ is not produced. After implementing heuristic 
values 3 and 4, both of these percentages decrease to about 
40 percent. Although the procedure of calculating heuristic 
values 3 and 4 at each step of the algorithm takes running 
time, but it remarkably decreases the average number of 
iterations before finding the feasible solution. Table 4.1 
summarizes these results for 30 times runs of the algorithm.  

TABLE 4.1: USEFULNESS OF THE HEURISTIC VALUES 3 & 4 
Running time 

(seconds) 
Number of 
iterations

Without heuristic values 3 and 4 1.72 23 

With heuristic values 3 and 4 1.03 8 

Figure 4: A random tree with 10 vertices 
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4.2. The Effect of Pheromones 

The effect of each type of pheromones has been studied for 
different classes of graphs. We have seen by trial and error 
that for certain classes of graphs, a specific setting for 
pheromone weights (see section 4.4) gives the best results. 
One may obtain better results by modifying the weights for 
other special classes of graphs. We have studied three 
classes of graphs to check the effect of pheromones. These 
classes include cycle-related graphs, trees and combined 
complete graphs. The best parameter settings found for each 
class of graphs are summarized in Table 4.2. 

TABLE 4.2: BEST PARAMETER SETTINGS FOUND FOR EACH 
CLASS OF GRAPHS 

Graph class Parameter settings 
Cycle-related graphs b1=5; b2=10; b3=5
Trees  b1=5; b2=5; b3=5
Combined complete graphs b1=2; b2=2; b3=10

These parameter settings have been derived according to 
a sensitivity analysis and have proven to be almost best 
settings found for the related classes of graphs. It has been 
seen during algorithm runs that by increasing any parameter 
more than the proposed settings, the algorithm performance 
becomes less effective. By increasing the parameters much 
more than appropriate settings, the algorithm fails to find 
the graceful labeling, because it continues searching within 
the initial ‘good’ but still ‘infeasible’ solutions.

As you see in Table 4.2, for cycle-related graphs like 
simple cycles, wheels, helms, etc. by partially increasing the 
effect of the second pheromone, better results are obtained. 
It seems that this effect is because the second pheromone 
doesn’t insist on the absolute position of labels, but it rather 
provides information for searching the unexplored solution 
space. This ability, for cycle graphs which are completely 
symmetric and the absolute position of labels is not 
important, is very useful. On the other hand, for other 
classes like combined complete graphs, there exist some 
vertices that always get a certain label in a graceful labeling 
(like the common middle vertex). This causes the third 
pheromone to be useful more than the others for this class of 
graphs. The third pheromone pays extra attention to the 
absolute position of each label. However, for the class of 
trees, all tree types of pheromone seem to be equally 
efficient.

The proposed algorithm tries to decrease the number of 
repeated edge labels in the ongoing iterations. If, during an 
iteration, a solution made is worse than the best solution 
found yet, the algorithm doesn’t continue making the 
solution and starts a new iteration. By using this feature and 
also pheromones, the algorithm always continues to find 
better solutions. Figure 5 shows the performance of sample 
algorithm runs on random graphs of 8 different classes of 
graphs. The vertical axis corresponds to the number of 
repeated edge labels and the horizontal axis shows the 
number of iterations. Each bolded dot with coordination 
(x,y) represents one or more points at which in iteration x of 

algorithm, the number of repeated edge labels was equal to 
y. The lines show the iterative improvement in solutions 
during the algorithm run time.  

Although the random graphs used had up to 40 edges, it 
can be seen that in the worst case, the starting solution has 
at most 8 repeated edge labels and the degree of infeasibility 
decreases with use of pheromones when the iterations 
continue. The maximum number of iterations in which the 
graceful solution was found for these 8 classes of graphs 
was 26 iterations, and the graceful labeling was found in all 
cases.

4.3. Experimental Results 

The proposed algorithm program was written by 
MATLAB 7.0 software. The program receives the 
adjacency matrix of a given graph, and outputs the graceful 
labeling of its vertices in a row vector wherein the i-th 
component shows the label of the i-th vertex according to 
the adjacency matrix. The average time of 20 runs of the 
algorithm for instances from different classes of graphs are 
shown in Table 4.3. The graceful labeling is found in all 
mentioned cases. 

Figure 5: Decrease in the number of repeated edge labels when the 
proposed ACO algorithm is run on random graphs from 8 different classes 

of graphs 
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An advantage of the proposed graph labeling software is 
that it is very easy to use, and can be applied for gracefully 
labeling different types of graphs with entering only its 
adjacency matrix. As it can be seen from Table 4.3, the ant-
based algorithm for graceful labeling provides solutions in a 
reasonable run time for different graph types. 

The current exact method for graceful labeling of 
different types of graphs is a mathematical programming 
model which can be solved by a branch and bound method 
[7]. This method is very efficient for the classes of trees and 
cycles, but for more complex graphs like wheels, helms and 
windmills, etc. where the ratio of the number of edges to the 
number of vertices (m/n) increases, our algorithm performs 
much better than the exact method. 

The results of our algorithm are compared with those of 
the mathematical programming model [7] in Table 4.4. The 
shorter running time in each case is indicated by bold 
letters. Both methods were performed on computers with 
same specifications. 

Table 4.4 shows that the results of our metaheuristic 
algorithm are comparable with those of the exact method 
which is based on mathematical programming. In some 
classes of graphs, like wheels and helms, the comparison 
shows that our algorithm finds the solution very faster than 
the exact algorithm. 

TABLE 4.3: AVERAGE RUN TIMES OF OUR ALGORITHM FOR 
DIFFERENT GRAPHS 

Graph type Graph name Average running time 
(seconds) 

C8 0.00 
C10 4.26 Cycles
C15 166.26 
K3 0.00 
K4 0.00 

K3
(4) 0.25 Complete graphs 

K3
(5) 2.57 

W4 0.10 
W5 0.21 
W8 3.50 
W10 12.03 
W15 139.37 

Wheels

W20 1057.34 
H5 0.75 
H8 22.4 
H10 37.71 
H12 120.55 

Helms 

H15 897.36 
R5 0.76 
R8 3.14 
R10 20.10 Crowns 

R15 235.54 
T5 0.00 
T10 0.05 
T15 120.64 
T20 368.42 

Trees

T25 1288.24 
   

For the largest wheel tested in the mathematical 
programming method, our algorithm performs about 25 
times faster than the exact method, and for the largest helm 
it is about 90 times faster. The largest wheel that is tested by 
the exact algorithm has 10 vertices and the largest helm has 

15 vertices, therefore comparison was not possible for larger 
graphs on these classes.  

TABLE 4.4: THE RESULTS OF OUR ALGORITHM COMPARED 
WITH THOSE OF THE MATHEMATICAL PROGRAMMING 

MODEL 
Average run time (seconds) 

Graph type Graph name Proposed 
ACO

algorithm 

Mathematical 
programming 

method 
W10 12.03 55.50 Wheels W15 139.37 3358.11 
H8 22.4 1585.44 Helms H10 37.71 3471.22 
C10 4.26 0.00 Cycles C15 166.26 0.65 
T20 368.42 149.12 Trees T25 1288.24 2898.14 

VI. FUTURE RESEARCH DIRECTIONS 

As it can be seen in Table 4.4, the only class of graphs 
where the mathematical programming method outperforms 
the proposed ACO algorithm, is the class of cycles which 
are completely symmetric graphs. Finding symmetry 
breaking methods in gracefully labeling graphs may be a 
suitable research area, and will increase the effectiveness of 
the proposed ant based algorithm for gracefully labeling 
symmetric graphs. Also one may propose an ACO 
algorithm for a certain class of graphs by defining additional 
heuristic information considering their special 
characteristics in order to increase algorithm efficiency. 
Another research area may be applying other metaheuristic 
methods like Genetic Algorithm, Simulated Annealing and 
Neural Networks, etc. to the graceful labeling problem and 
comparing the results with the ant based algorithm. 
Furthermore, ACO will probably be efficient when applied 
to other types of graph labeling problems like harmonious 
or magic labeling of graphs.  

VII. CONCLUSION 

The graceful labeling problem is one of the best known 
labeling methods in graphs. Despite the large number of 
papers published on this subject, there are few techniques 
for finding graceful labelings of a given graph. In this paper 
an ant based algorithm is proposed for gracefully labeling 
the vertices of a graph. The proposed algorithm was tested 
on a set of randomly generated graphs from different classes 
of graphs. The computational results showed that ACO 
metaheuristic was a powerful tool for finding solutions for 
the graceful labeling problem of graphs and outperforms the 
other existing methods in some certain classes of graphs. 
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