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Abstract— The moving behaviour of the particles in Particle
Swarm Optimization (PSO) algorithms is studied in this paper.
It is shown that particles in standard PSO have a clear bias
in their movement direction that depends on the direction of
the coordinate axes. This has the effect that the optimization
behaviour of standard PSO is not invariant to rotations of the
optimization function. A second problem of standard PSO is
that non-oscillatory trajectories can quickly cause a particle
to stagnate. A sidestep mechanism is proposed to improve the
movement of the particles. A particle performs a sidestep with
respect to a certain dimension when stagnation of movement
along this dimension is observed. It is shown for simple test
functions that the movement behaviour of sidestep PSO can
prevent the unwanted bias and makes PSO less dependent on
rotations of the optimization function. It is also shown for
standard benchmark functions that sidestep PSO outperforms
standard PSO.

I. INTRODUCTION

In this paper we investigate the moving behaviour of the
particles in Particle Swarm Optimization (PSO) algorithms.
PSO is a population based method for function optimization
(see [5]) where a swarm of individuals, also called particles,
iteratively explores a multidimensional search space. Each
particle “flies” through the search space according to its ve-
locity vector. This velocity vector is adjusted in every iteration
so that prior personal successful positions (cognitive aspect)
and the best position found by particles within a specific
neighbourhood (social aspect) act as attractors.

Several theoretical studies have been done to analyze the
trajectory of a single particle in PSO [1], [7], [8]. All of
these works examine the convergence properties of a single
particle. For several PSO parameters the values where the
algorithm converges have been identified and guidelines for the
selection of parameter values have been given. In [6], [1] the
specific behaviour that is associated with certain domains of
parameter values is characterized and a theoretical framework
to examine PSO is provided. In the theoretical analysis, the
random component in the movement behaviour of the particles
is substituted by its expected value and the behaviour within
a single dimension is observed.

In this paper the movement behaviour of particles in PSO
is analyzed experimentally. We identify two distint biases of
the optimization trajectories of the particles when the standard
PSO movement rules are used. To illustrate our findings some
simple test functions are used for the experiments. In particu-
lar, it is shown that in a two-dimensional search space a single
particle has a distinct bias in its movement direction. Ideally, a
particle should be influenced only by the good positions in the

search space that have been found before. But it is shown here
that a bias in the particles movement directions exists, which is
influenced by the direction of the coordinate axes. As an effect
the PSO optimization behaviour is not invariant to rotations of
the optimization function. A second problem of standard PSO
algorithms is investigated here, namely, that non-oscillatory
trajectories can quickly cause a particle to stagnate.

Several explanatory experiments have been created to
clearly illustrate the deficiencies in the particle’s trajectories.
Therefore the movement of a PSO with only one particle
is studied first. Clearly, it does not make much sense for
optimization purposes to use only a single particle but it is
certainly useful for our investigations. Then it is shown that
the same effects which have been observed for a single particle
PSO are also relevant for standard multi-particle swarm PSO
algorithms. Several adjustments of the standard movement
rules are proposed in order to counteract the deficiencies that
have been found. The influence of the new movement rules
on the optimization behaviour are evaluated experimentally on
standard benchmark functions.

In Section II an overview of PSO is given. Some results on
the trajectories of PSO particles are described III. Moreover,
several modifications of the standard PSO update rules are
proposed. Further experimental results are presented in Section
IV. Conclusions are given in V.

II. PSO

In Particle Swarm Optimization [5] a swarm of m particles
moves through a multi-dimensional search space. A particle
is defined by its current position x and its velocity v. Each
particle remembers the location y at which it has found
the so far best solution to the optimization function f . In
PSO each particle updates its velocity in each dimension d
according to Equation (1), where r1 and r2 are uniformly
drawn random numbers from [0; 1]. The previous velocity
is included in this formula, scaled by the inertia weight
w, and the attraction potential of the personal best y and
neighbourhood best position ŷ, is varied with the respective
weights c1 and c2. The position ŷ is either the best position of
all particles in the swarm (gbest) or the best positions within
a local neighbourhood of the particle. One method to define
a local neighbourhood (lbest) is to number the particles from
0 to m − 1 and to define the neighbourhood of particle i as
consisting of particle i itself and the two particles i−1 mod m
and i + 1 mod m.
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vd(t + 1) = w vd(t) + c1r1(yd − xd) + c2r2(ŷd − xd) (1)

After the velocity has been updated, all particles move one
step with their newly determined velocity (2).

xd(t + 1) = xd(t) + vd(t + 1) (2)

This process is iterated until a sufficient solution quality or
a maximum number of iterations has been reached.

Numerous modifications to the standard PSO have been
proposed so far in the literature. Several modifications aim to
avoid premature convergence to a sub-optimal location. In the
original PSO definition a random term, called “craziness” [5],
was added to the velocity update. Although it was omitted
in subsequent versions of PSO algorithms, several recent
PSO variants have re-introduced this random term, e.g., as
“turbulence” [3]. In [4] normally distributed random values are
used in the velocity update formula instead of values from a
uniform distribution within [0; 1]. This way also values outside
of [0; c1 (yd − xd) + c2 (ŷd − xd)] become possible increment
values of the velocity vector.

In [10] the PSO algorithm has been enhanced with a
differential evolution operator. The differential evolution step
is performed alternately with a PSO step, upon the current
best positions of the swarm.

In [2] the influence of the personal best position on the
movement of a particle is substituted with a random pertur-
bation according to the positional difference of two randomly
selected other particles. This way the variation is bounded by
the current spatial extension of the population, as in differential
evolution.

In [9] the velocity update formula is evaluated for whole
vectors instead of a component-wise update as it is done
usually. This vector-PSO has not the strong bias along a line
that is parallel to one of the coordinate axes. Instead is has an
analogous bias along y − ŷ. To avoid this, a random rotation
matrix is applied.

All of these modifications introduce additional randomness
to the process, to avoid stagnation of the optimization. Our
sidestep modification, instead, is applied when a particle’s
state resembles certain undesired conditions, that are identified
in the following section. This simple adjustment is applied
deterministically and punctually.

III. PARTICLE TRAJECTORIES

The trajectory of the particle in a single particle PSO is
examined here in detail on a simple test function, namely,
the two-dimensional Sphere function with f(x, y) = x2

1
+ x2

2
.

The particle is initialized on a random point of the unit
circle around (0, 0) with a random velocity from [−1; 1]2.
The neighbourhood best position ŷ is set to the personal best
position y. Then a regular PSO algorithm is executed with
only this particle for 100 iterations.

The trajectories of the particle from two test runs are shown
in Figure 1. In the left part of Figure 1 the actual trajectories
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Fig. 1. Two sample trajectories of single particles; right the trajectory in
two-dimensional space, left the separate dimensions over time.
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Fig. 2. Frequency of movement angles of particle for the Sphere function,
average over 10000 runs; top: single particle standard PSO; middle: standard
PSO with five particles; bottom: sidestep PSO with one particle.
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Fig. 3. Best positions and major movement directions of a single particle
PSO (10000 runs); upper: standard PSO; lower: sidestep-PSO

can be seen. The right part of the figure shows the current
positions x(t) for each dimension separately. In the upper
subfigures it can be seen that the particle converged to position
(-0.2,0.0) — which is not optimal. For this trajectory, the
characteristic oscillation behaviour of particles in PSO could
only be observed in the second dimension. The value of
x1(t) vanished after about 15 iterations and subsequently the
algorithm only tries to optimize x2. In the second example run,
the particle moved towards (0.65,-0.2) and soon finished its
progress. When looking at the dimensions of x(t) separately,
one can see that both the values x1(t) and x2(t) approach their
final value from one side instead of performing oscillations
around this value.

In the first example run, the particle finishes its movement
directly above its current best position and the v1 component
of the velocity vector is afterwards set to a value close
to 0. In the second example run, the particle improves its
personal best position y with every single move. This (actually
desired) optimization behaviour prevents the particle from
performing an oscillatory movement. Therefore, the length of
the movement vector is reduced very quickly.

The previous experiment was repeated 10000 times with
different initial positions and velocities. For each run all
angles between x(t + 1) − x(t) and the x1-axis have been
recorded during the run of the particle. The angles were
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Fig. 4. Rotatable function R(ω), ω = 0

measured in steps of size 2π/360. Moreover, the final position
of the particle was recorded. Figure 2 (upper) shows for the
10000 runs the average angle of during the movement of each
particle. It can be seen that most movement steps occurred
parallel to one of the coordinate axes. The same movement
bias is still present, when 5 particles are used in the PSO
(gbest), see Figure 2 (middle), even though the preference for
only few angles is smaller.

Figure 3 (upper) shows for the 10000 runs the final position
of each particle together with a vector that shows the most
frequent angle during the movement of the particle to its final
position. The length of the vector corresponds to the relative
frequency of the most frequent angle. The figure shows that
most of the particles end up at a position next to one of the
coordinate axes and the major directions of movement are
parallel to the respective other axis.

A. Rotation Variance

A consequence of the bias to the coordinate axes in the
movement behaviour of the particles is that the optimization
behaviour of PSO changes with rotations of the optimization
function around the point of origin. To illustrate this behaviour
we define a rotatable function R(α) (3), where ω(x1, x2) ∈
[0; 2 π] is the angle between (1, 0) and (x1, x2). In Figure 4
R(0) is displayed.

R1(x1, x2) = (cos
(
4 · (ω(x1, x2) + α

)
+ 1)+ (x2

1
+ x2

2
) (3)

The same experiment as for the Sphere function was
performed 10000 times with a single particle PSO. Again
the particle has been randomly placed on the unit circle
with a random initial velocity. The final positions and major
movement directions are given in Figure 5 for the R(0) (left)
and R(π/4) function(right). One can clearly see that the two
shapes differ. For R(π/4), as for the Sphere function, most of
the particles ended their move on one of the axes. The fanned
out ends of the lines along which the final positions are placed
are caused by the particles eventually only moving in either
x1 or x2 direction.
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Fig. 5. Best positions and major movement directions of a single particle
(1000 runs) for functions R(0) (upper) and R(π/4) (lower)
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Fig. 6. Average distance to the optimum (0, 0) of the function R(ω), with
different α ∈ [0; π/2], for 10000 runs of a standard PSO and a sidestep PSO,
each with 5 particles.

B. Sidestep-PSO

In order to compensate for the above described movement
bias we investigate a simple method that does not introduce
any further randomness into the procedure. A criterion is
defined, that tries to capture the above described situation
of stagnation along one dimension d at a threshold level ρ.
The condition, given in criterion (4), is reached, when, for
dimension d, the particle is sufficiently close to its personal
best position yd and the global best position ŷd, and also
the velocity in this dimension is smaller than the threshold
ρ. If the criterion (4) is satisfied within dimension d, the

TABLE I

TEST FUNCTIONS

Sphere: [−100; 100]n

FSph(x) =
Pn

i=1 x2
i

Rosenbrock: [−30; 30]n

FRos(
−→x ) =

Pn−1

i=1

`
100(xi+1 − x2

i )2 + (xi − 1)2
´

Rastrigin: [−5.12; 5.12]n

FRas(x) =
Pn

i=1

`
x2

i − 10 cos(2πxi) + 10
´

Griewank: [−600; 600]n

FGri(x) = 1

4000

Pn
i=1 x2

i −
Qn

i=1 cos
` xi√

i

´
+ 1

Ackley: [−32; 32]n

FAck(x) = −20 · exp
`
−0.2

q
1/n ·

Pn
i=1

x2
i

´

− exp
`
1/n ·

Pn
i=1

cos (2π · xi)
´

+ 20 + e

particle performs a sidestep with respect to this dimension.
Thus, the velocity vd is changed by adding λ · ρ if vd < 0
and adding −λ · ρ otherwise, where λ > 0 is a parameter.
Afterwards the threshold is adjusted as ρ := ρ/2. Initially the
threshold is set to some fraction of the search space. We used
ρ := 0.01 (Xmax−Xmin) as threshold value at the beginning,
where Xmax and Xmin describe the extension of the search
space. The scaling parameter λ of the stepwidth was set to
λ = 10.

(|xd − yd| < ρ) AND (|xd − ŷd| < ρ) AND (vd < ρ) (4)

With this sidestep PSO the same experiment with a single
particle as for the standard PSO was performed. The final best
positions and major move directions of the particle for 10000
repetitions are shown in Figure 3 (lower). Compared with the
standard PSO, it can be seen that for the sidestep PSO the
final positions of the particles are much closer to the origin
and less aligned along the axes. But also the major movement
direction is not as dominant (i.e., the relative frequency of the
primary movement angle is much smaller compared to other
directions) as for the standard PSO. In Figure 2 (right) the
relative frequency of the different movement angles is given.
The figure shows that there also for sidestep PSO is a bias
towards movement along the axes, but it is much less distinct
than for the standard PSO.

To investigate a situation with more than one particle,
experiments have also been done with m = 5 particles on
the rotatable function R(ω). In Figure 6 the average distance
to the optimum is shown for the standard PSO and the
sidestep-PSO at different rotation angles ω. The dependence
of the optimization quality from the rotation angle of the
optimization function, that is very strong for the standard PSO,
is much weaker for the sidestep PSO.

IV. RESULTS ON CLASSICAL BENCHMARK FUNCTIONS

In this section we compare the standard PSO and sidestep
PSO, in order to investigate whether their different opti-
mization behaviour and the results of the last section also
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Fig. 7. Solution quality of standard PSO (lbest/gbest) and sidestep PSO
(lbest/gbest) for the Sphere function.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0  2000  4000  6000  8000  10000

S
ol

ut
io

n 
qu

al
ity

Iterations

gbest
gbest sidestep

lbest
lbest sidestep

Fig. 8. Solution quality of standard PSO (lbest/gbest) and sidestep PSO
(lbest/gbest) for the Rosenbrock function.

have relevance for their optimization performance on standard
benchmark functions. The test functions are shown in Table I
together with their domain [Xmin; Xmax]n. All test functions
have dimension n = 30. For the tests, parameter values
w = 0.729 and c1 = c2 = 1.494 [7] have been used. The
number of particles in each run was m = 10. The gbest and
the lbest neighbourhoods were used, both for the standard PSO
and the sidestep PSO.

The results are shown in Figures 7–11. For each test
function the sidestep PSO obtains better results than the
standard PSO. For all test functions the gbest PSO with
sidestep mechanisms is better than the gbest standard PSO.
Similarly, for all but one case the lbest version of the sidestep
PSO with is better than the lbest standard PSO (only for the
Griewank function the lbest standard PSO is slightly better
than the sidestep PSO).

V. CONCLUSION

In this paper we have formulated two potential weaknesses
of the movement behaviour of particles in standard PSO
algorithms. It was shown that particles have a distinct bias
in their movement direction which is influenced by the direc-
tion of the coordinate axes. An unwanted effect is that the
optimization behaviour of PSO is not invariant to rotations
of the optimization function. A second problem of standard
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Fig. 9. Solution quality of standard PSO (lbest/gbest) and sidestep PSO
(lbest/gbest) for the Rastrigin function.
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Fig. 10. Solution quality of standard PSO (lbest/gbest) and sidestep PSO
(lbest/gbest) for the Griewank function.

PSO algorithms is that non-oscillatory trajectories can quickly
cause a particle to stagnate. A so called sidestep mechanism
was proposed which tries to detect and correct the stagnation
condition, without adding any further randomness into the
method. When a certain stagnation along one dimension is
observed for a particles movement then the particle performs
a sidestep with respect to this dimension. A PSO where
particles perform these sidesteps has been called sidestep PSO.
It was shown for simple test functions that the movement
behaviour of the sidestep PSO can prevent the bias to a
significant degree and also the optimization behaviour is less
dependent on rotations of the objective functions. It was also
shown for standard benchmark functions that the sidestep PSO
outperforms the standard PSO (no matter whether the global
best or local best neighbourhood was used for velocity update).
An interesting research question is to find other improved
methods that prevent the observed deficiencies. As a possible
enhancement the particles trajectories might be monitored
along the different and it could be ensured that oscillations
remain present, e.g., by enforcing sinusoidal trajectories.
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