
Defining a Standard for Particle Swarm
Optimization

Daniel Bratton
Department of Computing

Goldsmiths College
University of London

London, UK
Email: dbratton@gmail.com

James Kennedy
US Bureau of Labor Statistics

Washington DC, USA
Email: Kennedy.Jim@bls.gov

Abstract— Particle swarm optimization has become a common
heuristic technique in the optimization community, with many
researchers exploring the concepts, issues, and applications of
the algorithm. In spite of this attention, there has as yet been
no standard definition representing exactly what is involved in
modern implementations of the technique. A standard is defined
here which is designed to be a straightforward extension of
the original algorithm while taking into account more recent
developments that can be expected to improve performance on
standard measures. This standard algorithm is intended for use
both as a baseline for performance testing of improvements to the
technique, as well as to represent PSO to the wider optimization
community.

I. INTRODUCTION

In the years since the introduction of particle swarm op-
timization (PSO) as a new method for global optimization
[1], [2], many researchers have expanded on the original idea
with alterations ranging from minor parameter adjustments to
complete reworkings of the algorithm. Others have used PSO
for comparison testing of other global optimization algorithms,
including genetic algorithms and differential evolution [3], [4].
The PSO field has expanded dramatically since its inception,
but to this point there has been little to no consensus as to
what constitutes the “standard” or “canonical” PSO algorithm.
Despite regular usage of the term, the actual implementation
of this undefined standard varies widely between publications.
Also troublesome is the fact that many of the variations on the
particle swarm algorithm that are used for comparison testing
do not take into account some of the major developments that
have taken place since the original algorithm was proposed.

This lack of cohesion is understandable to an extent - despite
its simplicity, the large number of minor variations on the PSO
algorithm have led to such a wide assortment of choices that it
is often difficult to determine which version can be expected to
give the best or most relevant performance for a given research
question. Some variations show improved performance on a
specific class of problems, while others may have been adapted
for use on an entirely different type of search space.

Due to the often overwhelming amount of choice, many
researchers have settled for using minor variations on the form
of the algorithm as originally proposed over a decade ago.
Unfortunately, this original algorithm is no longer in any way

representative of the state-of-the-art in PSO and has not been
for some time. This paper examines the major improvements
that have taken place in the field over the past decade and
defines a standard for PSO that takes these into account. It is
important to note that this definition should not be viewed
as the optimal configuration for PSO across all problem
sets, but rather as an evolution of the original algorithm
designed to take advantage of subsequent generally applicable
improvements. Having a well-known, strictly-defined standard
algorithm provides a valuable point of comparison which can
be used throughout the field of research to better test new
advances.

II. ORIGINAL PSO

The original PSO algorithm was inspired by the social
behavior of biological organisms, specifically the ability of
groups of some species of animals to work as a whole in
locating desirable positions in a given area, e.g. birds flocking
to a food source. This seeking behavior was associated with
that of an optimization search for solutions to non-linear
equations in a real-valued search space.

In the most common implementations of PSO, particles
move through the search space using a combination of an
attraction to the best solution that they individually have found,
and an attraction to the best solution that any particle in
their neighborhood has found. In PSO, a neighborhood is
defined for each individual particle as the subset of particles
which it is able to communicate with. The first PSO model
used a Euclidian neighborhood for particle communication,
measuring the actual distance between particles to determine
which were close enough to be in communication. This was
done in imitation of the behavior of bird flocks, similar to
biological models where individual birds are only able to
communicate with other individuals in the immediate vicinity
[5], [6]. The Euclidian neighborhood model was abandoned in
favor of less computationally intensive models when research
focus was shifted from biological modeling to mathematical
optimization. Topological neighborhoods unrelated to the lo-
cality of the particle came into use, including what has come
to be known as a global neighborhood, or gbest model, where

120

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

each particle is connected to and able to obtain information
from every other particle in the swarm.

An individual particle i is composed of three vectors:
its position in the D-dimensional search space −→x i =
(xi1, xi2, ..., xiD), the best position that it has individually
found −→p i = (pi1, pi2, ..., piD), and its velocity −→v i =
(vi1, vi2, ..., viD). Particles were originally initialized in a
uniform random manner throughout the search space; velocity
is also randomly initialized.

These particles then move throughout the search space by
a fairly simple set of update equations. The algorithm updates
the entire swarm at each time step by updating the velocity and
position of each particle in every dimension by the following
rules:

vid = vid + cε1 (pid − xid) + cε2 (pgd − xid) (1)

xid = xid + vid (2)

where in the original equations c is a constant with the value
of 2.0, ε1 and ε2 are independent random numbers uniquely
generated at every update for each individual dimension d = 1
to D, and −→p g is the best position found by any neighbor of
the particle. The update process is summarized in Algorithm
1.

Algorithm 1 The PSO update process
for each time step t do

for each particle i in the swarm do
update position −→x t using eqs 1 & 2
calculate particle fitness f(−→x t)
update −→p i,

−→p g

end for
end for

Particle velocities in this original algorithm were clamped
at a maximum value vmax. Without this clamping in place the
system was prone to entering a state of explosion, wherein the
random weighting of the ε1 and ε2 values caused velocities and
thus particle positions to increase rapidly, approaching infinity.
The vmax parameter prevented the system from entering this
state by limiting the velocity of all particles to that value.

III. ADVANCES AND DEFINING A STANDARD

A. Swarm Communication Topology

The lbest swarm model, often referred to as a local topol-
ogy, constitutes perhaps the most significant variation to the
original PSO algorithm, and was in fact proposed in one of
the very first PSO publications [2]. For one reason or another
this topology has not been widely used in the community
up to this point. Original investigations into this model using
the original PSO algorithm showed inferior performance when
compared to the global gbest model, or global topology, shown
in Figure 1(a), but more recent research has revealed that lbest
swarms return improved results across many standard problem
sets when used in conjunction with other improvements to the
algorithm [7].

Much of the PSO literature uses the term local topology to
describe not just a single swarm model, but applies it to any
swarm model without global communication. A number of
different limited communication topologies have been tested
with varying results; the lbest model used here is perhaps the
simplest form of a local topology, what is known as the ring
model, shown in Figure 1(b). The lbest ring model connects
each particle to only two other particles in the swarm, in
contrast to the gbest model where every particle is able to
obtain information from the very best particle in the entire
swarm population.

The advantage of the lbest model appears to lie in its
slower convergence rate relative to the gbest model. Having
convergence take place when the swarm has found the global
optimum is obviously beneficial, but when the converged-upon
location is suboptimal, it is referred to as “premature” and is
undesirable as it prevents the algorithm from escaping from
an inferior local optimum.

Ironically, it is the slower rate of convergence of the lbest
model that is most responsible for the general disregard of it
as an alternative up to this point. The much faster convergence
of the gbest model seems to indicate that it produces superior
performance, but this is misleading. While results for the
gbest model are indeed superior for many problems relatively
early in the optimization process, the best found fitness for
the lbest model quite often surpasses that of the gbest after
some number of function evaluations have been performed,
particularly on multimodal problems.

Despite the advantages of a local topology, it is important to
note that it should not always be considered to be the optimal
choice in all situations. The faster convergence rate of a global
topology will usually result in better performance on simple
unimodal problems than that of any local topology due to
the lack of any danger of convergence on a suboptimal local
minima. Even on some very complex multimodal problems a
gbest model swarm can deliver performance competitive with
the lbest model, given proper circumstances. For thorough,
rigorous results tests should be run using both topologies, but
in the interest of having a single standard PSO algorithm, the
superior performance of the lbest model over the majority of
benchmarks qualifies it as the better choice for cases where a
straightforward means of comparison is desired. In any case,
modern research performed using only swarms with a global
topology is incomplete at best.

The inclusion of the local ring topology as part of a
standard algorithm for particle swarm optimization comes
with a caveat, however. Given the slower convergence of the
lbest model, more function evaluations are required for the
improved performance to be seen. This is especially important
on unimodal functions, where the fast convergence of the gbest
model combined with a single minima in the feasible search
space results in quicker performance than that of the lbest
swarm with its limited communication.

121

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

(a) The gbest topology (b) The lbest ring topology

Fig. 1. Particle Swarm Topologies

B. Inertia Weight and Constriction

A few years after the initial PSO publications, a new
parameter was introduced in an effort to strike a better balance
between global exploration and local exploitation while avoid-
ing clamping the particle velocity through the vmax method,
which was viewed as both artificial and difficult to balance
[8]. A single value for vmax was not necessarily applicable to
all problem spaces - very large spaces required larger values
to ensure adequate exploration, while smaller spaces required
very small values to prevent explosion-like behavior on their
scale. Finding the appropriate value for vmax for the problem
being solved was critical, as a poorly-chosen vmax could
result in extremely poor performance, yet there was no simple,
reliable method for choosing this value beyond trial and error.

This new inertia weight parameter w was designed to
replace vmax by adjusting the influence of the previous particle
velocities on the optimization process. The velocity update
equation was altered to the form:

vid = wvid + c1ε1 (pid − xid) + c2ε2 (pgd − xid) (3)

By adjusting the value of w, the swarm has a greater tendency
to eventually constrict itself down to the area containing the
best fitness and explore that area in detail. The authors also
suggested using w as a dynamic value over the optimization
process, starting with a value greater than 1.0 to encourage
early exploration, and decreasing eventually to a value less
than 1.0 to focus the efforts of the swarm on the best area
found in the exploration. This control of the “inertia” of parti-
cles, similar to the role of friction in a physical setting, resulted
in improved performance of the algorithm and removed the
need for velocity limiting.

Another method of balancing global and local searches
known as constriction was being explored simultaneously with
the inertia weight method and was occasionally referenced in
PSO literature, though the actual research proposing its use
was not published until some time later [9]. Similar to the

inertia weight method, this method introduced a new parameter
χ, known as the constriction factor. χ is derived from the
existing constants in the velocity update equation:

χ =
2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , ϕ = c1 + c2 (4)

It was found that when ϕ < 4, the swarm would slowly
“spiral” toward and around the best found solution in the
search space with no guarantee of convergence, while for
ϕ > 4 convergence would be quick and guaranteed. While it
is possible to weight the velocity update equation to favor the
best position of the individual particle pi or the best position
of the entire swarm pg by adjusting the values of c1 and c2,
for the sake of simplicity most implementations of constricted
particle swarms use equal values for both parameters. Using
the constant ϕ = 4.1 to ensure convergence, the values χ ≈
0.72984 and c1 = c2 = 2.05 are obtained. This constriction
factor is applied to the entire velocity update equation:

−→v id = χ (vid + c1ε1 (pid − xid) + c2ε2 (pgd − xid)) (5)

The effects are similar to those of inertia weight, resulting
in swarm behavior that is eventually limited to a small area of
the feasible search space containing the best known solution.
A comparison study of the two methods demonstrated that
the PSO algorithm with constriction is in fact a special case
of the algorithm with inertia weight in which the values for
the parameters have been determined analytically [10]. The
parameter values noted above are preferred in most cases
when using constriction for modern PSOs due to the proof
of stability detailed in [9].

C. Initialization and Boundary Conditions

It has been suggested that many optimization algorithms
have what is described as a bias toward some area of the space
in which the population is initialized. Research has shown that

122

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE I

BENCHMARK FUNCTIONS

Equation Name D Feasible Bounds

f1 =
∑D

i=1 x2
i Sphere/Parabola 30 (−100, 100)D

f2 =
∑D

i=1(
∑i

j=1 xj)
2 Schwefel 1.2 30 (−100, 100)D

f3 =
∑D−1

i=1

{
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

}
Generalized Rosenbrock 30 (−30, 30)D

f4 = −∑D
i=1 xi sin

(√
xi

)
Generalized Schwefel 2.6 30 (−500, 500)D

f5 =
∑D

i=1

{
x2

i − 10 cos (2πxi) + 10
}

Generalized Rastrigin 30 (−5.12, 5.12)D

f6 = −20 exp

{
−0.2

√
1
D

∑D
i=1 x2

i

}
− exp

{
1
D

∑D
i=1 cos (2πxi)

}
+ 20 + e Ackley 30 (−32, 32)D

f7 = 1
4000

∑D
i=1 x2

i − ∏D
i=1 cos

(
xi√

i

)
+ 1 Generalized Griewank 30 (−600, 600)D

f8 = π
D

{
10 sin2 (πyi) +

∑D−1
i=1 (yi − 1)2

{
1 + 10 sin2 (πyi+1)

}
+ (yD − 1)2

}
Penalized Function P8 30 (−50, 50)D

+
∑D

i=1 µ (xi, 10, 100, 4)

yi = 1 + 1
4

(xi + 1)

µ (xi, a, k, m) =

k (xi − a)m xi > a

0 −a ≤ xi ≤ a

k (−xi − a)m xi < −a

f9 = 0.1
{

sin2 (3πxi) +
∑D−1

i=1 (xi − 1)2
{
1 + sin2 (3πxi+1)

}
+ (xD − 1)2 × Penalized Function P16 30 (−50, 50)D

{
1 + sin2 (2πxD)

}}
+

∑D
i=1 µ (xi, 5, 100, 4)

f10 = 4x2
1 − 2.1x4

1 + 1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 Six-hump Camel-back 2 (−5, 5)D

f11 =
{

1 + (x1 + x2 + 1)2
(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)} × Goldstein-Price 2 (−2, 2)D{
30 + (2x1 − 3x2)2

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)}

f12 = −∑5
i=1

{∑4
j=1 (xj − aij)

2 + ci

}−1
Shekel 5 4 (0, 10)D

f13 = −∑7
i=1

{∑4
j=1 (xj − aij)

2 + ci

}−1
Shekel 7 4 (0, 10)D

f14 = −∑10
i=1

{∑4
j=1 (xj − aij)

2 + ci

}−1
Shekel 10 4 (0, 10)D

some algorithms can return superior performance when the
global optimum of the problem being solved is located in or
near the center of the area in which the swarm is initialized
[11].

This is especially problematic in algorithm comparison: as
a basic example, it is simple to construct an algorithm that
instantly finds the point at the center of the feasible bounds
through a single mathematical equation. If that point is also
the global optimum, the simple algorithm would appear to
show superior optimization performance to any other heuristic
algorithm, when in actuality the algorithm’s ability to find that
optimum would be totally dependent upon it being located at
the easily-calculated center of the search space. Benchmarking
problems with the global optima at the center of the feasible
bounds are common in optimization literature, so adjustment
is necessary for accurate performance testing.

The common method for negating any centrist bias in an op-
timization algorithm is to shift the function when the optimum
is defined at the center of the feasible search space. This is
also known as the center offset method. Moving the optimum
away from the point which the algorithm is supposedly biased
toward eliminates any inappropriate advantage that may be
gained.

Another proposed method of alleviating this potential bias
is population initialization within a subspace of the entire
feasible search space that does not contain the global optimum

[12], often referred to as region scaling. Ensuring that the
global optimum does not lie within this subspace forces the
swarm to expand its search beyond its initial limits, and
eliminates its ability to immediately converge to a single point
without exploring the entire space to find the global optimum
of the problem. This method is most applicable as a research
standard for performance testing and algorithm comparison
when both the problem and its optimum are well-known and
understood, but for practical optimization applications it is
unnecessary.

It can be shown that a bias toward the center can arise in
algorithms similar to PSO when the trajectory of a particle
is artificially limited when it reaches the boundary of the
search space. To avoid any effect on the performance of the
algorithm, the simplest and most straightforward method for
handling particles which cross the boundary of the feasible
search space is to leave their velocity and infeasible position
unaltered. The fitness evaluation step is then skipped, thereby
preventing the infeasible position from being set as a personal
and/or global best. Using this method, particles outside the
feasible search space will eventually be drawn back within
the space by the influence of their personal and neighborhood
bests. As it is possible under certain rare circumstances for
particles to develop extremely high velocities when they are
allowed to continue past the edge of the defined search space,
the use of a very generous vmax value has been recommended

123

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

to keep the particle from going too far beyond the feasible
region [10].

These boundary conditions, often referred to as “letting the
particles fly”, prevent this factor from contributing to any
potential chance of a bias toward the center of the search
space; non-uniform swarm initialization and shifting of a
centrally-located optimum should substantially reduce the risk
of a centrist bias altogether.

D. Number of Particles

Empirical results have shown that the number of particles
composing the swarm can influence the resulting performance
by a varying amount, depending on the problem being op-
timized. Some test functions show slightly improved perfor-
mance as the size of the swarm is increased, while others tend
to be better optimized by smaller swarms. There seems to be
no definitive value for the swarm size that is optimal across
all problems, so to avoid tuning the algorithm to each specific
problem, a compromise must be reached.

While it may certainly be beneficial to tune this parameter
based on the problem at hand, generally speaking it is of minor
importance. Swarms of all sizes have been shown to perform
acceptably on standard benchmarks. 50 particles were used in
the tests presented here, as swarms of this size performed best
by a very slight margin when averaged across the entire range
of test problems. It should be taken into account, however, that
this improved performance is tied directly to the benchmark
that was used, and even then is still an average - no one
value was clearly optimal on all problems. Full analysis and
determination of the optimal swarm size is beyond the scope of
this paper, but it can be reported that under testing, no swarm
size between 20 - 100 particles produced results that were
clearly superior or inferior to any other value for a majority
of the tested problems.

E. Statistical Analysis of Results

Having gathered some empirical data, differences in per-
formance between several versions of algorithms can become
notable. One version may be more likely than another to reach
a criterion, or the final function result after some number of
function evaluations or iterations may be better, averaged over
some number of trials. But is it significantly better - in other
words, is there a real difference between the two versions, or
did chance play the deciding role?

It is not necessary, in analyzing computer-generated results,
to do anything especially complicated, difficult, or time-
consuming. Many researchers have adopted the practice of
performing t-tests on pairs of groups of data; these tests give a
p-value which is compared to a constant called α to determine
whether a difference is significant or not.

There is a problem, however, in conducting multiple sig-
nificance tests. Because they are probabilistic, it is possible
that some results are due simply to chance - even random
data generated from the same distribution will differ ”signif-
icantly” sometimes. Statisticians have addressed this problem
in various ways. Corrections known in the literature include

TABLE II

OPTIMA AND INITIALIZATION RANGES FOR ALL FUNCTIONS

Function Feasible Bounds Optimum Initialization

f1 (−100, 100)D 0.0D (50, 100)D

f2 (−100, 100)D 0.0D (50, 100)D

f3 (−30, 30)D 1.0D (15, 30)D

f4 (−500, 500)D 420.9687D (−500,−250)D

f5 (−5.12, 5.12)D 0.0D (2.56, 5.12)D

f6 (−32, 32)D 0.0D (16, 32)D

f7 (−600, 600)D 0.0D (300, 600)D

f8 (−50, 50)D −1.0D (25, 50)D

f9 (−50, 50)D 1.0D (25, 50)D

f10 (−5, 5)D (−0.0898, 0.7126) , (2.5, 5)D

(0.0898,−0.7126)

f11 (−2, 2)D (0,−1) (1, 2)D

f12 (0, 10)D 4.0D (7.5, 10)D

f13 (0, 10)D 4.0D (7.5, 10)D

f14 (0, 10)D 4.0D (7.5, 10)D

Duncan, Bonferroni, Sheffé, Fisher, and Tukey adjustments,
among others. These approaches typically manipulate α or
the p-value in some way that corrects for the likelihood of
forming spurious conclusions due to chance.

Unfortunately, many of these corrections are too conserv-
ative - the researcher ends up rejecting good results simply
because the adjustment was too severe. A good alternative is
a modified Bonferroni procedure, which manipulates the α
value in a way that protects against capitalization on chance,
without penalizing the researcher [13].

A number of t-tests are conducted, and p-values recorded.
These are then ranked from smallest to largest, and the ranks
recorded. These ranks are then inverted, so that the highest-
p-value gets an inverse-rank of 1, and the test with the
lowest p-value gets an inverse-rank of N , the number of tests
performed.

Next, α is divided by the inverse rank for each observation.
Assuming the desired α = 0.05, then the first observation
received a new value of 0.05/N , and so on, with the worst
one receiving a new α of 0.05/1 = 0.05.

The researcher then goes down the list, comparing each
p-value to the new alpha until a nonsignificant result is
found. If p < α, then a test is reported as significant. When
the first nonsignificant result is encountered, the subsequent
observations are reported as nonsignificant.

This procedure is used to validate t-tests, which compare
pairs of groups. In comparing more than two groups over a
set of functions, it may be necessary to perform a great number
of t-tests. In this case, it may be wise to reject certain tests at
the beginning, for instance if one group is always worse than
others, or if some means are identical. This cuts down on the
number of tests and keeps α from becoming too small.

124

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE III

MEAN FITNESS AFTER 30 TRIALS OF 300000 EVALUATIONS

Algorithm f1 f2 f3 f4 f5 f6 f7

Original PSO 2.7562 5.4572 54.6867 4211 400.7194 20.2769 1.0111

(Std Err) (±0.0448) (±0.1429) (±2.8570) (±44) (±4.2981) (±0.0082) (±0.0031)

Constricted GBest 0.0 0.0 8.1579 3508 140.4876 17.6628 0.0308

(±0.0) (±0.0) (±2.7835) (±33) (±4.8538) (±1.0232) (±0.0063)

Constricted LBest 0.0 0.1259 12.6648 3360 144.8155 17.5891 0.0009

(±0.0) (±0.0178) (±1.2304) (±34) (±4.4066) (±1.0264) (±0.0005)

Algorithm f8 f9 f10 f11 f12 f13 f14

Original PSO 8.8695 0.1222 1.7770 1.08e-007 5.0981 5.3152 5.4079

(Std Err) (±0.3829) (±0.0021) (±0.2886) (±2.66e − 008) (±6.40e − 006) (±6.53e − 006) (±6.19e − 006)

Constricted GBest 0.1627 0.0040 0.0 0.0 4.5882 4.4747 3.8286

(±0.0545) (±0.0016) (±0.0) (±0.0) (±0.2840) (±0.3744) (±0.4674)

Constricted LBest 0.0 0.0 0.0 0.0 2.5342 1.0630 0.5409

(±0.0) (±0.0) (±0.0) (±0.0) (±0.4708) (±0.3948) (±0.3013)

IV. RESULTS

Three PSO algorithms were compared in the interest of
demonstrating the performance gains granted by improvements
to the technique: the original 1995 algorithm, a constricted
swarm using a global topology, and a constricted swarm using
a local topology. All swarms were randomly initialized in an
area equal to one quarter of the feasible search space in every
dimension that was guaranteed not to contain the optimal
solution. Initialization ranges for all functions can be found
in Table II.

Each algorithm was run on an array of common bench-
marks, shown in table I, for 300000 evaluations per function.
These benchmarks were chosen for their variety - functions
f1 − f3 are simple unimodal problems, f4 − f9 are highly
complex multimodal problems with many local minima, and
f10−f14 are multimodal problems with few local minima. Per-
formance was measured as the minimum error |f (x) − f (x�)|
found over the trial, where f (x�) is the optimum fitness
for the problem. Results were averaged over 30 independent
trials, and are displayed in Table III. Convergence graphs for
selected functions are shown in Figure 2. In cases where
a value was < 10−8 it was rounded to 0.0 in order to
accommodate reproduction using programming languages that
may not include floating point precision at smaller values.

Statistical tests were performed on these results to show
whether performance improvements are significant. As the
performance of the original PSO algorithm is poorer than the
others for all functions, tests were limited to comparisons of
the two constricted swarm models over all functions. These
results are shown in Table IV. The lbest swarm showed
significantly superior performance over the gbest swarm for
six of the fourteen test functions, while the gbest swarm was
significantly superior on one unimodal function. There was no
significant difference in performance between the two swarm
models for the other seven test functions.

These results show that both the global and the local models

TABLE IV

SIGNIFICANCE FOR GBEST VS LBEST

Func p-value Rank Inverse rank New α Significant

f2 0 1 14 0.003571 Yes

f13 0 2 13 0.003846 Yes

f14 0 3 12 0.004167 Yes

f7 0.00002 4 11 0.004545 Yes

f12 0.00043 5 10 0.005 Yes

f4 0.002 6 9 0.005556 Yes

f8 0.004 7 8 0.00625 Yes

f9 0.016 8 7 0.007143 No

f3 0.14 9 6 0.008333 No

f5 0.51 10 5 0.01 No

f6 0.96 11 4 0.0125 No

f1 1 12 3 0.016667 No

f10 1 13 2 0.025 No

f11 1 14 1 0.05 No

of constricted swarms return improved performance over the
original PSO algorithm. Further, it is clear that in many of the
test cases, the lbest model swarm can be reliably expected
to return better results than the gbest model swarm. It is
important to note, however, than performance comparisons
were done strictly on average performance over a fixed number
of function evaluations. On the three problems where both of
the constricted swarms found the global optimum, the number
of evaluations required was not recorded.

V. CONCLUSION

Since its relatively recent inception, PSO has spawned
a considerable amount of research into modifications and
variations on the original algorithm, many of which have
been shown to be significant improvements on the original
algorithm while still being generally applicable. Given the
wide array of choice, several improvements which should have

125

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

0 60000 120000 180000 240000 300000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Function Evaluations

B
es

t F
itn

es
s

Original PSO Algorithm
Constricted GBest Algorithm
Constricted LBest Algorithm

(a) f01 (Sphere/Parabola)

0 60000 120000 180000 240000 300000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Function Evaluations

B
es

t F
itn

es
s

Original PSO Algorithm
Constricted GBest Algorithm
Constricted LBest Algorithm

(b) f03 (Generalized Rosenbrock)

0 60000 120000 180000 240000 300000
10

2

Function Evaluations

B
es

t F
itn

es
s

Original PSO Algorithm
Constricted GBest Algorithm
Constricted LBest Algorithm

(c) f05 (Generalized Rastrigin)

0 60000 120000 180000 240000 300000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Function Evaluations

B
es

t F
itn

es
s

Original PSO Algorithm
Constricted GBest Algorithm
Constricted LBest Algorithm

(d) f07 (Generalized Griewank)

0 60000 120000 180000 240000 300000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

B
es

t F
itn

es
s

Original PSO Algorithm
Constricted GBest Algorithm
Constricted LBest Algorithm

(e) f09 (Penalized Function P16)

0 60000 120000 180000 240000 300000

10
0.5

10
0.6

10
0.7

10
0.8

10
0.9

Function Evaluations

B
es

t F
itn

es
s

Original PSO Algorithm
Constricted GBest Algorithm
Constricted LBest Algorithm

(f) f12 (Shekel 5)

Fig. 2. Algorithm convergence for selected problems. Results are averaged over 30 runs.

126

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

become commonly known and used have not been universally
adopted. By defining a standard for the field we are able to
ensure that all research performed takes advantage of the same
techniques.

As defined above, the standard PSO algorithm includes:
• a local ring topology,
• the constricted update rules in equations 5 and 2,
• 50 particles,
• non-uniform swarm initialization, and
• boundary conditions wherein a particle is not evaluated

when it exits the feasible search space.
The intent of this definition is not to discourage exploration

and alterations to the PSO algorithm, but rather to give
researchers a common grounding to work from. This baseline
will provide a means of comparison for future developments
and improvements and will prevent unnecessary effort being
expended on “reinventing the wheel” on rigorously tested
enhancements that are being used at the forefront of the field.

To reiterate, this new definition for PSO should not be
considered as the “best possible option” for all problem sets.
There are a huge number of variations and hybridizations of
the original algorithm that potentially offer better performance
on certain problems. What is offered here is both a standard
for algorithm comparison and a standard to represent modern
PSO in the global optimization community.

ACKNOWLEDGMENT

Daniel Bratton’s work is supported by EPSRC XPS grant
GR/T11234/01

REFERENCES

[1] J. Kennedy and R. Eberhart (1995). Particle Swarm Optimization.
Proceedings of the 1995 IEEE International Conference on Neural

Networks (Perth, Australia): IEEE Service Center, Piscataway, NJ, IV:
pp 1942-1948.

[2] R. Eberhart and J. Kennedy (1995). A New Optimizer using Particle
Swarm Theory. Proceedings of the Sixth International Symposium on
Micro Machine and Human Science (Nagoya, Japan): IEEE Service
Center, Piscataway, NJ: pp 39-43.

[3] J. Vesterstrøm and R. Thomsen (2004). A Comparative Study of
Differential Evolution, Particle Swarm Optimization, and Evolutionary
Algorithms on Numerical Benchmark Problems. Proceedings of the 2004
IEEE Congress on Evolutionary Computation, Volume 2, pp. 1980 -
1987

[4] R. Eberhart and Y. Shi (1998). Comparison between Genetic Algorithms
and Particle Swarm Optimization. EP ’98: Proceedings of the 7th
International Conference on Evolutionary Programming VII, pp. 611-
616.

[5] C. W. Reynolds (1987). Flocks, Herds, and Schools: A Distributed
Behavioral Model. Computer Graphics, Volume 21, pp. 25-34.

[6] F. Heppner and U. Grenander (1990). A stochastic nonlinear model for
coordinated bird flocks. In S. Krasner, Ed., The Ubiquity of Chaos,
AAAS Publications, Washington, DC.

[7] J. Kennedy and R. Mendes (2006). Neighborhood topologies in fully
informed and best-of-neighborhood particle swarms. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
Volume 36, Issue 4, pp. 515-519.

[8] Y. Shi and R. Eberhart (1998). A Modified Particle Swarm Optimizer.
Proceedings of the 1998 IEEE Congress on Evolutionary Computation,
Anchorage, AK.

[9] M. Clerc and J. Kennedy (2002). The particle swarm - explosion,
stability, and convergence in a multidimensional complex space. IEEE
Transactions on Evolutionary Computation, 6(1): pp. 58-73.

[10] R. Eberhart and Y. Shi (2000). Comparing Inertia Weights and Constric-
tion Factors in Particle Swarm Optimization. Proceedings of the 2000
IEEE Congress on Evolutionary Computation, Volume 1, pp. 84-88.

[11] C. Monson and K. Seppi (2005). Exposing Origin-Seeking Bias in
PSO. Proceedings of the 2005 Genetic and Evolutionary Computation
Conference, pp 241-248.

[12] D. K. Gehlhaar and D. B. Fogel (1996). Tuning evolutionary pro-
gramming for conformationally exible molecular docking. Evolutionary
Programming, pp. 419-429.

[13] J. Jaccard and C. K. Wan (1996). LISREL approaches to interaction
effects in multiple regression, Sage Publications, Thousand Oaks, CA.

127

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

