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Abstract – Particle swarm optimization (PSO) has 
shown to be an efficient, robust and simple 
optimization algorithm, and has been successfully 
applied to many different kinds of problems. But it is 
still an open problem that why PSO can be successful. 
Most of current PSO studies are empirical, with only a 
few theoretical analyses, and these theoretical studies 
concentrate mainly on simplified PSO systems, 
discarding randomness. In order to improve the 
understanding of real stochastic PSO algorithm, this 
paper presents a formal stochastic analysis of the 
stochastic PSO algorithm, which involves with 
randomness. The stochastic properties of particle 
trajectories in stagnation phase are studied in details.  

I INTRODUCTION 

The particle swarm optimization (PSO) is an algorithm 
for finding optimal regions of complex search spaces 
through the interaction of individuals in a population of 
particles[1]. It was developed by Kennedy and Eberhart[2] 
based on the social behavior metaphor. The algorithm 
searches a solution space by adjusting the trajectories of 
individual vectors, called “particles” as they are 
conceptualized as moving points in multidimensional 
space. Each particle is assigned a randomized velocity. The 
individual particles are attracted stochastically toward the 
positions of their own best fitness achieved so far and the 
best fitness achieved so far by any of their neighbors. 

PSO algorithm has shown to be an efficient, robust and 
simple optimization algorithm, and has been successfully 
applied to many different kinds of problems. Although 
many empirical studies have confirmed the success of PSO 
algorithm, it’s still an open question that why PSO can be 
successful when applied to optimization problems. To gain 
a better and more general understanding of the behavior of 
particle swarm, in-depth theoretical analyses of particle 
trajectories are necessary. Since the first formal analysis of 
a simple particle swarm system presented by Ozcan and 
Mohan[3, 4], the PSO algorithm has been theoretically 
analyzed by van den Bergh[5], Clerc and Kennedy[1], 
Yasuda et al[6], and Trelea[7]. Although those results do 
provide insights into how particle swarm system works, all 
those analyses discard the randomness in the PSO 
algorithm, and are all based on a simplified deterministic 
algorithm. Obviously, those analytical results more or less 
deviate from the real particle swarm system due to the loss 

of randomness. Recently, researchers have begun to make 
progress in the analysis of randomness in PSO algorithm. 
Clerc[8] mathematically analyzed the stochastic behavior 
of the particles when the swarm is in stagnation, but he did 
not regard the velocity as stochastic variable, and thus he 
seemed unaware of the dependent relationship between 
velocity and the stochastic parameters. Jiang et al[9] 
studied the stochastic convergence property of the standard 
PSO algorithm, and gave a sufficient condition to ensure 
the stochastic convergence of the particle swarm system.  

The particle swarm system is thought to be in stagnation, 
if arbitrary particle i’s history best position iP

r
 and the 

total swarm’s history best position gP
r

 keep constant over 
some time steps. When the particle swarm system is in 
stagnation, by regarding each particle's position on each 
evolutionary step as a stochastic vector, the PSO algorithm 
can be analyzed using stochastic process theory. Some 
stochastic characteristics (including expected value, 
variance, and auto-variance) of particle's position are 
obtained, both in explicit and implicit representations, and 
corresponding properties are analyzed. 

The remainder of the paper is organized as follows: 
Section II provides a short introduction to PSO. Section III 
studies the properties of the expectation sequence of 
particle’s position. Section IV studies the properties of the 
variance sequence of particle’s position. Section V studies 
the properties of the auto-covariance sequence of particle’s 
position. Section VI gives some discussion and the 
conclusion is given in Section VII. 

II PARTICLE SWARM OPTIMIZATION 

Standard algorithm 

The PSO algorithm maintains a population of M 
particles, the PSO formulae define each particle as a 
potential solution to a problem in D-dimensional space, 
with particle i represented ),...,,( 21 iDiii XXXX =

r
, where 

i=1,2,…,M. Each particle also maintains a memory of its 
previous best position, ),...,,( 21 iDiii PPPP =

r
, and a 

velocity along each dimension, represented as 
),...,,( 21 iDiii VVVV =

r
. The P

r
 vector of the particle with 
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the best fitness in the neighborhood is designated gP
r

. At 

each iteration,  and the gP
r

P
r

 vector of the current 
particle are combined to adjust the velocity of the particle 
along each dimension, and that velocity is then used to 
compute a new position for the particle. The portion of the 
adjustment to the velocity influenced by the individual's 
previous best position is considered the cognition 
component, and the portion influenced by the best in the 
neighborhood is the social component[2]. 

In standard PSO algorithm[10], at iteration t, the dth 
dimension of particle i's velocity and position are updated 
using Eqs. (1) and (2) separately, where ω, c1 and c2 are 
constant real parameters,  and  are two 
independent uniform random numbers in the range [0,1]. 

)(,1 tr d
i )(,2 tr d

i

The velocity update equation can also be described 
using Eq. (3), where χ, Φ1, Φ2 are constant real 
parameters[1]. Obviously, if appropriate parameters are 
chosen, Eqs. (1) and (3) are identical. In this paper, Eqs. (1) 
and (2) are used as standard PSO update equations. 

There exist many factors that would influence the 
convergence property and performance of PSO algorithm, 
including selection of ω, c1 and c2; velocity clamping; 
position clamping; topology of neighborhood; etc. This 
paper focuses on analyzing how the selection of parameter 
tuple {ω, c1, c2} would influence the trajectories of 
particles in the standard PSO algorithm. Factors such as 
velocity clamping, position clamping, topology of 
neighborhood may influence the trajectories of particles, 
but the discussion of those factors is beyond the scope of 
this paper. At the same time, the situation with variable 
parameter values during evolution is also not discussed 
here. That means, the standard PSO algorithm studied here 
is only determined by fixed parameter tuple {ω, c1, c2}. 
Velocity and position clamping are not considered, and the 
neighborhood of any particle is the whole swarm. 

Simplified one-dimensional one-particle algorithm 

When the particle swarm system is in stagnation, 
arbitrary 

r
 and iP gP

r
 would keep constant over some 

time steps, then it’s easy to find out that all particles would 
evolve independently. Thus, only particle i needs to be 
studied. For i is chosen arbitrarily, the result can be applied 
to all other particles. At the same time, it appears from Eqs. 
(1) and (2) that each dimension is updated independently 

from the other dimensions. Thus, without loss of generality, 
the algorithm description can be reduced to the one- 
dimensional case. Notice that vectors iX

r
, iV
r

, iP
r

 and 

gP
r

 degenerate to numeric values now, represented as , 

,  and . By omitting particle and dimension 
notations, and considering discrete time situation, update 
equations become: 

iX

iV iP gP

)()( ,22,111 tgttittt XPrcXPrcVV −+−+=+ ω   (4) 

11 ++ += ttt VXX        (5) 

It should be noticed that the above simplification is only 
for analysis purpose, and the analytical results can apply to 
the total particle swarm. All analyses in this paper are 
based on the simplified one-dimensional one-particle 
system, and the extension to the real D-dimensional 
M-particle system can be easily obtained. 

According to [5], by substituting Eq. (1) into Eq. (2), the 
following non-homogeneous recurrence relation is 
obtained: 

gtitttttt PrcPrcXXrcrcX ,22,111,22,111 )1( ++−−−+= −+ ωω  (6) 

Notice that there exist random numbers in Eq. (6), and 
that the values of X0, X1 are also random numbers, thus 
each Xt should be regarded as a random variable, and the 
iterative process {Xt} should be regarded as a stochastic 
process. Some stochastic characteristics (such as expected 
value, variance, and auto-covariance) related to each 
random variable Xt can then be obtained, and the property 
of the stochastic particle trajectory can be analyzed. 

III Expected Value of Particle's Position 

As stated in last section, when considering the 
simplified one-particle one-dimensional PSO algorithm 
with fixed  and , the particle's position at iteration t, 
i.e. Xt is a random variable, thus particle's trajectory can be 
regarded as a stochastic process. In this section, the 
iteration equation of EXt is obtained, where EXt is the 
expected value of particle's position Xt. Based on the 
iteration equation, the property of sequence {EXt} is 
analyzed. 

iP gP

According to Eq. (6), the iteration equation of sequence 
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Obviously, if c1+c2=0, the sequence will increase 
linearly with time unless c1=c2=0. It's easy to see that 
neither of those two cases is interesting, thus we suppose 
c1+c2≠0 in the following discussion. Let 

2
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The corresponding characteristic equation is 

02 =+− ωψλλ        (9) 

Given λE1, λE2 as the two characteristic roots, EY0 and 
EY1 the initial conditions, then for any t≥2, we can get 
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It's obviously that all properties of iteration process {EYt} 
are just the same as those of iteration process {EXt}. At the 
same time, properties of iteration process {EYt} totally 
depend on },max{ 21max EEE λλλ = , so it's necessary to 
study the relationship between the parameter tuple {ω, c1, 
c2} and λmaxE, which is illustrated in the following theorem. 

Theorem 1: Given a threshold λthE >0, if and only if 

)1)(1(2)1)(1(2 21
thE

thE
thE

thE cc
λ
ωλ

λ
ωλ ++<+<−−  and 

2
thEλω <  are satisfied together, then thEE λλ <max . 

Proof: Consider two cases. 

(1)  ωψ 42 <

Here, both eigenvalues are complex numbers. And 
ωλλ == 2

2
2

1 EE , so thEE λλ <max  is identical to 

. Condition (1) itself requires ω>0 and 2
thEλω <

)21(2)21(2 21 ωωωω ++<+<−+ cc . 

(2)  ωψ 42 ≥

Here, both eigenvalues are real numbers. Consider two 
more cases. 

(2.1) If ψ<0, then )4(
2
1 2

max ωψψλ −−−=E , and 

thEE λλ <max  is identical to thEλωψψ <−−− )4(
2
1 2 . 

One result is  and 20 thEλω <<

)1)(1(2)21(2 21
thE

thEcc
λ
ωλωω ++<+≤++ ; and 

another result is  and 02 ≤<− ωλthE

)1)(1(2)1(2 21
thE

thEcc
λ
ωλω ++<+≤+  

(2.2) If ψ≥0, then )4(
2
1 2

max ωψψλ −+=E , and 

thEE λλ <max  is identical to thEλωψψ <−+ )4(
2
1 2 . 

One result is  and 20 thEλω <<

)21(2)1)(1(2 21 ωω
λ
ωλ −+≤+<−− cc
thE

thE ; and 

another result is  and 02 ≤<− ωλthE

)1(2)1)(1(2 21 ω
λ
ωλ +≤+<−− cc
thE

thE   

Synthesize case (1) and case (2), it is concluded that 
thEE λλ <max  is guaranteed if and only if 

)1)(1(2)1)(1(2 21
thE

thE
thE

thE cc
λ
ωλ

λ
ωλ ++<+<−−  and 

2
thEλω <  are satisfied together.       ■ 

Fig. 1 shows three examples of parameter ranges 
corresponding to different threshold λthE. The red(dark) 
area is the parameter range to guarantee λmaxE<1, the 
cyan(grey) area  is the parameter range to guarantee 
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λmaxE<0.8, and the yellow(light) area is the parameter range 
to guarantee λmaxE<0.5. 

0 1 2 3 4 5 6 7 8
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Figure 1. Parameter ranges to guarantee λmaxE<λthE. The red(dark) 

area corresponds to λthE=1, the cyan(grey) area corresponds to 

λthE=0.8, and the yellow(light) area corresponds to λthE=0.5. 

Now we can study the property of iteration sequence 
{EYt}, which is the same as that of iteration sequence 
{EXt}. Obviously, if 1max >Eλ , the sequence will 

diverge, which is not a desired property. If 1max =Eλ , the 
sequence will maintain constant amplitude vibration or 
increase linearly with time, neither of which is a desired 
property. For other cases, i.e. 1max <Eλ , sequence {EYt} 
will converge to zero and sequence {EXt} will converge to 
EX=µ. Based on above analysis, the parameter range to 
guarantee the convergence of iteration sequence {EXt} can 
thus be obtained, illustrated in the following corollary. 

Corollary 1: If and only if )1(40 21 ω+<+< cc  and 
1<ω  are satisfied together, iterative process {EXt} is 

guaranteed to converge to 
21

21

cc
PcPc gi

+

+
. 

The parameter range to guarantee the convergence of 
sequence {EXt} is shown in the red(dark) area in Fig 1. 
When sequence {EXt} can converge, the convergence 
speed is determined by λmaxE. As a matter of fact, if 1<ω  

and c1=c2=0, then . Although the 

sequence can converge, this is not an interesting case at all, 
and is not considered convergent in this paper. 

∑
=

+=
t

i

i
t VXX

1
00 ω

Results similar to Corollary 1 can be found in [6, 7], but 

neither of those two results explicitly takes particle's 
position as a stochastic variable, so those results are 
somewhat vague in concept, and a reasonable explanation 
is hard to be given. From above analysis, it is now clear 
what those results actually mean. Trelea gave detailed 
analyses to properties of characteristic equation shown in 
Eq. (9), interested readers can refer to [7]. 

IV Variance of Particle's Position 

In this section, the iteration equation of DXt is obtained, 
where DXt is the variance of particle's position Xt. Based 
on the iteration equation, the property of sequence {DXt} 
is analyzed. For the reason explained in last section, we 
still suppose c1+c2≠0 in the following discussion. 

In order to make the procedure of calculating DXt clear, 
some symbols should be introduced firstly. Symbols ψ, µ, 
and Yt are the same as that defined in Section III. Two new 

symbols are 
2

21
,22,11

ccrcrcR ttt
+

−+=  and 

))(( ,1,2
21

21
igttt PPrr

cc
ccQ −−
+

= , then from Eq. (6), get  

ttttt QYYRY +−−= −+ 11 )( ωψ      (12) 

Obviously, Yt is also a random variable, and DYt=DXt, 
EYt=EXt-µ. Since  and  are two independent 
uniform random number ranged in [0, 1], it's obvious that 

tr ,1 tr ,2
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Because DRt, DQt and E(RtQt) are all constants and are 
independent on time step t, we can let R=DRt, Q=DQt, and 
T=E(RtQt). 

Notice that Yt, Yt-1 are both independent on Rt, Qt, but Yt 
and Yt-1 are dependent. Thus , and  can 
be calculated, as shown in Eqs (13) and (14). 

2
1+tEY )( 1 tt YYE +

We know that . Through simple 
calculation, the iteration equation of DYt can be obtained, 
as shown in Eq. (15). And remember that DYt=DXt, 
EYt=EXt-µ, the iteration equation of DXt can also be easily 
obtained, as shown in Eq. (16). 

22 )( ttt EYDYEY +=
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where  and )1()]([2 ])()[(1)(t 1
22

1 ωµωµµωµ ++−+−−−+−⋅=+ ++ QEXEXTEXEXRg tttt 0)1()0( == gg . 

Both iterative processes {DXt} and {DYt} have the 
same characteristic equation, which is 

0)()( 32223 =−−−+−+− ωλωψωλωψλ RR  (17) 

Before studying the property of iteration sequence 
{DXt}, the property of the characteristic equation is 
studied firstly. Given λD1, λD2, λD3 as the three 
characteristic roots, and let 

32223 )()()( ωλωψωλωψλλ −−−+−+−= RRf  (18) 

then we can determine the intervals in which the three 
roots are located. Remember that we suppose c1+c2≠0, 
which leads to R>0.  

First of all, consider two special cases. 

If ω=0, then two among three eigenvalues are zeros. 
Without loss of generality, let λD2=λD3=0, then 

ωψλ >+= RD
2

1 . 

If ψ=0, i.e. c1+c2=2(1+ω), then λD3=-ω and λD1, λD2 are 
roots of equation . We can get that 022 =−− ωλλ R

ωωλ >++= )4(
2
1 22

1 RRD . Since , 3
321 ωλλλ =DDD

ωλ <2D  must be satisfied. 

Now we will study two general cases. 

If ω>0, it is easily verified that 

0)0( 3 <−= ωf ; ;  02)( 2 <−= Rf ωω 02)( 22 <−=− ωψωf

According to conclusions in elementary mathematics, 
because f(-ω), f(0), f(ω) have the same sign, the number of 
roots in the interval (-ω, 0), (0, ω) must be even. Thus there 
must be one root located in interval (ω, ∞) to satisfy 

. 03
321 >= ωλλλ DDD

If ω<0, it is easily verified that 

0)0( 3 >−= ωf ; ;  02)( 2 <−= Rf ωω 02)( 22 <−=− ωψωf

Likely, according to conclusions in elementary 
mathematics, there must be one root located in the interval 
(ω, 0) and one root located in the interval (0, -ω). The third 
root must be located in the interval (-ω, ∞) to satisfy 

. 03
321 <= ωλλλ DDD

Without loss of generality, suppose 321 DDD λλλ ≥≥ , 

then it is clear that 321 DDD λλωλ ≥≥> , and λD1 must 
be a positive real number. 

Now let's get back to study the property of iteration 
sequence {DXt}. Given DX0, DX1 and DX2 the initial 
conditions, then for any t≥3, we can get the explicit 
representation of DXt, which is shown in Eq. (19). 

It's obviously that the property of iteration process {DXt} 
is totally dependent on the value 

},,max{ 321max DDDD λλλλ = , i.e. 1max DD λλ = , so it's 
necessary to study the relationship between the parameter 
tuple {ω, c1, c2} and λmaxD, which is illustrated in the 
following theorem. 

Theorem 2: Given a threshold λthD>0, if and only if 
thDλω <  and 0)( >thDf λ  are satisfied together, then 

thDD λλ <max . 

Proof: As the above analytical result shows, if 
thDλω <  and 0)( >thDf λ  are satisfied together, then 

λmaxD must be located in the interval ),( thDλω , so 

thDD λλ <max . 

Similarly, if thDD λλ <max , because ωλ >Dmax , so 

λmaxD falls into the interval ),( thDλω , which leads to 

thDλω <  and 0)( >thDf λ .        ■ 

Given a threshold λth≥1, then thD λλ <max  implies 
that thE λλ <max . The reason is as follows. As Theorem 2
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same time, λth≥1 and thλω <  together guarantee 
2
thλω < . Thus thE λλ <max  is guaranteed. 

When considering the situation that c1=c2=c, Fig. 2 
shows three examples of parameter ranges corresponding 
to different threshold λthD. The red(dark) area is the 
parameter range to guarantee λmaxD<1, the cyan(grey) area  
is the parameter range to guarantee λmaxD<0.8, and the 
yellow(light) area  is the parameter range to guarantee 
λmaxD<0.5. 

Now we can study the property of iteration sequence 
{DXt}. Obviously, if λmaxD>1, the sequence will diverge, 
which is not a desired property. If λmaxD=1, the sequence 
will also diverge unless Q(1+ω)=0, which also is not 
desired. If λmaxD <1, then λmaxE<1, too. Thus, if λmaxD<1, the 
expectation sequence will converge to EX=µ and the 

variance sequence will also converge. The convergent 

value can be easily calculated to be 
)1(

)1(
f

QDX ω+
= . 

Based on above analysis, the parameter range to guarantee 
the convergence of iteration sequence {DXt} can thus be 
obtained, illustrated in the following corollary. 
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Figure 2. Parameter ranges to guarantee λmaxD<λthD. The red(dark) area 
corresponds to λthD=1, the cyan(grey) area corresponds to λthD=0.8, and 

the yellow(light) area corresponds to λthD=0.5. 

Corollary 2: If and only if 1<ω  and  are 
satisfied together, iterative process {DXt} is guaranteed to 

converge to 

0)1( >f

)1(
)1(

f
Q ω+ . 
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The parameter range to guarantee the convergence of 
sequence {DXt} is shown in the red(dark) area in Fig 2. 
When sequence {DXt} can converge, the convergence 
speed is determined by λmaxD. 

V Auto-covariance of Particle's Position 

In this section, the auto-covariance sequences of 
particle's position will be analyzed. Given a parameter τ>0, 
according to Eq. (6), and notice that Xt, X t+τ-1 and Xt+τ-2 are 
all independent on  and , we can get the 
iteration equation of , as shown in Eq. (20). 

1,1 −+τtr 1,2 −+τtr
)( tt XXE τ+

Thus the iteration equation of γt(τ) can be obtained, 
which is 

)2()1()( −−−= τωγτψγτγ ttt      (21) 

where ),()( ttt XXCov ττγ +=  is the auto-covariance of 
random sequence {Xt}. The corresponding characteristic 
equation is 

02 =+− ωψλλ        (22) 

Obviously, )()( τγτγ τ−=− tt  and tt DX=)0(γ  are 
satisfied. According to Eq. (21), we can easily obtain that 

)1()1()0()1( 1−−=−−= ttttt DX ωγψωγψγγ . This directly 

leads to . Given λγ1, 

λγ2 as the two characteristic roots, then when t is fixed, for 
any τ≥2, we can get 
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The characteristic equation of auto-covariance sequence 
is the same as that of expectation sequence, thus given 

},max{ 21max γγγ λλλ = , λmaxD<1 also implies that λmaxγ<1. 
At the same time, the value of each γt(τ) depends on all 
values of DXT(1≤ T≤ t). Thus, if iteration sequence {DXt} 
can converge, then the auto-covariance sequence can also 

converge. For any fixed t, when τ→∞, γt(τ) is guaranteed 
to converge to 0. And when t→∞, the convergent values 
are 

⎪⎩
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where )0()1( 11 γλγ γ−=v , )1(2 γ=v , 
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VI Discussions 

In preceding sections, we studied the simplified 
one-dimensional one-particle swarm system, which is in 
stagnation. It is easy to extend the result to the original 
D-dimensional M-particle swarm system because each 
particle evolves independently and different dimensions 
are independent. From the analytical results derived above, 
it is clear that when the particle swarm system is in 
stagnation, at any time step t, the trajectory of any arbitrary 
particle follows a stochastic distribution with expected 
value EXt and variance DXt, which are given in Eqs. (11) 
and (19) separately. The auto-covariance of the trajectory 
is also a time-variable function, given in Eq. (23). All these 
rules remain valid until a better position iX

r
 (and thus iP

r
 

and gP
r

) is discovered. When a better position is 
discovered, the new trajectory can be determined again 
after recalculating corresponding coefficients. 

Holland discussed the balance between exploration and 
exploitation that an algorithm must maintain[11]. 
Exploration ability is related to the algorithm's tendency to 
explore new regions of the search space, while exploitation 
is the tendency to search a smaller region more thoroughly. 
Researchers in PSO community used to believe that inertia 
weight balances exploration and exploitation in PSO 
algorithm. But the theoretical results derived in this paper 
give a different new explanation. In our opinion, inertia 
weight can not balance exploration and exploitation by 
itself in PSO algorithm. The factor to balance exploration 
and exploitation should be the value of λmaxD. The larger 
λmaxD is, the stronger is the exploration ability of the PSO 
algorithm. An empirical evidence can be found in [12], 
which shows that the relationship between explore ability 
of PSO algorithm and ω is not monotone. When 
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c1=c2=1.49, the relationship between λmaxD and ω is shown 
in Fig. 3, which is well fitted with the experimental result 
given in [12] if only non-negative ω is considered. 

If given c1=c2=2, which is the case in original PSO 
algorithm, the relationship between λmaxD and ω is also 
shown in Fig. 3. It can be clearly seen that the minimum 
λmaxD appears near ω=0.4, that is just why Shi and 
Eberhart[13] found that ω decrease linearly from 0.9 to 0.4 
is the best choice, and not any other value smaller than 0.4. 
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Figure 3. Relationship between λmaxD and ω. 

VII Conclusions 

This paper studies a particle swarm system which is in 
stagnation. By regarding each particle’s position as a 
stochastic vector, the stochastic process theory is applied to 
analyze the standard PSO algorithm determined by 
parameter tuple {ω, c1, c2}, and the randomness in PSO is 
considered thoroughly. The analytical results give 
important characteristics (including expected value, 
variance, and auto-covariance) of the particle trajectory, 
both in explicit and implicit representations. This result is 
helpful to understand the mechanism of real stochastic 
PSO algorithm. 

This paper also studies the convergent properties of 
expected value, variance, auto-covariance of the particle 
trajectories. The guaranteed convergent conditions are 
derived, and if the sequences can converge, corresponding 
convergent values are also given. 

Some more factors may influence the particle 
trajectories of particle swarm system, but they are not 
studied in this paper. Those factors are needed to be 
considered in future, including velocity clamping, position 
clamping, different kinds of topology, etc. If those factors 

are incorporated, the derived results given in this paper 
may need to be modified. Furthermore, this study focuses 
on the particle swarm system in stagnation, which does not 
consider the interactions between particles. We know that 
the interactions among particles in PSO algorithm is quite 
an important factor that would influence the performance 
of PSO algorithm, thus this factor should be incorporated 
in future. 
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