
Building Nearest Prototype Classifiers Using a
Michigan Approach PSO

Alejandro Cervantes∗ and Inés Galván† and Pedro Isasi‡
Department of Computer Science

Universidad Carlos III de Madrid, 28911 Legan´es, Madrid, Spain
Tel: +34-91-624-8879

E-mail: ∗alejandro.cervantes@uc3m.es †ines.galvan@uc3m.es ‡pedro.isasi@uc3m.es

Abstract— This paper presents an application of Particle
Swarm Optimization (PSO) to continuous classification problems,
using a Michigan approach. In this work, PSO is used to process
training data to find a reduced set of prototypes to be used
to classify the patterns, maintaining or increasing the accuracy
of the Nearest Neighbor classifiers. The Michigan approach
PSO represents each prototype by a particle and uses modified
movement rules with particle competition and cooperation that
ensure particle diversity. The result is that the particles are able
to recognize clusters, find decision boundaries and achieve stable
situations that also retain adaptation potential. The proposed
method is tested both with artificial problems and with three
real benchmark problems with quite promising results.

I. INTRODUCTION

The Particle Swarm Optimization algorithm (described
in [1]) is a biologically-inspired algorithm motivated by a
social analogy. The algorithm is based on a set of potential
solutions which evolves to find the global optimum of a real-
valued function (fitness function) defined in a given space
(search space).

The PSO algorithm uses a population of particles which
move in a multidimensional space that represents the space of
solutions for the problem. Particles have memory, thus retain
part of their previous state. There is no restriction for particles
to share the same point in the search space, but in any case
their individuality is preserved.

The basic PSO uses a real-valued multidimensional space
as search space, and evolves the position of each particle in
that space using (1) and (2).

vt+1
id = χ(w·vt

id+c1 ·ψ1 ·(pt
id−xt

id)+c2 ·ψ2 ·(pt
gd−xt

id)) (1)

xt+1
id = xt

id + vt+1
id (2)

Where the meanings of symbols are: vt
id, component in

dimension d of the ith particle velocity in iteration t; xt
id,

same for the particle position; c1 ,c2:, constant weight factors;
pi, best position achieved so far by particle i; pg, best position
found by the neighbors of particle i; ψ1 ,ψ2, Random factors in
the [0,1] interval; w, inertia weight; and χ, constriction factor.

The neighborhood of the particle may either be composed
of the whole swarm (“gbest” topology) or only a subset of
the swarm (“lbest” topologies). Also, some versions of PSO
use dynamic neighborhoods, where the relationship between

particles changes over time: Suganthan [2] proposed a swarm
with a local neighborhood whose size was gradually increased;
Brits [3] justifies the introduction of topological neighbor-
hoods when searching for multiple solutions to multimodal
problems using niching techniques. A dynamic neighborhood
has been proposed in [4] for multi-objective optimization.

There are also some good theoretical studies of
PSO [5][6][7] which address the topics of convergence,
parameter selection and and trajectory analysis.

The purpose of this paper is to use the continuous PSO for
the selection of prototypes in nearest neighbor learning. Not
much work has been done concerning PSO with classification
problems. In [8], PSO is used to extract induction rules to
classify data; the standard PSO algorithm is run several times,
extracting a single rule each time and using only unclassified
patterns for the subsequent iterations. In [9][10], induction
rules are encoded using the binary version of PSO and both a
single and a iterated version of the algorithm.

In this work we use Nearest Neighbor (NN or 1-NN)
classification. NN is a lazy learning method where the class
assigned to a pattern is the class of the nearest pattern known
to the system, measured in terms of a distance defined on the
feature (attribute) space.

In 1-NN with Euclidean distance, the regions associated
to a pattern (called Voronoi regions) are delimited by linear
borders. This can be modified if the distance is changed, or if a
K-NN strategy is used, where the class assigned to a pattern is
the most frequent class among its K nearest neighbors. K-NN
strategy can approximate non-linear borders of the Voronoi
regions.

Both computational reasons and presence of noise in data
led to the development of techniques that reduce the number of
patterns evaluated without increasing the classification error.
These methods calculate a reduced set of prototypes, that are
the only ones used for classification. In instance selection
methods [11] prototypes are a subset of the pattern set, but
this is not true for all the prototype methods [12].

In this paper, we use PSO to find a collection of prototypes
that do not belong to the problem data, but represent the
training pattern set and can classify the patterns according to
the class of the nearest prototype in the collection.

In the standard PSO, we would have decided the number of
prototypes to use and we would have encoded the positions of

135

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

all the prototypes and their classes in each particle. However,
we want to validate a different approach that we call the
Michigan Approach; this term is borrowed from the area of
genetic classifier systems ([13][14]).

The Michigan approach was applied to PSO in [10], where
the binary version of PSO was used to discover a set of
induction rules for discrete classification problems.

In this approach, each particle represents a single prototype.
The solution is a collection of particles instead of a single
particle. For this approach to work, the standard PSO has to
be modified to ensure that the particles do not converge, but
instead the swarm evolves towards a configuration where each
particle may be considered part of a collective solution. The
advantages of the Michigan approach versus the conventional
PSO approach are: a) scalability and computational cost, as
particles have much lower dimension; and b) flexibility and
reduced assumptions, as the number of prototypes in the
solution is not fixed.

This paper is organized as follows: section 2 shows how
the solution to the classification problem is encoded in the
particles of the swarm; section 3 details the modifications
made to the original PSO algorithm to implement the Michigan
approach and adapt it to classification problems; section 4 de-
scribes the experimental setting and results of experimentation;
finally, section 5 discusses our conclusions and future work
related to the present study.

II. PSO ALGORITHM ENCODING PROTOTYPES

In the Michigan-approach PSO we propose, each particle
represents a potential prototype to be used to classify the
patterns using the nearest neighbor rule. The particle position
will be interpreted as the position of a prototype. Each particle
has also a class; this class does not evolve following the PSO
rules, but remains fixed for each particle since its creation.

For a given problem, a particle swarm is created with the
same dimension of the problem (number of attributes) and with
an equal share of particles of each of the classes present in the
training set. The swarm runs until a stopping criterion is met,
and then the resulting particles positions are interpreted as the
positions of the prototypes of the nearest neighbor classifier.

In nearest neighbor classifiers, the distance used to de-
termine closeness has to be defined. In our work, we have
consistently used the Euclidean distance.

This selection means that the Voronoi regions associated to
the prototypes will have lineal boundaries, which may or may
not be adequate to the problem.

III. PSO ALGORITHM MODIFICATIONS

A. Sociality Terms for the Michigan PSO

For the success of the Michigan approach, the algorithm
has to avoid convergence towards a single high-fitness particle,
because this particle can only represent a very limited solution
(only one prototype).

In the standard PSO, the attractive sociality term in (1)
tries to move particles close to positions with good fitness. To
change this behavior, in the Michigan approach we introduce

several modifications that are based on using the particle
class to define its neighborhood and divide the swarm into
competing and non-competing particles:

• For each particle of class Ci, non-competing particles are
all the particles of classes Cj �= Ci that classify at least
one pattern of class Ci.

• For each particle of class Ci, competing particles are all
the particles of class Ci that classify at least one pattern
of that class (Ci).

When the movement for each particle is calculated, that
particle is both:

1) Attracted by the closest (in terms of Euclidean distance)
non-competing particle in the swarm, which becomes the
“attraction center” for the movement. In this way, non-
competing particles guide the search for the patterns of
different class.

2) Repelled by the closest competing particle in the swarm,
which becomes the “repulsion center” for the movement.
In this way, competing particles retain diversity and push
each other to find new patterns of their class in different
areas of the search space.

The rules above achieve the following results:

• A particle is only attracted by those particles that mis-
classify patterns. In that case, it is only affected by the
closest particle that meets that criterion. Hence, particles
may cluster around different points of the search space
instead of converging towards a single position.

• The way repulsion is defined means that, when several
particles of a class are close to a cluster of patterns of
that class, instead of converging towards the cluster center
(or elsewhere the position that maximizes the fitness
function), they can stay near the border of the cluster.
This allows more accurate classification, as particles are
able to locate the decision frontier where classification is
harder.

Other authors have already used the idea of repulsion in
PSO in different ways. For instance, in [15] and [16], repulsion
is used to increase population diversity in the standard PSO
and allow the swarm to dynamically adapt to change. In [9] a
repulsive force is introduced to achieve particle diversification
in a binary PSO.

B. Social Adaptability Factor

In PSO, the social term is an attraction towards the best
particle in the neighborhood. In our version of PSO we use
the closest particle to select which is the particle that exerts
attraction or repulsion. In preliminary experimentation, this
meant that particles with very good fitness moved far from
their position due to the effect of particles with much lesser
fitness. This does not happen in standard PSO because the best
particle in the neighborhood is never influenced by the rest.

To correct this effect we have generalized the influence of
fitness in the sociality terms by introducing a new term in
the PSO equations, called “Social Adaptability Factor” (Sf),

136

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

that depends inversely on the fitness value of the particle. In
particular, we have chosen plainly the expression in (3).

Sfi = 1/(Local Fitnessi + 1.0) (3)

With the current Local Fitness function this value is in the
range [0.25, 1].

This equation assumes Local Fitness is greater than −1.0.
This factor also contributes to the swarm stability because, as
particles evolve towards better positions, they are less likely to
walk away from those positions, as the individual component
of the particle velocity is not affected by this factor (see 4).

C. Modified PSO pseudo code and movement

The factors above replace the standard PSO implementation.
The overall procedure can be described as follows:

1) Load training patterns
2) Initialize swarm; dimension equals number of attributes.
3) Insert N particles of each class in the training patterns.
4) Until max. number of iterations reached or success rate is

100%,
a) Calculate which particles are in the competing and non-

competing sets of particles for every class.
b) For each particle,

i) Calculate Local Fitness.
ii) Calculate Social Adaptability Factor.

iii) Find the closest particle in the non-competing set for
the particle class (attraction center).

iv) Find the closest particle in the competing set for the
particle class (repulsion center).

v) Calculate the particle’s next position based on its
previous velocity, previous best position, attraction
center and repulsion center.

c) Move the particles
d) Assign classes to the patterns in the training set using

the nearest particle.
e) Evaluate the swarm classifi cation success
f) If the swarm gives the best success so far, record the

particles’ current positions as “current best swarm”.
5) Delete, from the best swarm found so far, the particles that can

be removed without a reduction in the classifi cation success
value.

6) Evaluate the swarm classifi cation success over the validation
set and report result.

Note that a reduction algorithm is applied after the swarm
reaches its maximum number of iterations. Particles are re-
moved one at a time, starting with the particle with the worse
local fitness value, if this action does not reduce the swarm
classification success rating over the training set. The “clean”
solution is then evaluated using the validation set.

D. Modified PSO Equation

In order to take into account the modifications previously
described, the equation that determines the velocity at each
iteration in the basic PSO algorithm (1) has to be modified.
In our work the velocity change is given by (4).

vt+1
id = χ(w · vt

id + c1 · ψ1 · (pt
id − xt

id)+

c2 · ψ2 · sign(at
gd − xt

id) · Sfi+ (4)

c3 · ψ3 · sign(xt
id − rt

gd) · Sfi)

Where the meanings of the new symbols are: c3, new
constant repulsion weight factor; ag , attraction center for
particle i ; rg , repulsion center for particle i ; Sfi, Social
Adaptability Factor, inversely dependent on the particle fitness;
and ψ3, random factor in the [0,1] interval.

Note that the repulsion term is weighted by a random factor
(ψ3) and a fixed weight (c3). This weight becomes a new
parameter for the algorithm.

If ag or rg don’t exist their respective terms are ignored.

E. Local Fitness Function

In the Michigan approach, a local fitness has to be calculated
for each particle. For this purpose, we use (5).

Local Fitness =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Gf =
∑

{g}
1

dg,i+1.0

Bf =
∑

{b}
1

db,i+1.0
Gf

Total + 2.0 if {b} = ∅
Gf−Bf

Gf +Bf
+ 1.0 otherwise

(5)

Where {g} is the set of patterns of the same class classified
by the particle; {b} is the set of patterns of different class
classified by the particle; dg,i, db,i are the Euclidean distances
between the patterns and the particle; and Total is the number
of patterns in the training set,

This fitness function gives higher values (greater than +2.0)
to the particles that only classify patterns whose class matches
the class of the particle, and assigns values in the range
[0.0,+2.0] to particles that classify some patterns of a wrong
class.

By using the distance between the pattern and the particle
we give higher fitness to particles close to the patterns they
classify, so they can move closer to the area where the
patterns are located. This tendency may be compensated by
the sociality terms.

In the lowest range, the particles only take into account
local information (the proportion of good to bad classifications
made by itself). In the highest range, the particle fitness uses
some global information (the total number of patterns to be
classified), to be able to rank the fitness of particles with a
100% accuracy (particles for which {b} = ∅).

For particles that classify no patterns, local fitness is 0.

F. Global Swarm Evaluation

The local fitness function, defined above, is used for the
particles movement. However, to evaluate the goodness of the
swarm as a classifier system, we use the classification success
rate (6).

Swarm Evaluation =
Good classifications

Total patterns
· 100 (6)

Given the nearest neighbor criterion for classification, un-
classified patterns are not possible, as every pattern is assigned
the class of the nearest prototype.

137

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE I
PROBLEMS USED IN THE EXPERIMENTS

Name Dim Classes Validation

Clusters 2 2 Train set only
Diagonal 2 2 Train and validation sets
Diabetes 8 2 10-fold cross validation
Bupa 6 2 10-fold cross validation
Glass 9 6 10-fold cross validation

The system stores the best swarm evaluation obtained when
performing classification on the training set. This function is
also used to evaluate the final best swarm success rate over
the validation set.

IV. EXPERIMENTATION

A. Problems’ Description

We perform experimentation on the problems summarized
in Table I. The first two are artificial problems and they are
used to understand the new algorithm’s properties; the rest are
well-known real problems taken from the UCI collection, used
for comparison with other classification algorithms.

• Cluster Problem. This is a very simple problem with
five different clusters, randomly generated and clearly
separated. The problem has 75 training patterns with two
attributes and two classes.

• Diagonal Problem. This is a bi-dimensional problem
that is very simple for linear classifiers. We generate
500 random training patterns and 1500 validation patterns
with coordinates in the [0, 1] range. Patterns where x > y
are assigned class 1, and the rest are assigned class 0.

• UCI problems The Pima Indians Diabetes Database,
Bupa Liver Disorder data, and Glass Classification data
all come from the UCI data repository. The Diabetes
database includes 768 patterns, of which 500 are from
class 0 and 268 from class 1 (representing cases tested
positive for diabetes). The Bupa Liver Disorder database
has 345 instances, 200 of class 1 and 145 of class
0. The Glass Identification data is composed of 214
instances of six different classes. Success rates from
several classification algorithms over these problems can
be found in [12].

B. Parameter Selection

In all the experiments, the attributes’ values are normalized
to the [0, 1] interval. This means that the significant part of
the search space is restricted to the corresponding hypercube,
and the values used for the parameters correspond to this
size of the search space. Velocity was clamped to the interval
[−1.0,+1.0].

The values of the swarm parameters were selected after
some preliminary experimentation as shown in Table II, that
also shows the number of experiments to be performed (10x10
means ten cross-validation experiments with 10 folds each).

We have used 10 particles per class for all the experiments.

TABLE II
PARAMETERS USED FOR EACH OF THE PROBLEMS

Problem Itera- Parti- w χ c1 c2 c3

tions cles

Cluster 100 20 0.1 1.0 0.5 0.15 0.05
Diagonal 300 20 0.1 1.0 0.5 0.15 0.05
Diabetes 300 20 0.1 1.0 1.0 1.0 0.25
Bupa 300 20 0.1 1.0 1.0 1.0 0.25
Glass 300 60 0.1 1.0 1.0 1.0 0.25

For the artificial problems, we used small values for the PSO
parameters (c1, c2, and c3) which lead to slower evolution but
more accurate results.

For the real problems we used the same parameters for
each of the problems, with no further tuning, except that we
experimentally found that a small value of w lead to better
results in all cases. The number of iterations (300) was selected
after checking that number was roughly equal to double the
average iteration in which the best result was achieved.

After the given number of iterations is reached, the best
solution found for the training set is cleaned (useless particles
are removed) and the resulting swarm is used to classify the
validation set.

We performed 100 runs of the algorithm for the Cluster
problem and Diagonal problems, and 10 runs of the problems
that use 10-fold cross validation, which gives a total of 100
runs over each.

The success rate is averaged over the number of runs;
we also provide the best result over the set of experiments.
Wherever cross-validation was used we provide the best of
the 10 different runs.

C. Experimental Results

The first two experiments are used to show the behavior of
the swarm with the proposed modifications. This can be easily
shown plotting some of the solutions found by the swarm
for these problems. For both the “Cluster” and “Diagonal”
problem, sample figures are provided.

In Fig.1 (left) we represent one of the solutions for the
“Cluster” problem. It shows how the attraction and repulsion
rules make the particles group around the different clusters
but also how the particles of the same class remain separated
(due to the repulsion force). Once the swarm reaches this
kind of configuration, attraction forces are null (no particle
classifies patterns of the wrong class), and repulsion forces
are compensated if they move the particles towards positions
of lower local fitness, so the particles remain almost stable in
positions near the optimum. In this problem, the swarm easily
finds and separates the clusters every time.

In the figure we can also see that a particle can be placed in
an nonproductive area of the space. As the particle does not
classify any pattern, its local fitness is 0. This particle would
be removed by the removal algorithm.

To the right (in Fig.1) we represent one of the solutions
to the “Diagonal” problem. It shows how the particles move

138

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Pattern 0
Pattern 1

P0
P1 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Pattern 0
Pattern 1

P0
P1

Fig. 1. Sample solutions for the problems “Cluster” (left) and “Diagonal” (right), before removal of useless particles. Patterns are outlined, particles are solid.

towards the diagonal which is the boundary between the
classes. Also, if the sequence of the particles’ positions is
observed, the particles are sometimes grouped in pairs (one
from each class) like the pair in the lower left part of the
figure.

For this problem, the learning bias of the algorithm is not
favoring the accuracy of the solution. A very good solution
involves just one prototype of each class, located at the central
position of each area; the solutions found by our method are
worse than that trivial solution due to the fact that it explicitly
searches near the classes boundary (the diagonal) where a
solution is more difficult to find.

In Table III we summarize the results for all the experi-
ments. In that table, “Valid. Set” is the best classification rate
on the validation set (training set for the “Cluster” problem),
averaged over all the runs of the experiment and all the folds
when 10-fold validation is used; “Average Iter.” is the average
number of iterations needed to find the best result for each
individual run; “Best Exp.” is the best success rate from all
the runs of each experiment; and “Prototypes” is the average
number of prototypes kept after cleaning the best swarm.

TABLE III
EXPERIMENT RESULTS FOR THE PSO WITH MICHIGAN APPROACH,

RESULTS IN %

Problem Train Validation Average Best Proto-
Set Set Iter. Exper. types

Cluster 100 N/A 18.9 100 12.21
Diagonal 94.88 94.05± 0.37 161.1 98.27 13.37
Diabetes 74.66 74.14± 0.59 155.7 75.95 10.47
Bupa 64.76 63.29± 0.85 145.9 65.15 10.89
Glass 82.76 82.04± 1.01 177.0 84.33 10.3

The results of our PSO (MichPSO) on all the UCI data
sets is shown in Table IV; in this table we compare our
results (MichPSO) with the results of our own tests with other
algorithms, using WEKA with the default parameters for each
of the algorithms. In the table, IBK(k=1) means plain NN, and

IBK(k=3), 3-NN classification.

TABLE IV
EXPERIMENT RESULTS (SUCCESS RATE) FOR THE UCI DATA SETS, USING

SEVERAL CLASSIFIERS

Domain Mich PART Naive IBK IBK SMO
PSO Bayes (K=1) (K=3)

Diabetes 74.14 74.18 75.69 70.44 73.88 76.63
Bupa 63.29 63.08 55.63 62.90 63.16 57.95
Glass 82.04 73.79 47.25 71.99 70.58 57.10

The success rate in terms of accuracy for MichPSO is
comparable or clearly better than the result of IBK with K=1 in
all cases. This means that the patterns are correctly represented
with the particles in the solution swarm.

For the Diabetes data set, it is known that higher K values
in K-NN classification, and non-Euclidean distances achieve
better results than 1-NN. The result of MichPSO also as good
as with 3-NN classification. The best result found in literature
using nearest neighbor classifiers is obtained with K=23 and
Manhattan distance [17] (76.7 ± 4.0 %) .

For the Bupa data set, the algorithm performs basically as
well as all the other algorithms, and again bettern than plain
1-NN classification.

The algorithm significantly improved the accuracy of all the
rest in the Glass problem. Good performance on this problem
is possible due to the fact that non-euclidean distances seem
not to improve the results of Euclidean distance in this case
(see [12]). Our algorithm seems to significantly improve the
results of all the other classifiers, being to our knowledge the
best result over this data set.

V. CONCLUSIONS

The purpose of this paper is to study the performance of
PSO in classification problems with continuous attributes. We
will use PSO to determine a set of prototypes that represent
the training patterns and can be used as a classifier using the
nearest neighbor (1-NN) rule.

139

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

A straightforward encoding of a set of prototypes in each
particle would produce a search space of high dimension that
might hinder the swarm success. For this reason, we propose
a Michigan Approach PSO, in which each particle represents
a single prototype (not a set of prototypes).

For this approach to work, the PSO rules of movement have
to be changed. Also, the local fitness function used to guide the
particles’ search may differ from the global evaluation function
used to evaluate the swarm as a whole.

The Michigan PSO rules of neighborhood and social inter-
action have been adapted to achieve the following objectives:

• Particles must retain diversity, because the solution has
to be a set of particles in different positions.

• Particles must be able to locate clusters of patterns.
• Particles must be able to locate decision boundaries

between sets of patterns of different classes, where clas-
sification is harder.

We have performed experimentation on simple artificial
problems to validate the swarm behavior and determine the
correct rules to be used. Also, we have tested the resulting
swarm in three well-known benchmark problems and we have
found that the results are close or better than the standard
nearest neighbor classifier (1-NN) with the limited number of
prototypes found by the algorithm. This proves that PSO can
be used to produce a representative set of prototypes.

The results on the benchmark problems indicate that the set
of prototypes matches or outperforms 1-NN classifiers on these
problems. Accuracy is better or close to the other algorithms
used for comparison in the Pima Diabetes and Bupa Liver
Disorder problems, and is significantly better than any other
tested algorithm on the Glass Identification data set.

Closer observation of the MichPSO behavior also shows
that this approach obtains a swarm with some characteristics
which may be useful in other fields of application:

• Particles in the swarm are able to locate different areas
with high values of the local fitness function and perform
local search in those areas. This can be seen as multi-
modal optimization of the local fitness function, and can
be of interest in that field.

• Particles are able to find equilibrium situations which can
be altered by the influence of intruders, forcing them to
adapt to the new situation. This behavior can be of interest
for dynamically-adapting swarms.

Given that we have not yet introduced k-NN classification
(with k > 1), attribute processing, nor any hybridization,
we think these results are quite promising. However either
attribute weighting or non Euclidean distances are likely to be
required to compete in other problems.

Some issues that will be addressed in further work are
analysis of the swarm sensitivity to the parameters’ values,
and inclusion of a mechanism to adaptively adjust the number
of particles and their class distribution.

ACKNOWLEDGMENTS

This article has been financed by the Spanish founded re-
search MEC project OPLINK::UC3M, Ref: TIN2005-08818-
C04-02 and CAM proyect UC3M-TEC-05-029.

REFERENCES

[1] J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm intelligence. Morgan
Kaufmann Publishers, San Francisco, 2001.

[2] P. N. Suganthan. Particle swarm optimiser with neighbourhood operator.
In Proceedings of the IEEE Congress on Evolutionary Computation
(CEC), pages 1958–1962, 1999.

[3] Riaan Brits. Niching strategies for particle swarm optimization. Master’s
thesis, University of Pretoria, Pretoria, 2002.

[4] X. Hu and R.C. Eberhart. Multiobjective optimization using dynamic
neighborhood particle swarm optimisation. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pages 1677–16, 2002.

[5] Maurice Clerc and James Kennedy. The particle swarm - explosion,
stability, and convergence in a multidimensional complex space. IEEE
Trans. Evolutionary Computation, 6(1):58–73, 2002.

[6] Frans van den Bergh. An analysis of particle swarm optimizers. PhD
thesis, University of Pretoria, South Africa, 2002.

[7] Ioan Cristian Trelea. The particle swarm optimization algorithm: conver-
gence analysis and parameter selection. Inf. Process. Lett., 85(6):317–
325, 2003.

[8] Tiago Sousa, Arlindo Silva, and Ana Neves. Particle swarm based
data mining algorithms for classifi cation tasks. Parallel Comput., 30(5-
6):767–783, 2004.

[9] Alejandro Cervantes, Pedro Isasi, and In´es Galv´an. Binary particle
swarm optimization in classifi cation. Neural Network World, 15(3):229–
241, 2005.

[10] Alejandro Cervantes, Pedro Isasi, and In´es Galv´an. A comparison
between the pittsburgh and michigan approaches for the binary pso
algorithm. In Proceedings of the 2005 IEEE Congress on Evolucionary
Computation, CEC 2005, pages 290–297, 2005.

[11] Henry Brighton and Chris Mellish. Advances in instance selection
for instance-based learning algorithms. Data mining and knowledge
discovery, 6(2):153–172, 2002.

[12] Fernando Fern´andez and Pedro Isasi. Evolutionary design of nearest
prototype classifi ers. Journal of Heuristics, 10(4):431–454, 2004.

[13] J.H. Holland. Adaptation. Progress in theoretical biology, pages 263–
293, 1976.

[14] Steward W. Wilson. Classifi er fi tness based on accuracy. Evolutionary
Computation, 3(2):149–175, 1995.

[15] T. M. Blackwell and Peter J. Bentley. Don’t push me! collision-
avoiding swarms. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pages 1691–1696, 2002.

[16] T. M. Blackwell and Peter J. Bentley. Dynamic search with charged
swarms. In Proceedings of the Genetic and Evolutionary Computation
Conference 2002 (GECCO), pages 19–26, 2002.

[17] Wlodzislaw Duch. Datasets used for classifi cation: comparison of
results. http://www.phys.uni.torun.pl/kmk/projects/datasets.html.

140

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

