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Abstract—Particle Swarm Optimization (PSO) is proposed as 

an efficient algorithm for simulation of high speed interconnects 
used in today’s digital applications. First, a generic methodology 
is proposed for high speed interconnects simulation using PSO 
and finally comparisons are made between the performance of 
PSO compared to traditional optimization techniques used in 
high-speed serial bus simulation. 

Index Terms—Particle Swarm Optimization, interconnect 
simulation, link optimization, response surface 

I. INTRODUCTION 
 Article Swarm Optimization has been proposed as a 
viable optimization technique for varieties of engineering 

problems[1]. Recently, PSO has been shown to be a good 
candidate for optimization in microwave and electromagnetic 
applications [2]. This algorithm has shown to be more 
efficient in solving some optimization problem than other 
evolutionary stochastic techniques like GA (genetic 
algorithm). 

PSO is a population based stochastic algorithm developed 
by Dr Eberhart and Dr Kennedy in 1995. It is inspired by the 
social behaviour of a swarm of birds in search of optimum 
place for food; this algorithm builds group momentum 
towards the most optimum point in multi-dimentional solution 
space. 

General algorithm for PSO is as follows: 

1) Decide the particle population size N. Initialize the 
particle location and velocity randomly. 

P= (P0, ….Pi, …PN)
V= (V0, ….Vi, …VN)

2) Find the system response each particle. 
F(P) = (F(P0), …F(Pi), …F(PN))

3) Keep track of the locations of best fitness for each 
particle. 

P= (P0(best), ….Pi(best), …PN(best)) 

4) Continuously keep track of the position of the global 
best fitness. 

Pg(best) = max p P(F(P)) 

5) Modify the particle velocity based on previous best and 
global best positions: 

Vi(new) = Vi + 1 (Pi(best) - Pi) + 2 (Pg(best) - Pi)

6) Modify particle locations: 
Pi(new) = Pi + Vi(new) 

7) Go back to step 2 if terminating condition is not met. 

As the core frequency of the CPUs continue rise each year, IO 
operation are also trying to keep pace by moving up higher in 
Gb/s (gigabits per second) regime [3]. Today, most of these 
high speed IO links are implemented using low voltage high 
bit rate differential links [4]. It’s extremely important to 
properly model each components of the serial link and check 
the performance of the link for an acceptable bit error rate 
(BER) using computer simulations. A typical high speed serial 
link consists of few building blocks such as package, socket, 
motherboard traces, vias, connector etc. Each of these building 
blocks will have some parameters which are electrically 
significant and need to be included in the link simulations. 
Some examples of these parameters include impedance and 
length for transmission lines, silicon process corners for the 
driver and receivers etc. Unfortunately, these parameters can 
assume any value within a tolerance range and as such they 
can vary from system to system. A unique set of values for 
these parameters constitutes a corner case. One of the major 
problems for any link simulations has been the large number 
of possible corner cases, even for a relative small number of 
variables. For example, a 12 variables serial link with each 
variable having three distinct values will require 3^12 = 
531441 distinct simulation cases if a grid-based simulation 
technique was used. To circumvent this difficulty, many 
alternatives techniques have been proposed and used, such as 
Monte Carlo, Response Surface Method (RSM) and neural 
networks [5]-[7]. 
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II. NEW HIGH SPEED SIMULATION METHODOLOGY 
1) Identify key variables 
2) Find the dynamic range of each variable 
3) Identify the fitness function 
4) Use PSO algorithm to find the corner condition which gives 
least desirable response (worst case corner condition) 

1) The first step in this new methodology is to find the top 
level blocks that make up the high speed serial link (Fig 1). A 
typical high speed serial link consists of a driver buffer, driver 
package, motherboard, connector, backplane, connector, 
motherboard, receiver package and receiver buffer. (see 
diagram) 

Fig 1. Typical components in a high speed bus 

Each of the above components will have multiple variables 
that affect the performance of the link. For example, a driver 
can have rise-time/fall-time, output pad capacitance and 
termination values as variables. Furthermore, especially true 
for driver and receiver circuits used in today’s high speed 
digital applications; there are other parameters, which are 
under user’s control. For example, pre-emphasis tap settings 
of a driver can be tuned to optimize the link performance by 
the user if desired. Irrespective of a variable’s controllability 
by the user, simulation engineer should note down all 
variables pertaining to each block.  
Simulation engineer should then make some engineering 
judgment or preferably, use some effect screening method 
(such as RSM) to find out which are the significant variables 
that need to be swept in simulation and which can be held 
constant. 

2) One of the most challenging parts of any simulation process 
is to find dynamic ranges for each of the variables that need to 
be swept in simulation. Some of the variables are governed by 
specification while others need to come from the component 
designer. For example, motherboard trace impedance is pretty 
much guaranteed by PCB fabrication house to be within 
certain percentage of the nominal value. Other times, it may 
not be obvious and the simulation engineer will have to make 
some engineering judgment. 
One challenge that arises while using PSO for electrical 
simulation is the fact that some of the variables can only be 
swept in discrete steps. For example, even though 
motherboard impedance is continuous in nature, typically 
simulation engineers will only have discrete models associated 
with minimum, typical and maximum impedances. Since 
fundamental PSO algorithm treats each variable as continuous 
in range, it expects the simulation engineer to supply models 
for impedance that could lie anywhere in its dynamic range.  
To solve this problem, we propose the following scheme: 

Fig 2. User has only 90, 100 and 110 ohms transmission line models so PSO 
will snap to one of these models based on the value of new impedance. 
Arrows indicate snapping action.  

Let’s assume that the nominal mother board differential 
impedance was 100 ohm and since the manufacturing house 
spec their tolerance to be +/- 10%, dynamic range of this 
variable is from 90 ohm to 110 ohm as shown in Fig 2. We 
then divide this dynamic range into three equal segments (90-
96.6), (96.6-103.4) and (103.4-110). These three segments 
now dictate the PSO which of the three discrete transmission 
line models that PSO should pick. For example, if one of the 
particle in PSO wants to assume the value of 93 ohms for 
motherboard impedance, PSO algorithm checks which of the 
three regions the new value lies and since 93 ohms lies in 90-
96.6 region, PSO will be forced to choose 90 ohm (minimum 
impedance corner) as the variable value and use 90 ohm 
model accordingly. 

3) Since the aim of our simulation is to determine the worst 
possible response (for example, eye height or eye width), it’s 
difficult to find an objective fit function. However, there are 
few methods in which we can specify the terminating 
conditions. One simple way is to specify a threshold value for 
the system response and as soon as the system response goes 
below the threshold, PSO will stop further processing. 
Another better approach to this problem is to keep track of the 
responses that PSO found for last N epochs and calculate how 
much change has happened since last N epochs. If the PSO 
best value stays same for last N epochs, then we can assume 
that PSO has found its best response and terminate the 
simulation (Fig 3). This second method was used in our 
simulations to stop PSO. 
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Fig 3. PSO will terminate if the response from last N epochs do not change 

4) Using PSO algorithm simulation can now proceed until the 
terminating criterion is met.  

Some of the parameters that were used in our simulations are: 

Inertia: It was gradually swept from 0.9 to 0.4 as the epoch 
progressed. This parameter adjusts the behavior of the swarm 
by controlling how fast a particle should change its velocity 
and direction to match the global best response location. 

Number of particles: Eighteen particles were used in our 
simulation exercise.  

Number of epochs: Epochs refer to the each instance when all 
particles report their findings and a new global best location is 
calculated. After each epoch, particles, change their direction 
and velocity to be reflect the location of new global best. As a 
starting point, 100 epochs were allowed in the simulation. 
However, if the response from last 10 epochs did not change, 
we did not wait for the completions of 100 epochs. Instead 
PSO was simply terminated. 
     
PSO can be implemented with different boundaries for the 
variables: reflecting boundary, absorbing boundary or 
invisible boundary (Fig 4). This research was based on the 
reflecting boundary for the variables. In reflecting boundary 
scheme, if a variable’s new position (calculated from existing 
position plus the new correction) goes outside the dynamic 
range of the variable, it will simply reflect from the boundary 
it is trying to cross. This will make sure that the variable stays 
inside its dynamic range. 

Fig 4. Different boundaries for variables values

III. RESULTS AND COMPARISON 
Comparison was made between traditional RSM based worst 
case prediction and PSO based worst case prediction. A 
typical high speed channel with two connector three board 
topology was chosen. Total of 13 variables were picked and 
simulated using RSM approach. Same variables were swept in 
PSO approach as well. PSO Tool, written in Visual Basic was 
used for automating all the steps of PSO algorithm (Fig 5). 
This tool automatically launches SPICE simulations, waits for 
all the cases (particles) to complete their simulations, post-
processes the waveform to extract eye height and eye width. It 
then calculates the global best position and finds new positions 
and velocities for all the variables. This loop continues until 
the terminating condition is met. Figure 5 shows how the 
global best converges to a stable value very quickly.  For 
RSM, SPICE simulation was done for different corner cases as 
dictated by RSM and post-processing was done on the 
resulting waveforms to obtain the response, eye width in our 
case.  
A three board two connector CSI link topology was used for 
the simulation. The link operated at 6.4 GB/s speed. 

Fig 5. Screen shot of the PSO Tool which automated all steps of PSO 
algorithm.

Best response does not change for last N epochs 
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Result I: 

TABLE 1. WORST CASE RESPONSE FOUND FROM RSM AND PSO. 
ALSO SHOWS THE VALUE OF VARIABLES IN THE WORST CASE. 

Variable Min Max RSM PSO 
Driver IO cap(ps) 0.6 1 1 0.98 
RX IO cap(ps) 0.4 0.7 0.7 0.67 
TX termination(ohm) 88 112 112 110.9 
RX termination(ohm) 88 112 106 109 
Pkg length(inch) 0.3 1.25 1.25 0.9 
MB1 length(inch) 4.2 6.2 6.2 4.3 
MB2 length(inch) 4.8 6.8 6.8 5.5 
Backplane length(inch) 4.9 6.9 6.9 5.76 
Backplane Z(ohm) 82.7 100.8 82.7 82.7 
MB1 Z(ohm) 81.3 98.9 98.9 98.9 
MB2 Z(ohm) 82.6 100.4 100.4 100.4 
Pkg1 Z(ohm) 80 101 101 101 
Pkg2 Z(ohm) 80 101 101 101 
Response     
Eye Width   150ps 145ps 

As shown in Table 1, PSO predicted worse case eye width of 
145ps whereas RSM techniques predicted worse case of 
150ps. Also PSO not only predicted worse response than 
traditional RSM techniques but it also predicted different 
corners than RSM. While RSM predicted the extremes of the 
lengths as the worse case conditions, PSO found worse case 
somewhere in between the extremes of the length.  This means 
that PSO is capable of taking into account resonances in the 
system. Also PSO output is based on actual simulation and not 
based on prediction modelling. So the worse case predicted by 
PSO is real whereas the prediction from RSM may not be 
accurate, all depending on the how well the RSM model fit is.  

Result II-a 

TABLE 2. WORST CASE RESPONSE FOUND FROM RSM AND PSO.  
ALSO SHOWS THE VALUE OF VARIABLES IN THE WORST CASE. 

Variable Min Max RSM 
PSO 

(global) 
Driver IO cap(ps) 0.6 1 1 0.99 
RX IO cap(ps) 0.4 0.7 0.7 0.69 
TX termination(ohm) 88 112 112 88.6 
RX termination(ohm) 88 112 112 110.2 
Pkg length(inch) 0.3 1.25 1.25 0.67 
MB1 length(inch) 3.2 5.2 4.2 5.19 
MB2 length(inch) 4.8 6.8 6.8 5.9 
Backplane length(inch) 4.9 6.9 6.9 6.4 
Backplane Z(ohm) 82.7 100.8 100.8 82.7 
MB1 Z(ohm) 81.3 98.9 81.3 98.9 
MB2 Z(ohm) 82.6 100.4 100.4 100.4 
Pkg1 Z(ohm) 80 101 101 101 
Pkg2 Z(ohm) 80 101 101 101 
Response     
Eye Width   84ps 79ps 

As shown in tables above, worst case eye width predicted by 

PSO is really worse than that predicted by RSM. One of the 
limitations of RSM technique is that is tries to fit a 
mathematical model based only on the minimum, typical and 
maximum values of a variable and as such any severe 
resonance conditions occurring at in-between values will be 
missed. PSO does not suffer from this problem.  

Result II-b 

We completed another set of simulation where the worst case 
parameter value predicted by RSM in Table 2 was used for all 
the parameters except the lengths. PSO was used only to 
sweep length parameter as opposed to sweeping all 
parameters, as shown in Results II-b. 

TABLE 3. WORST CASE RESPONSE FROM PSO WHEN ONLY 
LENGTHS WERE SWEPT (OTHER VARIABLE VALUES WERE FIXED 
BASED ON RSM RESPONSE FROM TABLE 2). 

Variable Min Max RSM 
PSO 

(RSM WC) 
Driver IO cap(ps) 0.6 1 1 1 
RX IO cap(ps) 0.4 0.7 0.7 0.7 
TX termination(ohm) 88 112 112 112 
RX termination(ohm) 88 112 112 112 
Pkg length(inch) 0.3 1.25 1.25 1.25 
MB1 length(inch) 3.2 5.2 4.2 3.4 
MB2 length(inch) 4.8 6.8 6.8 6.1 
Backplane length(inch) 4.9 6.9 6.9 5.0 
Backplane Z(ohm) 82.7 100.8 100.8 100.8 
MB1 Z(ohm) 81.3 98.9 81.3 81.3 
MB2 Z(ohm) 82.6 100.4 100.4 100.4 
Pkg1 Z(ohm) 80 101 101 101 
Pkg2 Z(ohm) 80 101 101 101 
Response     
Eye Width   84ps 75ps 

When we fixed all the variables (except lengths) to RSM 
worst corner and only swept the PCB routing lengths in PSO, 
then we observed that PSO’s final eye width number was 
smaller than global PSO worst case number.  This shows that 
PSO can be an effective tool in capturing worst case corner in 
the presence of severe resonance arising at different lengths of 
motherboard traces. 

RSM/PSO hybrid: 

Since PSO is new in the area of signal integrity simulation for 
high speed busses, hybrid approach utilizing both PSO and 
traditional optimizations techniques seems a very reasonable 
approach. This approach uses traditional optimization 
techniques such as RSM to find the worst corners. Then it 
fixes all parameters that are less likely to contribute to any 
resonance conditions and run PSO for only those variables that 
might cause resonance. In our case, when we used RSM 
method to find the worst corner and use PSO to do length 
sweeps only, we found much worse eye width number than 
predicted by RSM alone. 
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Global versus local PSO: 

As shown in the example above, PSO can be allowed to 
change all variables to find the worst case (global PSO) or we 
can fix most of the variables to some known settings and only 
allow PSO to vary few parameters (local PSO). However, 
having a large number of variables may take a longer time for 
PSO to converge successfully. Local PSO are very useful 
when we want to capture resonance conditions in a channel. 
For example, traditional optimization techniques usually do a 
good job in predicting the worst case corners for most of the 
parameters except transmission line lengths. Since traditional 
optimization techniques only take minimum, typical and 
maximum lengths into consideration when doing the curve 
fitting, any very high order resonance conditions happening in 
between these lengths can be missed. With PSO, one can fix 
all the parameters and only sweep the transmission line 
lengths and still capture the resonance conditions.   

IV. CONCLUSION

PSO was used in determining worst case channel response 
and associated variable corner conditions for a very high speed 
serial link. Compared to traditional RSM based approach, PSO 
was able to predict a worse response at an entirely different 
variable corner conditions. Also PSO was able to predict 
worse resonant conditions from length sweep whereas 
traditional RSM approach missed those severe resonance 
conditions. 
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