
Solving Multi-agent Control Problems Using Particle Swarm
Optimization

Maciej A. Mazurowski, Student Member, IEEE and Jacek M. Zurada, Fellow, IEEE

Computational Intelligence Laboratory
Electrical and Computer Engineering Department

University of Louisville
Louisville, KY 40292

{mamazu01, jmzura02}@louisville.edu

Abstract— This paper outlines an approximate algorithm
for finding an optimal decentralized control in multi-agent
systems. Decentralized Partially Observable Markov Decision
Processes and their extension to infinite state, observation and
action spaces are utilized as a theoretical framework. In the
presented algorithm, policies of each agent are represented by
a feedforward neural network. Then, a search is performed in a
joint weight space of all networks. Particle Swarm Optimization
is applied as a search algorithm. Experimental results are
provided showing that the algorithm finds good solutions for
the classical Tiger Problem extended to multi-agent systems, as
well as for a multi-agent navigation task involving large state
and action spaces.

I. INTRODUCTION

Many real world problems can be modeled as multi-agent
control problems. Known examples are air traffic control,
network management, distributed vehicle monitoring and
robot control [1]. In essence, a problem, where decisions
have to be made about actions of more than one entity
in the system can be described in a multi-agent systems
framework. Decision making in multi-agent systems has been
gaining increasing attention over the past years [1]. A variety
of theoretical frameworks have been proposed to formulate
such problems [2], [3], [4], [5], and various methods were
examined to solve them [2], [6], [7], [8].

This article addresses the finding of optimal acting policies
for agents given a specific task. A simple centralized solution
for these problems is to introduce one decision-making entity
which acts according to its knowledge about the system state.
When a system state is fully observable, this problem can be
formalized as the problem of finding an optimal solution for
Multi-agent Markov Decision Process (MMDP) [9]. MMDP
is a simple extension of Markov Decision Process, where
an action is replaced by a joint action of all agents in
a system. Standard single-agent methods such as Dynamic
Programming can be applied to solve these problems.

Centralized control as presented above, however, has
multiple drawbacks. First, the entire system relies on one
decision-making entity, which limits reliability of the sys-
tem. Second, the information has to be exchanged between
the decision-making entity and the entities which perform

actions, which usually introduces an additional cost and again
reduces system reliability.

To overcome these drawbacks, decentralized models were
developed. In these models, decisions about actions are made
by each agent individually according to its own observations.
The observations are usually limited and do not cover a
whole system state. A planning stage, however, can be
performed in both the centralized and decentralized manner
(one learner and multiple learners, respectively). One such
model, called Decentralized Partially Observable Decision
Process (Dec-POMDP) [3], [4], and its extension to infinite
observations and actions spaces will be described in details
and used as a theoretical framework in the following parts
of this article.

To solve the problem, Particle Swarm Optimization (PSO)
[10] will be used. Some applications of PSO to multi-
agent systems have been reported in the scientific literature.
Usually the same principles as those used in PSO are used
to optimize collective behavior of agents in the system (e.g.
[11]). Another example applications of PSO that are related
to the research presented in this article are strategy search
for the Iterated Prisoners Dilemma [12] and policy search
for single-agent Markov Decision Processes [13].

Here, PSO algorithm is applied to sets of feedforward
neural networks in order to find approximate solutions for
decentralized multi-agent control problems. PSO has been
used multiple times to optimize weights of a neural network
[14], [15], [16], [17] with satisfactory results. Here, it will
be applied to train multiple feedforward neural networks at a
time, where each network represents the policy of one agent.

The proposed algorithm is an approximate one. It means
that it is not guaranteed to find an optimal solution (neither
local nor global). The need for approximate algorithms
arises, however, due to the fact that any algorithm guaranteed
to find an optimal solution is computationally prohibitive
even for moderately large state and action spaces [3], [4].

The article is organized as follows. The first section covers
an introduction to Particle Swarm Optimization. The second
section offers more detailed description of Dec-POMDP. The
third section demonstrates how PSO can be applied to solve
Dec-POMDP. The final sections show the application of the

105

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

proposed approach to two problems: a multi-agent Tiger
Problem and a navigation on the plane problem.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO), introduced in 1995 by
Kennedy and Eberhart [17], is an optimization tool inspired
by the observation of bird flocking and fish schools, where
interesting collective behavior emerges on simple individual
policies. In PSO, a domain space is searched by a set of
particles. Each particle is characterized by its position �xi

and velocity �vi. Fitness of each particle can be evaluated as
f(�xi), where f is a fitness function that is being optimized.
For each particle, its best position �pi is stored. Each particle
also has access to the best position reached by particles in
its neighborhood, �pg .

The algorithm proceeds as follows. First, positions and
velocities of all particles are set randomly in a certain range.
Then, in each iteration the velocity components of particles
are modified according to the following formula [10] [18]:

vid = wvid + ϕi1(pid − xid) + ϕi2(pgd − xid)

where ϕ1 and ϕ2 are random numbers between 0 and c1,
and 0 and c2, respectively and w is an inertia coefficient.
Thus, in general, velocity is adjusted toward the locally
best value and the globally best value in a partially random
manner. The position of a particle at the end of each iteration
is updated as

xid = xid + vid

Both �xi and �vi can be arbitrarily bounded. The algorithm
stops when certain criterion on �xi (usually on its fitness
f(�xi)) is satisfied. The output of the algorithm is the best
position found.

Even though Clerc and Kennedy in [10] proved conver-
gence of the algorithm in special cases, PSO in general has
not been proven to converge to a global optimum. It is,
however, widely used because of its simplicity and often
excellent results for various problems. In particular, it has
been reported to provide good results in optimizing weights
for neural networks [17].

III. DECENTRALIZED PARTIALLY OBSERVABLE MARKOV

DECISION PROCESSES

Here, PSO will be used to find optimal solutions for
decentralized multi-agent control problems. As a formal
framework, Decentralized Partially Observable Markov De-
cision Processes (Dec-POMDP) will be used. The proposed
algorithm, however, can be applied to other problems such as
the Partially Observable Stochastic Game [5]. Dec-POMDP
was introduced in [3] and further elaborated in [4].

Decentralized Partially Observable Markov Decision Pro-
cess for two agents (for simplicity) is a tuple

(S, A1, A2, P, R, Ω1, Ω2, O, T, K)

where

• S is a finite set of states
• A1 and A2 are finite sets of actions for agents α1 and

α2

• P : S×A1×A2×S → [0, 1] is a transition probability
function, which assigns a probability for a transition
from each step to another given actions taken by agents

• R : S × A1 × A2 × S → R is a reward function.
R(s, a1, a2, s

′) is a reward provided for the system,
when actions a1 and a2 are taken and the system
changes its state from s into s′.

• Ω1, Ω2 are sets of possible observations of agents
• O : S × A1 × A2 × S × Ω1 × Ω2 → [0, 1] is an

observation probability function. O(s, a1, a2, s
′, o1, o2)

is a probability of observations o1 and o2 of agents α1

and α2, respectively, when actions a1 and a2 are taken
in a state s and system changes its state into s′.

• T is a horizon.
• K is a threshold value.

The solution for the problem is a joint policy

π = (π1, π2)

where

πi : Ωi → Ai (1)

for i ∈ {1, 2}. πi are called local policies, because they
map sequences of local observations into actions of an agent.

In centralized control, actions can be taken based on the
system state or the set of observations of all agents. Here
each agent, when deciding on an action, has access only to
its own partial view at the world.

Even though the solution for this problem is a tuple of
local policies, the solution itself can be found in a centralized
manner. It has been shown that algorithms finding an exact
solution for this problem are intractable even for moderate
amounts of agents, states and actions (problem is NEXP
complete in the worst case [5], [4]). Thus, there arises a need
for the approximate solutions. The authors suggest using
Particle Swarm Optimization to find such solutions.

In this article, in addition to the Dec-POMDP presented
above, the authors will consider its extension (which makes
it harder to solve, but more general), where sets S, Ωi and
Ai can be infinite for all i.

It can be noted that a method of solving Dec-POMDP
can be applied to many other problems that can be treated as
special cases of Dec-POMDP. For example, when the system
state is fully observable for all agents, Dec-POMDP can be
simplified to Dec-MDP. When there is only one agent in the
system, Dec-POMDP becomes POMDP. And finally, when
both conditions are satisfied, we deal with the simple MDP.
The proposed algorithm can be applied to all these variations.

IV. POLICY SEARCH AND REPRESENTATION OF JOINT

POLICIES

One of the approaches to solving multi-agent problems is
a direct policy search. In such approach the joint policies are

106

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

evaluated one by one, where the choice of policies to evaluate
is a matter of a particular algorithm. Solving a problem in
this way is clearly centralized, i.e. behaviors of agents are
being developed all at a time by a single learning algorithm.
Because of the form of policies (see (1)), however, control
stays decentralized.

The simplest approach to a direct policy search is to
evaluate all possible joint policies and choose the one with
the best value (the brute force approach). It is, however,
usually intractable to search through all the policies, even for
a moderate amount of states, actions and agents. A simple
example can be given. A number of joint policies for the
problem is equal to NNSI

A where NA is a number of possible
actions, NS is a number of possible observations of each
agent (for this example it is assumed that agents are homoge-
nous) and I is a number of agents. It can be easily calculated
that for the simple task of navigation in a 10×10 grid-world
with 4 possible actions of each of two agents the number of
joint policies reaches 10120. Evaluating this amount of joint
policies is clearly computationally prohibitive. It follows that
finding an optimal joint policy in this way is impossible when
amount of states or actions is infinite, as there is infinite
amount of joint policies for these cases.

Nair et al. in [6] suggest Joint Equilibrium-Based Search
for Policies. In this algorithm policies of all agents, except
for one, are fixed and the best policy for the unfixed agent is
found either by an extensive search or by using Dynamic
Programming. This method is guaranteed to find a local
minimum although there is still a large computational ex-
pense (which implies intractability for large state and action
spaces).

Here, the authors suggest using Particle Swarm Optimiza-
tion to search for the best solution in a joint policies space.
In order to do so, joint policies must be represented in terms
of position of the particle. Thus, the following function must
be constructed:

m : �x → π

The question arises as to why an entire joint policy is
represented in a search space and why not represent one
local policy at a time and optimize it. The reason is that that
many multi-agent tasks require cooperation. This need for
cooperation, in turn, implies that the overall optimal local
policy for each agent may not exist and each policy can
be evaluated only in the context of policies of other agents
(unless special conditions on Dec-POMDP are satisfied).
Thus, one can not find optimal local policies individually.

A simple example can be given. Two agents are approach-
ing each other and their task is to pass each other without
collision. They have two possible actions: to go on the right
side of the road or to go on the left side. Neither action is
better than the other. A choice becomes preferable only when
the action of the other agent is known. Representing all the
policies in one space allows for the fitness function to reflect
a value of all local policies together (the authors however do

not claim that this is the only appropriate approach to the
problem).

The task of finding a function m seems to be crucial for the
problem. The representation should satisfy some conditions
in order to increase a chance for PSO to find a good solutions.
First, the dimensionality of �x should not be too large. Second,
similar �x should correspond to similar joint policies. The
second heuristic allows the structure of an optimized function
in a position space not to be completely random and may
make the search easier.

One simple approach to construct a function m is to
choose a dimensionality of �x equal to the number of agents
and to represent the policy of each agent in terms of the
value of one component of �x. This mapping, however, has
major drawbacks. The amount of policies for an agent is
usually very large, which means dividing a finite range into
a large number of parts (NNS

A), which results in tiny areas
corresponding to one joint policy. Also, any representation
of policy on the range will (at least occasionally) assign
similar values of a component of �x to very different policies.
These two characteristics of analyzed mapping will cause
significant difficulties in finding a good solution by PSO.

Another simple approach is to assign one component of �x
to each state of each agent and to represent actions performed
in each state in terms of values of components. This will
yield NSI components. A range of each component will
have to be divided into NA brackets, each corresponding
to one action. This method is free of both drawbacks of the
previous approach. It results, however, in high dimensionality
of search spaces and does not allow for infinite state spaces.

The approach suggested in this article makes use of neu-
ral networks as parametric approximators of policies. This
representation has been presented in the literature on both
single-agent and multi-agent learning. The policy of each
agent can be represented using a feedforward neural network
in the following way: state sequences correspond to inputs
of a network and actions are determined on the basis of the
output of the network. Exact relations between observation
sequences and inputs and between actions and outputs can
be chosen depending on the problem. Some suggestions are
given below.

The number of inputs can be simply equal to the maximum
length of a state sequence. If the current state sequence avail-
able to an agent is of the length n and the maximum length
is m, 0 (or any other number which does not represent any
state) can be provided as all inputs from n + 1 to m. When
a neural network is used, a more natural representation of a
state can be obtained. For example, an agent’s coordinates
on the plane can be provided as two inputs of a network. In
the case of a sequence, two inputs would be needed for each
element of the sequence.

There is also a large freedom of choice, in choosing
correspondence between actions and outputs of a neural
network. It can be done by assigning one action to each
output and choosing the output with the greatest value. One
can also use only one output and the action can be determined

107

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

on the basis of its value (this option allows for an infinite
amount of actions).

A neural network (its weights, architecture and assumption
about representation of states and actions) uniquely deter-
mines a policy. When a neural network for each agent is
found, a joint policy is known. When the architecture of the
NN is known, each network can be represented as a vector
of weights. To represent a tuple of neural networks, the set
of weights of all the networks must be used. This vector
becomes an �x for the PSO and thus a search is performed in
weights space for for all the networks. The dimensionality
of a resulting search space is

∑I
i=1 Nwi where Nwi is a

dimension of �wi, i.e. a vector of weights of an agent’s αi

network.
In the PSO algorithm, a reward function is used to con-

struct a fitness function. For each joint policy π a fitness
function is defined as f(m−1(π)) =

∑T
t=1 E(rπ,t) where

rπ,t is a reward received in a time t, when a joint policy π
is followed. The expected value of rπ,t depends on functions
R, P and O. Thus, fitness simply describes an average reward
received when a joint policy is followed. In the optimization
process the authors use a generic version of PSO presented
in Section II.

V. EXPERIMENTAL RESULTS

In the experimental section two problems are presented.
The first problem is the classical Tiger Problem expanded
to multi-agent systems. It is shown that, even though the
problem presents difficulties for the algorithm proposed in
this article, the algorithm finds good solutions. The second
problem is a problem of coordinated navigation, where two
agents have to meet on a plane with obstacles. It will be
discussed how properties of this problem make the proposed
algorithm very suitable to solve it, and it will be shown that,
in fact, good solutions were found.

A. Tiger problem

The tiger problem can be considered as classical in
research on single-agent learning in partially observable
environments. It has been extended to multi-agent systems
by Nair et al. in [6].

In the multi-agent version of the problem two agents are
standing together in front of two doors. Behind one door
there is a tiger and behind the other door there are treasures.
Thus there are two states of the system: SL and SR. Each of
the agents in each turn receives one of two local observations
and may perform one of three actions: open either door or
listen. More formally:

• Ω1 = Ω2 = {HL, HR}
• A1 = A2 = {OpenLeft, OpenRight, Listen}
If both agents listen, then in the next turn they receive

observation corresponding to the state of the system (this
is a minor simplification of the problem, when sequences of
only two observations are taken into account; in the classical
formulation, there is uncertainty in acquiring information
about the system state). Thus, if the state is SL, they receive

the observation HL and similarly for SR. If they did not
listen in the previous turn, they receive observations HL and
HR with probabilities 0.5.

If either agent opens a door to the room with the tiger,
they both receive a large penalty (smaller, when both do it
at the same time). When either of them opens the door to a
treasure, while the other door is closed, they receive a reward
(greater, when both open the door at the same time). There
is a small cost when they both listen.

The problem is to find an optimal set of local policies
for the agents, thus one that guarantees the greatest expected
reward. This problem is a finite horizon problem and can
be formulated for any amount of turns. In this experiment,
two turns will be taken into account. For more details on the
problem see [6]

It must be noted that this problem has characteristics which
make it difficult for the presented algorithm. First, the fitness
function is not continuous in the weight space. Because of
the finite number of policies and continuous weight space,
certain subspaces of the weight space correspond to the same
policy, and thus to this same fitness value. Such ”flat” regions
may make a search harder. Second, similar joint policies
in this problem may correspond to a very different average
reward and thus very different fitness. Since similar policies
correspond to similar vectors in a search space, the resulting
fitness function may contain numerous very steep and narrow
hills and valleys, which again make the search harder. The
purpose of this experiment is, however, to show that even for
such task, good solutions can be found frequently.

To find a solution, two neural networks with the same
structures were used, one network for each agent. Each neural
network had two inputs 10 hidden neurons and three output
neurons. Each input corresponded to one observation in a
sequence. If a sequence consisted of only one observation, a
value of 0 was provided to the second input. There was one
action assigned to each output. The action with the largest
corresponding output value was chosen.

As described in the theoretical section, all weights of all
neural networks (2 in this case) serve as a domain space for
the PSO algorithm.

The following test was performed: the algorithm was
executed 100 times for a limited amount of iterations and
the final result (expected reward) was noted. Then a random
policy search was executed 100 times with the same amount
of evaluated policies. Fig. 1 presents the distributions of the
results of both PSO and random methods.

It can be seen that the proposed algorithm is capable of
finding an optimal joint policy, which in this case corre-
sponds to the expected reward of 144. This joint policy
was found however in only 8% of cases. It is also visible
that suboptimal policies corresponding to expected rewards
of 100 and 122 are found in about 60% of cases, which
shows that the algorithm can provide with large probability
a good suboptimal solution for this problem. In addition,
one can see that the solutions are not found by accident
and the use of PSO in the policy search process is justified.

108

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

34 56 78 100 122 144
0

10

20

30

40

50

60

reward

am
ou

nt
 o

f p
ol

ic
ie

s

a
b

Fig. 1. Distribution of the results of a) the proposed algorithm and b)
random policy search

Comparison of the results shows that the proposed algorithm
offers significantly better results than a random policy search.

B. Navigation task

The second problem analyzed is one of coordinated nav-
igation on a plane. Two agents (robots) start at position (5,
0.2) for Agent 1 and position (5, 7.5) for Agent 2. Their
task is to get as close to each other as possible. There are
walls between agents as shown in 3. Agent 1 can move a
distance of 0.1 and agent 2 can move by the distance of 0.12
in each turn. Both agents can move in any direction and can
observe their own positions. A more formal description of
observation and action spaces follows:

• Ω1 = Ω2 = [0, 10]× [0, 10]
• A1 = {aβ,0.1 : β ∈ [0, 2π]}
• A2 = {aβ,0.12 : β ∈ [0, 2π]}
where aβ,z is the action of moving on the angle β by

the distance z. It is clear that in this case the amount of
possible observations and amount of possible actions for each
agent are infinite. This fact makes it impossible to perform
an exhaustive policy search, because of the infinite amount
of resulting policies for each agent and thus infinite amount
of joint policies. The JESP method presented in [6] is clearly
inapplicable as well.

In general, any algorithm guaranteed to find an optimal
solution is intractable in this case. It is enough to treat the
spaces Ωi and Ai as finite but arbitrarily large and apply the
results from [3] and [4] to obtain this conclusion.

Here, one heuristic will be applied (all the comments
above hold, even when this heuristic is applied). The search
will be limited to memoryless policies also called reactive
policies. Memoryless policies are simply functions that map
current observations into actions, thus π : Ω → A. This
heuristics is based on the assumption that for this task the
information about the previous observations is not necessary

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

iteration number

fit
ne

ss

Fig. 2. Learning curve for the navigation task

to obtain an optimal behavior. This search limitation can be
applied for each problem. In many tasks, however, memory-
less policies provide poor results. On the other side, however,
such limitation make the problem of finding policies easier.
Nevertheless, it stays intractable for exact algorithms (at least
NP-Hard) and JESP. It will be shown that the algorithm
presented here will find good solutions for the problem.

The same neural network structure was used for both
agents. Each network had two inputs, each corresponding to
one coefficient of a position of the agent on the plane, and
one output. The value of the output determined the angle
of movement for the agent. There were 10 neurons in the
hidden layer of each neural network.

The following parameters have been used for the PSO
algorithm: w = 0.4, c1 = 0.8, c2 = 0.6. Iterations limit
was set to 100 and population size was 2000.

Fig. 2 presents a learning curve for this task (in a very
successful run of the algorithm). A reward here is a change
of distance between agents (the larger the change, the better
the joint policy). It can be seen that the joint policy with
value about 6.5 is found after 50 iterations. Fig. 3 presents the
paths of the agents when the best joint policy at the moment
is followed (local policies are followed by agents individ-
ually) in four moments in the learning process. Significant
improvement can be observed in each pictured iteration.

To conclude it can be said that the algorithm is capable
of finding a very good solution for this problem. It also
consistently produces good results in each run (an average
reward of 5.68 with a standard deviation of 0.45 over 100
trials).

VI. CONCLUSIONS AND FURTHER RESEARCH

DIRECTIONS

In this article the algorithm was proposed to find approx-
imate solutions for decentralized multi-agent control prob-
lems. Decentralized Partially Observable Markov Decision

109

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Fig. 3. Paths followed by agents when the best joint policy is used after
a) random initialization of particles b) 10 iterations, c) 20 iterations d) 60
iterations. Dotted lines represent obstacles.

Processes were employed as a theoretical framework. PSO
was used to optimize the weights of a collection of neural
networks simultaneously, with each network representing
one policy, and thus to find an optimal joint policy. The
experimental results show that the algorithm provides good
solutions for the Tiger Problem extended to multi-agent
systems. Real advantages over other algorithms, however,
become apparent when a problem with infinite (or very
large) state and action spaces is considered. The multi-agent
navigation task was used as an example of such a problem
to show the efficiency of the proposed algorithm.

Future research will cover more detailed theoretical con-
sideration on applicability of the algorithm and tests on real-
world problems.

ACKNOWLEDGEMENTS

The authors would like to thank Piotr A. Habas and Dr.
Mehmet K. Muezzinoglu for their helpful comments and
inspiration and Katie Todd for her help in preparation of this
article. The authors would also like to thank three anonymous
reviewers for their valuable comments.

REFERENCES

[1] L. Panait and S. Luke, “Cooperative multi-agent learning: The state
of the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, pp.
387–434, 2005.

[2] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
in cooperative multiagent systems,” in Proceeding of the Fifteenth
National Conference on Artificial Intelligence, Madison, Wisconsin,
July 1998, pp. 746–752.

[3] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of markov decision processes,”
Mathematics of Operations Research, vol. 27, pp. 819–840, 2002.

[4] C. V. Goldman and S. Zilberstein, “Decentralized control of coop-
erative systems: Categorization and complexity analysis,” Journal of
Artificial Intelligence research, pp. 143–174, 2004.

[5] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dynamic program-
ming for partially observable stochastic games,” in Proceedings of the
Nineteenth National Conference on Artificial Intelligence, 2004.

[6] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella, “Tam-
ing decentralized pomdps: Towards efficient policy computation for
multiagent settings,” in Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003,
pp. 705–711.

[7] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling, “Learning to
cooperate via policy search,” in Sixteenth Conference on Uncertainty
in Artificial Intelligence, San Francisco, 2000, pp. 307–314.

[8] S. Seuken and S. Zilberstein, “Formal models and algorithms for
decentralized control of multiple agents,” University of Masschusetts,
Amherst, Computer Science Department, Tech. Rep., 2005.

[9] C. Boutilier, “Sequential optimality and coordination in multiagent
systems,” in Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence, Stockholm, Sweden, July/August 1999,
pp. 478–485.

[10] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, pp. 58–73, February 2002.

[11] F. Chiang and R. Braun, “A nature inspired multi-agent framework
for autonomic service management in ubiquitous computing envi-
ronments,” in Computational Intelligence Methods and Applications,
2005.

[12] N. Franken and A. P. Engelbrecht, “Particle swarm optimization
approaches to coevolve strategies for the iterated prisoner’s dilemma,”
IEEE Transactions on Evolutionary Computation, vol. 9, no. 6, pp.
562–579, December 2005.

[13] H. S. Chang, “An adaptation of particle swarm optimization for markov
decision processes,” in IEEE International Conference on Systems,
Man and Cybernetics, vol. 2, 2004, pp. 1643–1648.

110

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

[14] L. Messerschmidt and A. P. Engelbrecht, “Learning to play games
using a pso-based competitive learning approach,” IEEE Transactions
on Evolutionary Computation, vol. 8, no. 3, pp. 280–288, June 2004.

[15] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle
swarm optimization and backpropagation as training algorithms for
neural network,” in Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, SIS ’03, 24-26 April 2003, pp. 110–117.

[16] R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms
for feedforward neural network training,” in Proceedings of the 2002
International Joint Conference on Neural Networks, IJCNN ’02, 2002,
pp. 1895–1899.

[17] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceeding of IEEE International Conference on Neural Networks, Pis-
cataway, NJ, 1995, pp. 1942–1948.

[18] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225–239, June 2004.

111

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

