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Abstract— A new, almost parameter-free optimization algo-
rithm is developed in this paper as a hybrid of the barebones
particle swarm optimizer (PSO) and differential evolution (DE).
The DE is used to mutate, for each particle, the attractor
associated with that particle, defined as a weighted average of
its personal and neighborhood best positions. Results of this
algorithm are compared to that of the barebones PSO, Von
Neumann PSO, a DE PSO, and DE/rand/1/bin. These results
show that the new algorithm provides excellent results with the
added advantage that no parameter tuning is needed.

I. INTRODUCTION

Particle swarm optimization (PSO) [4], [10] and differential
evolution (DE) [21] are two stochastic, population-based opti-
mization methods, which have been applied successfully to a
wide range of problems as summarized in [5], [11], [16]. It is,
however, the case that the performance of these methods are
greatly influenced by their control parameters. Empirical and
theoretical studies have shown that the convergence behavior
of PSO is strongly dependent on the values of the inertia
weight and the acceleration coefficients [3], [24], [25]. Wrong
choices of values for these parameters may result in divergent
or cyclic particle trajectories. The performance of DE, on the
other hand, is influenced mainly by the scale parameter and
the probability of recombination. Although recommendations
for values of these parameters have been made in the literature
(based on empirical studies) [22], these values are not univer-
sally applicable. The best values for DE control parameters
remain problem dependent, and need to be fine tuned for each
problem.

A number of variations of both PSO and DE have been
developed in the past decade to improve the performance
of these algorithms [5], [11], [16]. One class of variations
includes hybrids between PSO and DE, where the advantages
of the two approaches are combined. This paper presents
another PSO-DE hybrid algortihm, which combines concepts
from the barebones PSO [9] and the recombination operator of
DE. The resulting algorithm, referred to as the barebones DE
(BBDE) eliminates the control parameters of PSO and replaces
the static DE control parameters with dynamically changing
parameters to produce an almost parameter-free optimization
algorithm.

The rest of the paper is organized as follows: Section II
provides a compact overview of PSO and variants used in this
paper, while Section III summarizes DE. The new barebones
DE is presented in Section V. Results are provided in Sec-
tion VI.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) [4], [10] is a stochastic,
population-based search method, modeled after the behavior
of bird flocks. A PSO algorithm maintains a swarm of in-
dividuals (called particles), where each individual (particle)
represents a candidate solution. Particles follow a very simple
behavior: emulate the success of neighboring particles, and
own successes achieved. The position of a particle is therefore
influenced by the best particle in a neighborhood, as well as
the best solution found by the particle. Particle position, xi,
are adjusted using

xi(t + 1) = xi(t) + vi(t + 1) (1)

where the velocity component, vi, represents the step size. For
the basic PSO,

vij(t + 1) = wvij(t) + c1r1j(t)(yij(t) − xij(t))

c2r2j(t)(ŷij(t) − xij(t)) (2)

where w is the inertia weight [19], c1 and c2 are the acceler-
ation coefficients, r1j , r2j ∼ U(0, 1), yi is the personal best
position of particle i, and ŷi is the neighborhood best position
of particle i.

The neighborhood best position ŷi, of particle i depends on
the neighborhood topology used [8], [12]. If a star topology
is used, then ŷi refers to the best position found by the entire
swarm. That is,

ŷi ∈ {y0(t)),y1(t), . . . ,ys(t)}
= min{f(y0(t)), f(y1(t)), . . . , f(ys(t))} (3)

where s is the swarm size. The resulting algorithm is referred
to as the global best (gbest) PSO. For the ring topology, the
swarm is divided into overlapping neighborhoods of particles.
In this case, ŷi is the best position found by the neighborhood
of particle i. The resulting algorithm is referred to as the
local best (lbest) PSO. The Von Neumann topology defines
neighborhoods by organizing particles in a lattice structure. A
number of empirical studies have shown that the Von Neu-
mann topology outperforms other neighborhood topologies
[12], [15]. It is important to note that neighborhoods are
determined using particle indices, and are not based on any
spatial information.

A large number of PSO variations have been developed,
mainly to improve the accuracy of solutions, diversity, and
convergence behavior [5], [11]. This section reviews those
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variations used in this study, from which concepts have been
borrowed to develop a new, parameter-free PSO algorithm.

Van den Bergh and Engelbrecht [24], [25], and Clerc and
Kennedy [3], formally proved that each particle converges to
a weighted average of its personal best and neighborhood best
positions. That is,

lim
t→+∞

xij(t) =
c1yij + c2ŷij

c1 + c2
(4)

This theoretically derived behavior provides support for the
barebones PSO developed by Kennedy [9], where the velocity
vector is replaced with a vector of random numbers sampled
from a Gaussian distribution with the mean defined by equa-
tion (4), assuming that c1 = c2, and deviation,

σ = |yij(t) − ŷij(t)| (5)

The velocity equation changes to

vij(t + 1) ∼ N

(
yij(t) + ŷij(t)

2
, σ

)
(6)

The position update then changes to

xi(t + 1) = vi(t + 1) (7)

Kennedy [9] also proposed an alternative version of the
barebones PSO, where

vij(t + 1) =

{
yij(t) if U(0, 1) < 0.5

N(
yij(t)+ŷij(t)

2 , σ) otherwise
(8)

Based on equation (8), there is a 50% chance that the j-th
dimension of the particle dimension changes to the corre-
sponding personal best position. This version of the barebones
PSO biases towards exploiting personal best positions.

III. DIFFERENTIAL EVOLUTION

Differential evolution (DE) is an evolutionary algorithm
proposed by Storn and Price [16], [21]. While DE shares
similarities with other evolutionary algorithms (EA), it differs
significantly in the sense that distance and direction informa-
tion from the current population is used to guide the search
process. In DE, a target vector is mutated using a difference
vector (obtained as a weighted difference between randomly
selected individuals) to obtain a trial vector. This trial vector is
then stochastically recombined with the parent to produce an
offspring, which is only accepted if the fitness of the offspring
is better than that of the parent. A number of DE strategies
have been proposed, differing in the way that the target vector
is selected, the number of difference vectors used, and the way
in which recombination is applied [20], [22]. This paper uses
the DE/rand/1/bin strategy, described as follows.

For each parent, xi(t), select i1, i2, i3 ∼ U(1, . . . , s), where
s is the population size, and i1 �= i2 �= i3 �= i. A trial vector,
ui(t), is created as

ui(t) = xi1(t) + β(xi2(t) − xi3(t)) (9)

where β ∈ (0,∞) is the scale factor, controlling the amplifi-
cation of the differential variation.

The DE cross-over operator implements a discrete recom-
bination of the trial vector, ui(t), and the parent vector, xi(t),
to produce offspring, x

′

i(t). Cross-over is implemented as
follows:

x
′

ij(t) =

{
uij(t) if j ∈ J
xij(t) otherwise

(10)

where xij(t) refers to the j-th element of the vector xi(t),
and J is the set of element indices that will undergo pertur-
bation (i.e. the set of cross-over points). For binomial cross-
over, cross-over points are randomly selected from the set
of possible cross-over points, {1, 2, . . . , nd}, where nd is the
problem dimension. Algorithm 1 summarizes this process. In
this algorithm, pr is the probability that the considered cross-
over point will be included.

j∗ ∼ U(1, nd);
J ← J ∪ {j∗};
for each j ∈ {1, . . . , nd} do

if U(0, 1) < pr and j �= j∗ then
J ← J ∪ {j};

end
end

Algorithm 1: Differential Evolution Binomial Cross-over for
Selecting Cross-over Points

Although empirical studies have shown that DE conver-
gence is relatively insensitive to control parameter values,
performance can be greatly improved if parameter values are
optimized. A number of DE strategies have been developed
where values for control parameters adapt dynamically. Ab-
bass and Sarker [2] proposed an approach where a new value
is sampled for the scale factor for each application of the
mutation operator. The scale factor is sampled from a Gaussian
distribution, β ∼ N(0, 1). This approach is also used in [18],
[17]. In [17], the mean of the distribution was changed to
0.5 and the deviation to 0.3 (i.e. β ∼ N(0.5, 0.3)), due to
the empirical results that suggest that β = 0.5 provides on
average good results. Abbass [1] extends this to the probability
of recombination, i.e. pr ∼ N(0, 1).

For the self-adaptive Pareto DE, Abbass [1] adapted the
probability of recombination dynamically as

pr,i(t) = pr,i1(t) + N(0, 1)[pr,i2(t) − pr,i3(t)] (11)

where i1 �= i2 �= i3 �= i ∼ U(1, . . . , ns), while sampling
the scale factor from N(0, 1). Note that equation (11) implies
that each individual has its onw, learned probability of re-
combination. Omran et al. [13] proposed a self-adaptive DE
strategy which makes use of the approach in equation (11) to
dynamically adapt the scale factor. That is, for each individual,

βi(t) = βi4(t) + N(0, 0.5)[βi5(t) − βi6(t)] (12)

where i4¬i5 �= i6 �= i ∼ U(1, . . . , ns). The mutation operator
as given in equation (9) changes to

ui(t) = xi1(t) + βi(t)[xi2(t) + xi3(t)]
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The cross-over probability can be sampled from a Gaussian
distribution as discussed above, or adapted according to equa-
tion (11).

IV. PSO AND DE HYBRIDS

Hendtlass [6] used the DE perturbation approach in equation
(10) and Algorithm 1 to adapt particle positions. Particle po-
sitions are updated only if their offspring have better fitnesses.
That is, xi(t+1) = x

′

i(t+1) only if f(x
′

i(t+1)) < f(xi(t)),
otherwise xi(t + 1) = xi(t) (assuming a minimization prob-
lem). The DE reproduction process is applied to the particles in
a PSO swarm at specified intervals. At the specified intervals,
the PSO swarm serves as the population for a DE algorithm,
and the DE is executed for a number of generations. After
execution of the DE, the evolved population is then further
optimized using PSO. Kannan et al. [7] apply DE to each
particle for a number of iterations, and replaces the particle
with the best individual obtained from the DE process.

Zhang and Xie [26], and Talbi and Batouche [23] follow a
somewhat different approach. Only the personal best positions
are changed using

y
′

ij(t + 1) =

{
ŷij(t) + δj if j ∈ Ji(t)
yij(t) otherwise

‘

where δ is the general difference vector defined as

δj =
y1j(t) − y2y(t)

2

with y1(t) and y2(t) randomly selected personal best posi-
tions; the notations yi(t) and ŷi(t) are used to indicate a per-
sonal best and neighborhood best respectively. The offspring,
y

′

i(t+1), replaces the current personal best, yi(t), only of the
offspring has a better fitness.

Due to the sensitivity of DE performance on the values
of control parameters, this paper proposes a variation of the
DEPSO of Hendtlass, to use adaptive parameters similar to
[14], [13]. The position update is changed to

xi(t) =

{
xPSO

i if U(0, 1) ≤ N(0.8, 0.1)
xDE

i otherwise
(13)

where xPSO
i refers to using the PSO position update equation,

while for xDE
i , the new position of particle i is calculated as

follows: if U(0, 1) ≤ N(0.5, 0.3), then

xDE
ij (t) = xi1j(t) + N(0.7, 0.3) × (xi2j(t) − xi3j(t)) (14)

otherwise xDE
ij (t) = xij(t).

V. BAREBONES DIFFERENTIAL EVOLUTION

This paper combines the barebones PSO with the DE to
produce a new, parameter-free optimization algorithm. For
the barebones DE, position updates are done as follows: if
U(0, 1) > pr, then

xij(t) = pij(t) + r2j(t) × (xi1j(t) − xi2j(t)) (15)

otherwise xij(t) = yi3j(t), where from equation (4),

pij(t) = r1j(t)yij(t) + (1 − r1j(t))ŷij (16)

with i1, i2, i3 ∼ U(1, . . . , s), i1 �= i2 �= i3 �= i, r1j , r2j ∼
U(0, 1), and pr is the probability of recombination.

Using the position update in equation (16), for a proportion
of (1 − pr) of the updates, information from a randomly
selected personal best, yi3 , is used (facilitating exploitation),
while for a proportion of pr of the updates step sizes are
mutations of the attractor point, pi (facilitating exploration).
Mutation step sizes are based on the difference vector between
randomly selected particles, xi1 and xi2 . Using the above,
the BBDE achieves a good balance between exploration and
exploitation. It should also be noted that the exploitation of
personal best positions does not focus on a specific position.
The personal best position, yi3 , is randomly selected for each
application of the position update.

Even though the barebones DE still has one parameter, pr,
empirical results presented in Section VI show that perfor-
mance is insensitive to its value for the optimization problems
considered. Therefore the reference to this algorithm as being
almost parameter free.

VI. EXPERIMENTAL RESULTS

This section compares the performance of the barebones
DE (BBDE) with that of the two barebones PSO algorithms
discussed in Section II, a PSO using the Von Neumann neigh-
borhood topology, the differential evolution PSO (DEPSO)
described in Section III, and the DE/rand/1/bin strategy. For
the PSO algorithms, w = 0.72 and c1 = c2 = 1.49. These
values have been shown to provide very good results [3], [24],
[25]. For the DE, β = 0.5 and pr = 0.9, as suggested in [22].

The following functions have been used to test the
performance of the different algorithms:

Ackley: For xi ∈ [−30, 30], and nd = 30,

f(x) = −20exp

⎛
⎝−0.2

√√√√ 1

nd

nd∑
i=1

x2
i

⎞
⎠

−exp

(
1

nd

nd∑
i=1

cos(2πxi)

)
+ 20 + e

Shekel’s foxholes: For xi ∈ [−65.536, 65.536], and nd = 2,

f(x) =

⎡
⎣ 1

500
+

25∑
j=1

(
1

j +
∑2

i=1(xi − aij)6

)⎤
⎦
−1

where (aij) is defined as

( −32 −16 0 16 32 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

)
Griewank: For xi ∈ [−600, 600], and nd = 30,

f(x) =
1

4000

nd∑
i=1

x2
i −

nd∏
i=1

cos(
xi√

i
) + 1

Himmelblau: For xi ∈ [−6, 6], and nd = 2,

f(x) = 200 − (x2
1 + x2 − 11)2 − (x1 + x2

2 − 7)2
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Hyperellipsoid: For xi ∈ [−5.12, 5.12], and nd = 30,

f(x) =

nd∑
i=1

ix2
i

Michalewicz 12: For xi ∈ [0, π], and nd = 30,

f(x) = −
nd∑
i=1

sin(xi)
[
sin(ix2

i )/π
]20

Quadric: For xi ∈ [−100, 100], and nd = 30,

f(x) =

nd∑
i=1

⎛
⎝ nd∑

j=1

xi

⎞
⎠

2

Quartic: For xi ∈ [−1.28, 1.28], and nd = 30,

f(x) =

nd∑
i=1

ix4
i

Rastrigin: For xi ∈ [−5.12, 5.12], and nd = 30,

f(x) =

nd∑
i=1

[x2
i − 10 cos(2πxi) + 10]

Rosenbrock: For xi ∈ [−2.048, 2.048], and nd = 30,

f(x) =

nd−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]

Shekel N: For xi ∈ [0, 10], nd = 4, m = 10,

f(x) = −
m∑

i=1

1

(x − Ai)(x − Ai)T + ci

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Spherical: For xi ∈ [−5.12, 5.12], and nd = 30,

f(x) =

nd∑
i=1

x2
i

Step: For xi ∈ [−100, 100], and nd = 30,

f(x) =

nd∑
i=1

(
xi + 0.5�)2

The results reported in this section are averages and devia-
tions over 30 independent runs. For each entry, the first row
gives the average, and the second row gives the deviation. Each
run used a population (swarm) of 30 indivuduals (particles),
and continued for 100000 function evaluations.

Section VI-A provides an empirical analysis of the influence
of parameter pr on the performance of the BBDE, while
Section VI-B compares the performance of the BBDE with
other algorithms.

A. Recombination Parameter

The performance of the barebones DE has been evaluated
for pr ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Table I summarizes the
results. Allthough the results in Table I suggest that smaller
values of pr are preferable, there are no significant difference
in performance for the different values. This is also illustrated
in Figure 1 for selected functions. Note that similar profiles
were obtained for the other functions. Lower values of pr

makes sense, as exploration is then favored. A strategy to be
explored at a later stage is to dynamically adjust pr to increase
over time.

B. Comparative Analysis

For each of the benchmark functions, the value of pr that
resulted in the best average fitness is selected for the BBDE.
These results are then compared against the barebones (BB)
PSO, the exploiting barebones (BBExp) PSO, Von Neumann
(VN) PSO, DEPSO, and DE/rand/1/bin (DE) in Table II. No
results are given for the DEPSO and DE for the himmelblau
functions, due to the individuals (particles) leaving the search
space (none of the algorithms used any mechanism to force
individuals (particles) to remain in the search space).

Figure 2 illustrates results for selected functions. For the
Ackley function, Figure 2(a) clearly shows how the DEPSO
struggled, while the VN PSO achieved very good results.
Interesting to note is that the barebones PSO algorithms and
the BBDE achieved a faster reduction in fitness than the
other algorithms. Allthough the DE obtained results similar
to that of the barebones algorithms, it was slower in reducing
fitness values. Figure 2(b) shows that both the DEPSO and
the DE had problems with the Michalewicz function, with
results significantly worse than that of the other algorithms.
Figure 2(c) shows that the DEPSO obtained the best results,
with a gradual decrease in average fitness. The barebones
algorithms again showed the fastest reduction in average
fitness values. For the step function (refer to Figure 2(d)), all
algorithms (except the DEPSO and DE, for which values very
close to zero were reached) obtained the global optimum for
all runs. What is interesting to note is that again the barebones
algorithms reached accurate solutions much faster than the
other algorithms. The DEPSO, and especially the DE, took
significantly longer to find good solutions.

The last row of Table II provides a performance rank for
each algorithm. To calculate the performance rank, a position
is assigned to each algorithm for each function, where a
position of 1 indicates that the algorithm obtained the best
average fitness for that problem, while a rank of 6 indicates
the worst performance. The performance rank is the average
position over all functions. The Von Neumann PSO is the best
performer with a rank of 1.538, followed by the BBDE with
a rank of 2.0. What is important to note is that the BBDE
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TABLE I

INFLUENCE OF pr ON THE PERFORMANCE OF BBDE

Function pr = 0.1 pr = 0.3 pr = 0.5 pr = 0.7 pr = 0.9

ackley 2.235287 2.210726 2.393488 2.136173 2.501318
0.166974 0.178265 0.217434 0.159471 0.202922

foxholes 0 0 0 0.034414 0.068691
0 0 0 0.033267 0.066402

griewank 0.043288 0.027314 0.027176 0.026950 0.029312
0.011215 0.004971 0.006145 0.007671 0.009801

himmelblau -832.472412 -836.045656 -825.325922 -825.325922 -818.179432
9.947930 9.644610 10.410637 10.410637 10.701122

hyperellipsoid 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
michalewicz -25.019098 -25.122886 -24.894284 -25.171186 -24.956519

0.290695 0.259553 0.268938 0.305726 0.260732
quadric 0.320673e-3 0.168747e-3 0.148594e-3 0.202841e-3 0.131393e-2

0.853671e-4 0.437480e-4 0.485624e-4 0.551421e-4 0.946728e-3
quartic 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
rastrigin 76.165639 72.185823 72.391682 75.891177 77.194900

3.903804 3.018019 3.536751 2.985969 4.017189
rosenbrock 15.839071 16.636823 18.315201 14.295707 18.483846

2.058175 2.093440 2.561361 0.948028 2.715411
shekeln -6.395098 -7.251276 -6.016494 -5.595183 -6.874382

0.632766 0.705802 0.639234 0.639550 0.692448
spherical 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
step 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

performs better than the two barbones PSO algorithms, the
DE, and the DEPSO. It can therefore be reasoned that the
BBDE combines the good characteristics of the barebones
PSO and DE. It should also be noted that the performance
of the Von Neumann PSO depends strongly on the values
of w, c1 and c2. As indicated in [24], [25], wrong choices
of values for these parameters may lead to divergent or
cyclic trajectories. In contrast, BBDE does not require these
parameters. Furthermore, the BBDE is mostly insensitive to
the value of its only parameter, pr.

VII. CONCLUSIONS

This paper presented a new population-based algorithm, as
a hybrid of the barebones particle swarm optimizer (PSO)
and differential evolution (DE). The particle position update
is changed to probabilistically base a new position on a
randomly selected personal best position, or a mutation of the
particle attractor (i.e. weighted average of the personal best
and neighborhood best). The BBDE does not make use of
the standard PSO parameters (i.e. inertia weight, acceleration
coefficients, and velocity clamping), and also removes the
DE scale parameter. The only parameter is the probability of
recombination, for which it was shown empirically that the
BBDE is insensitive.

The BBDE outperformed all the algorithms used in this
study, except for the Von Neumann PSO. Future research will
investigate the performance of BBDE using a Von Neumann
topology instead of the star topology. The performance of the

BBDE on noisy problems will be investigated, as well as its
scalability.
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TABLE II

COMPARATIVE RESULTS

Function BB BBExp VN DEPSO DE BBDE
ackley 2.389906 2.081037 0.150282 13.435463 1.971628 2.136173

0.198375 0.222534 0.069756 0.550129 0.276186 0.159471
foxholes 0 0 0 0 0.520673 0

0 0 0 0 0.362131 0
griewank 0.393245e-1 0.474688e-1 0.729644e-2 0.244013e-1 0.284551e-1 0.269504e-1

0.645749e-2 0.219540e-1 0.185556e-2 0.402870e-2 0.102846e-1 0.767095e-2
himmelblau -828.899167 -821.752677 -850.338636 N/A N/A -836.045656

10.202072 10.576323 7.812089 9.644610
hyperellipsoid 0 0 0 0.379939e-9 0.168737e-11 0

0 0 0 0.232345e-9 0.935678e-12 0
michalewicz -25.006655 -25.417601 -25.623863 -13.009471 -16.752122 -25.171186

0.280002 0.276912 0.251935 0.700428 0.271555 0.305726
quadric 0.125863e-3 0.457733e-3 0.772398 8153.745542 30788.550654 0.148594e-3

0.357456e-4 0.237904e-3 0.113289 743.527784 3229.185538 0.485624e-4
quartic 0 0 0 0.436603e-14 0.728774e-5 0

0 0 0 0.348727e-12 0.665595e-5 0
rastrigin 73.969877 71.019324 68.549094 40.970572 79.786811 72.185823

3.841866 2.846686 3.323843 2.021865 5.293505 3.018019
rosenbrock 16.195936 17.103387 28.719351 30.243866 34.434192 14.295707

0.437205 2.079606 3.473769 3.118939 3.686825 0.948028
shekeln -7.006751 -6.557710 -10.265707 -7.024528 -6.992243 -7.251276

0.671463 0.657450 0.353107 0.664893 0.705697 0.705802
spherical 0 0 0 0.339409e-10 0.762325e-11 0

0 0 0 0.255639e-10 0.462353e-11 0
step 0 0 0 0.692243e-9 0.216447e-3 0

0 0 0 0.278905e-9 0.209224e-3 0

Ranking 2.615 2.692 1.538 3.250 3.830 2.000
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