
Finding Least Cost Proofs Using a Hierarchical PSO
Shawn T. Chivers, Gene A. Tagliarini

Dept. of Computer Science
University of North Carolina Wilmington

Ashraf M. Abdelbar
Dept. of Computer Science

American University in Cairo

Abstract— Abduction is the process of proceeding from data
describing a set of observations or events, to a set of hypotheses
which best explains or accounts for the data. Cost-based abduc-
tion (CBA) is a formalism in which evidence to be explained is
treated as a goal to be proven, proofs have costs based on how
much needs to be assumed to complete the proof, and the set of
assumptions needed to complete the least-cost proof are taken
as the best explanation for the given evidence. In this paper, we
explore using a hierarchical PSO to find least-cost proofs in cost-
based abduction systems, comparing performance to simulated
annealing using a difficult problem instance.

I. INTRODUCTION

Cost-based abduction (CBA) [11], [12] is an important
problem in reasoning under uncertainty. Finding Least-Cost
Proofs (LCP’s) for CBA systems is known to be NP-hard
[2], [12] and has been a subject of considerable research over
the past decade. In this paper, we apply a hierarchical PSO
[20], [21] to cost-based abduction. We compare performance
to simulated annealing, using a 300-hypothesis, 900-rule CBA
instance, that was systematically generated to be difficult.

Abduction is the process of proceeding from data describing
observations or events, to a set of hypotheses, which best
explains or accounts for the data [17]. A CBA system is a
knowledge representation in which a given world situation is
modeled as a 4-tuple K = (H,R, c,G), where
• H is a set of hypotheses or propositions,
• R is a set of rules of the form

(hi1 ∧ hi2 ∧ . . . ∧ hin) −→ hiq ,

where hi1 , . . . , hin (called the antecedents) and hiq

(called the consequent) are all members of H,
• c is a function c : H → <+, where c(h) is called the

assumability cost of hypothesis h ∈ H and <+ denotes
the positive reals,

• G ⊆ H is called the goal set or the evidence.
The objective is to find the least cost proof (LCP) for the
evidence, where the cost of a proof is taken to be the sum of
the costs of all hypotheses that must be assumed in order to
complete the proof. Any given hypothesis can be made true
in two ways: it can be assumed to be true, at a cost of its
assumability cost, or it can be proved. If a hypothesis occurs
as the consequent of a rule R, then it can be proved, at no
cost, to be true by making all the antecedents of R true, either
by assumption or by proof. If a hypothesis does not appear as
the consequent of any rule, then it cannot be proved, it can be
made true only by being assumed. The cost of a hypothesis
can be ∞, which means that it cannot be assumed, it can only

be proved. One can assume, without loss of generality, that any
hypothesis that appears as the consequent of any rule has an
infinite assumability cost. Suppose xq has a finite assumability
cost of a, and appears as the consequent of at least one rule.
One can add a hypothesis x′q with assumability cost a, set the
assumability cost of xq to ∞, and add the rule

x′q −→ xq .

Therefore, we consider the hypothesis set H to be partitioned
into two subsets: a set of assumable hypotheses HA, which
have finite assumability costs and do not appear as consequents
of any rules, and a set of provable hypotheses HP , which have
infinite assumability costs and, hence, can be made true only
by being proved.

II. PREVIOUS WORK ON COST-BASED ABDUCTION

Finding an LCP for an instance of CBA was shown to be
NP-hard in 1994 [12], and even approximating an LCP within
a fixed ratio bound of the optimum has recently been shown
to be NP-hard [2].

A number of approaches to this problem have been ex-
plored. Charniak and Shimony [11], [12] presented a best-
first heuristic search approach, and Charniak and Husain [10]
presented an admissible heuristic for the problem.

Santos [32], [33] presented a method for transforming a
CBA instance into a set of linear constraints, which could
then be solved by 0-1 integer linear programming (ILP).
Santos’ operations research based approach was followed
by several others: Ishizuka and Matsuo [19] presented a
method called slide down and shift up, which uses a combi-
nation of linear programming and nonlinear programming to
find near-optimal solutions in polynomial-time; Ohsawa and
Ishizuka [30] presented a method called bubble propagation,
which also finds near-optimal solutions in polynomial-time;
Matsuo and Ishizuka [28] investigated linear and nonlinear
programming approaches to CBA and to more general logical
reasoning problems such as satisfiability. Santos and Santos
[34] presented sufficient conditions for a CBA instance to be
polynomially-solvable based on the idea of totally unimodu-
lar matrices; their work has been extended by Ohsawa and
Yachida [31].

Abdelbar [1] showed that methods for cost-based abduction
can be used for belief revision on belief networks. Kato et al.
[22] investigated a method for finding LCP’s based on binary
decision diagrams. Den [14] presented a chart-based method
for cost-based abduction. Kato et al. [23] investigated a search

156

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

control mechanism for the A∗ algorithm for cost-based abduc-
tion, and Kato et al. [24] investigated the parallelization of
cost-based abduction with parallel best-first search. Recently,
neural network [6], [8], ant colony [9], iterated local search
[7], and population-oriented simulated annealing approaches
[4], [5] to cost-based abduction have also been explored.

III. PSO AND HIERARCHICAL PSO
Particle swarm optimization (PSO) [15], [25], [26], [27]

is a computational paradigm based on the phenomenon of
collective intelligence exhibited by swarms of insects, schools
of fish, and herds of buffalo, that has been applied to a variety
of domains [16]. PSO can be used for both discrete and
continuous optimization problems; we restrict our attention
here to PSO as a discrete optimization technique.

Computation in the PSO paradigm is based on a collection,
called a swarm, of fairly-primitive processing elements, called
particles. Connectivities are defined over the swarm, whereby
each particle has an adjacency relationship with a subset of the
other particles in the swarm. The neighborhood of each particle
is the set of particles with which it is adjacent; in standard
PSO. Two well-studied neighborhood structures are gbest, in
which the entire swarm is considered a single neighborhood,
and lbest, in which the particles are arranged in a ring, and
each particle’s neighborhood consists of itself, its immediate
ring-neighbor to the right, and its immediate ring-neighbor to
the left.

Suppose we would like to use a swarm of M particles to
solve a discrete combinatorial optimization problem whose
candidate solutions can be represented as vectors of bits; let
I be a given instance of such a problem. Let N denote the
number of elements in the solution vector for I. Each particle
i would contain two N -dimensional vectors: a boolean state
vector xi, which represents a candidate solution to I and is
called particle i’s state, and a real vector vi, called the velocity
of the particle. In the biological insect-swarm analogy, the
velocity vector represents how fast, and in which direction,
the particle is flying for each dimension of the problem being
solved.

Let N (i) denote the neighbors of particle i, and let pi

denote the best solution ever found by particle i. In each
time iteration, each particle i adjusts its velocity based on
a weighted stochastic average of
• its previous velocity,
• the difference between its current state and the best state

so far of its neighbors, and
• the difference between its current state and its own best

state so far.
Specifically, the new velocity vector is determined by

vi = αvold
i + φ1rand()(pi − xi) + φ2rand()(pg − xi) , (1)

where
• α, called inertia, is a parameter within the range [0, 1]

and is often decreased over time [35],
• φ1 and φ2 are two non-negative constants, often chosen

so that φ1 + φ2 = 4 [27], which control the degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

Fig. 1. The sigmoid function

to which the particle “follows the herd” thus stressing
exploitation (higher values of φ2), or “goes its own way”
thus stressing exploration (higher values of φ1),

• rand() is a uniformly random number generator function
that returns values within the range (0, 1),

• g is the particle in i’s neighborhood with the current
neighborhood-best candidate solution.

For each dimension j = 1, . . . , N , we then apply

vij =

Vmax if vij > Vmax

vij if − Vmax ≤ vij ≤ Vmax

−Vmax if vij < −Vmax

(2)

where Vmax is a constant that limits the growth of velocity in
either direction; then, we apply

Pr(xij = 1) = σ(vij) , (3)

where σ is the sigmoidal function σ(a) = 1
1+e−a , shown in

Figure 1. Equation (3) can be implemented by generating a
random number ρ within the range (0, 1) and setting xij to 1
if ρ < σ(vij) and to 0 otherwise.

We then determine the highest-quality solution within each
neighborhood, according to a domain-dependent fitness mea-
sure, and adjust each particle’s best neighbor pointer accord-
ingly.

In all, the parameters that need to be adjusted in the standard
PSO system we have described are:
• the inertia α and its decrease schedule,
• the coefficients φ1 and φ2,
• the limiting value Vmax, and
• the neighborhood topology.
A number of variations on the standard PSO described

above have been explored. These include the fully-informed
PSO introduced by Mendes, Kennedy, and Neves [29], dynam-
ical neighborhood structures investigated by Hu and Eberhart
[18], the use of mutation in PSO studied by Stacey, Jancic,
and Grundy [36], and the incorporation in PSO of a heuristic
“goodness” function similar to the η function used in ant
systems [3]. Recent work on the convergence properties of
PSO includes Clerc and Kennedy [13], Trelea [37], and van
den Bergh and Engelbrecht [38].

Introduced in 2003, hierarchical PSO (HPSO) [20], [21] is
a variation on the original technique; in HPSO, particles are
arranged in a tree-based topology (as in, e.g., Figure 2), in
which the better-performing particles float towards the top of
the tree. In each iteration, starting from the root of the tree,
and moving downwards in breadth-first fashion, each particle

157

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Fig. 2. An example of a hierarchical PSO topology, with height h = 4,
maximum degree d = 3, and number of nodes m = 31.

i is compared to its immediate children. If at least one of
the children is better than i, then the best of the children is
swapped with i. The breadth-first movement means that, in a
single iteration, a particle can move upwards only one level
in the tree but can move downwards many levels. In HPSO,
Equation (1) continues to apply, except that g now represents
particle i’s immediate parent in the tree.

The topology of the tree used in HPSO is defined by three
parameters: the height h, the node degree d, and the total
number of nodes m. All nodes in the tree have the same degree
except for the level immediately above the leaf nodes in which
nodes might have a degree less than d; for that level, the leaves
are distributed so that the maximum difference in degree in
the nodes at that level is at most 1.

IV. APPLYING PSO TO CBA

In modeling CBA problems with PSO, we let the number of
dimensions equal the number of assumable hypotheses |HA|.
A value of 1, or 0, for a given dimension indicates whether a
hypothesis is assumed or not, respectively. Thus, the xi state
vector for particle i represents a candidate assignment to the
assumable hypotheses. Of course, such an assignment will
not necessarily be sufficient to prove the goal, i.e. will not
necessarily represent a feasible solution.

Many approaches are possible for handling these unfeasible
solutions. One approach, used in [9] in applying an ant colony
approach to CBA, is to simply leave the unfeasible solution as
it is, and to make its fitness equal to the cost of the hypotheses
assumed plus a fixed, large penalty. Another approach is
to use a heuristic repair technique to modify the unfeasible
solution so that it proves the goal. In [7], an elaborate repair
technique was used to produce a heuristic estimate of the
cost of the hypotheses that would need to be added to the
assumable hypotheses in order to prove the goal; this estimate
was then used as the fitness of the solution, but the search
process proceeded based on the unfeasible solution, i.e. these
additional hypotheses were used to estimate the fitness of
the solution but were not actually added to the hypotheses
assumed.

In this paper, we use a repair technique based on a type
of stochastic local search. At the end of each iteration, the xi

vector of each particle is examined. If the hypotheses assumed
are sufficient to prove the goal, then the fitness of the solution
is made equal to the assumability cost of the hypotheses
corresponding to the 1-bits of xi and no further processing

TABLE I
BASIC CHARACTERISTICS OF THE CBA INSTANCE raa180 (AVAILABLE

AT www.cbalib.org), USED IN OUR EXPERIMENTAL RESULTS.

Instance raa180
No. of hypotheses 300
No. of rules 900
No. of assumable hypotheses 180
Rule depth max: 38, avg: 25.0

median: 27
No. of rules in which a single hypothesis max: 15, avg: 7.5

appears as a consequent median: 7
No. of rules in which a single hypothesis max: 72, avg: 14.6

appears as an antecedent median: 11
Optimal solution cost 10,821
ILP CPU time (sec) 88,835
ILP tree depth 41
ILP nodes 178,313

is needed. Otherwise, we randomly choose a 0-bit in the xi

vector and assign it to 1. If the goal still cannot be proven,
then we randomly choose another 0-bit and assign it to 1, until
the goal is provable. This process can of course result in many
unnecessary hypotheses being assumed. We, therefore, follow
up this process with a simple 1-OPT optimization process. We
examine each of the 1-bits of the xi vector: one by one and
in a random order, each 1-bit is assigned to 0 and if the goal
can still be proven, then it is retained as 0, otherwise it is set
back to 1.

To create the initial population, the xi vectors of all particles
are randomly assigned, then the repair process described above
is applied to each xi vector.

V. EXPERIMENTAL RESULTS

In [8], we explored the issue of generating difficult instances
of CBA. We used a CBA random instance generator which
takes as parameters the total number of hypotheses, the number
of rules, and a lower bound on the number of assumable
hypotheses. As described in [8], initial experimentation sug-
gested that a ratio of 1:3 for the total number of hypotheses
relative to the number of rules yielded difficult instances.

In one experiment, we fixed the total number of hypotheses
at 300, and the number of rules at 900, and allowed the number
of assumable hypotheses to vary from 40 to 200, in steps
of 10, generating 25 random instances at each step. Thus,
the total number of CBA instances generated was 425 (these
are available at www.cbalib.org as Collection A). Out of
these 425 instances, a method was needed to choose the most
likely to be difficult without exactly solving each instance.
Each instance was converted to an integer linear program
(ILP) using Santos’ method [33]. The linear program (LP)
relaxation of the ILP corresponding to each instance was then
solved using the popular public-domain engine lp-solve.
The number of non-integral variables in the solution to the
linear program, denoted f , was determined. The worst-case
run-time of the full ILP is bounded from above by 2f ,
although, of course, because of the branch-and-bound pruning
process, the actual run-time may not necessarily be a function

158

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Percent

0

10

20

30

40

Cost

11400 11700 12000 12300 12600 12900 13200 13500 13800 14100

Fig. 3. Distribution of HPSO solutions for raa180

TABLE II
STATISTICS OF SOLUTION DISTRIBUTION FOR HPSO ON raa180

Statistic Value
No. of trials 3,584
Mean (µ) Solution Cost 12,155.00
Std Dev (σ) Solution Cost 350.35
Ratio σ/µ for Solution Cost 0.029
Median Solution Cost 12,119
Mean Time (secs) 125.88
Std Dev Time (secs) 54.55

TABLE III
COMPARING HPSO ON raa180 WITH HEURISTIC REPAIR VERSUS WITH

A CONSTANT PENALTY

Penalty Repair Ratio
Mean (µ) Solution Cost 14,991.27 12,155.00 123.3%
Std Dev (σ) Solution Cost 843.16 350.35 240.7%
Ratio σ/µ for Solution Cost 0.06 0.03 195.1%
Mean (µ) Time (secs) 6.52 125.88 5.2%
Std Dev (σ) Time (secs) 0.93 54.55 1.7%
Ratio σ/µ for Time (secs) 0.14 0.43 32.8%

of f . However, lacking another measure, we used the ratio
of f to the total number of variables as a rough predictor of
the difficulty of the problem instance. Based on this ratio, we
chose the problem instance, raa180, which had the highest
value for this ratio. The optimal solution for raa180 was
obtained through Santos’ ILP method, using lp-solve as
the ILP engine. Table I shows some characteristics of this
instance as well as the run-time taken by lp-solve, and the
depth and the number of nodes of the ILP branch-and-bound
tree processed by lp-solve. The data in Table I is obtained
from [8, Table I]

Using raa180 as the benchmark CBA instance, we applied
a hierarchical PSO with height h = 3, degree d = 5, and
number of particles m = 31. Based on [37] and following
[21], we used φ1 = φ2 = 1.494, Vmax = 6, and an inertia
factor α that starts at 0.729 and decreases to 0.4. We executed

TABLE IV
STATISTICS OF SOLUTION DISTRIBUTION FOR SA ON raa180

Statistic Value
No. of trials 10,247
Mean (µ) Solution Cost 11,184.58
Std Dev (σ) Solution Cost 289.25
Ratio σ/µ for Solution Cost 0.026
Mean SA Iterations 75,971.15
Std Dev SA Iterations 110,860.7
Mean Time (secs) 112.72
Std Dev Time (secs) 164.28

more than 3,500 trials, and allowed the HPSO to run for 500
iterations in each trial (this was sufficient for convergence).
Figure 3 shows the distribution of solutions that was obtained.
We can see that the best solution observed over all trials had
a cost only 5% higher than the optimal, but was observed
in only about 2% of the trials. The solution most frequently
observed, in about 35% of the trials, had a cost approximately
11% higher than the optimal. As Table II shows, the mean
solution cost was 12% higher than the optimal, and the ratio
of the standard deviation to the mean solution cost is very
small.

To isolate the effect of the heuristic repair function, we
also executed 100 trials without heuristic repair and 1-OPT
search; instead, the fitness of unfeasible solutions was simply
made equal to the cost of the hypotheses assumed plus a fixed,
large penalty. Table III shows these results in comparison to
the results using heuristic repair. We observe that the mean
solution cost, as might be expected, is significantly worse,
and the ratio σ/µ is considerably higher without repair. On
the other hand, the heuristic repair function results in nearly a
twenty-fold increase in CPU time. We also observe that, with
the penalty method, the variation in the CPU time is much
smaller.

We compare our results to simulated annealing (SA) using
data from [7]. Table IV shows the results of running more
than 10,000 trials of SA on raa180. These were based on the

159

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

heuristic repair function described in [7], with a temperature
decrease factor of 0.999, and an initial temperature T0 that
was set so as to make

e−
∆̂
T0 = 0.5 , (4)

where ∆̂ is the average difference in cost between neighboring
states. In the case of raa180, this resulted in T0 = 720. Each
SA trial was allowed to run until 100 iterations elapsed without
change in solution.

Although the SA algorithm performed significantly better
than the HPSO algorithm in our experiment, there is reason
to believe that the basic HPSO algorithm can reach similar
performance levels with further improvements.

VI. CONCLUSION & FUTURE DIRECTIONS

In this paper, we applied a hierarchical PSO to a difficult
instance of CBA, and found that the HPSO had performance
comparable to simulated annealing. We expect that perfor-
mance of the HPSO can be improved by using the adaptive
variant of HPSO [21], in which the height of the HPSO’s
tree topology is gradually increased over the course of the
computation, and the degree d is gradually decreased.

Another possibility is a hybrid in which HPSO and SA
are run as two concurrent threads. Periodically, a particle i
is selected from the bottom level of the HPSO tree, and its
current state vector xi is replaced with the current solution
vector of the SA.

REFERENCES

[1] A.M. Abdelbar, “An algorithm for finding MAP explanations through
cost-based abduction,” Artificial Intelligence, Vol. 104, pp. 331-338,
1998.

[2] Ashraf M. Abdelbar, “Approximating cost-based abduction is NP-hard,”
Artificial Intelligence, Vol. 159, No.1-2, pp. 231-239, November 2004.

[3] A.M. Abdelbar, and S. Abdelshahid, “Swarm optimization with instinct-
driven particles,” Proceedings IEEE Congress on Evolutionary Compu-
tation, Vol. 2, pp. 777-782, 2003.

[4] A.M. Abdelbar, and H. Amer, “Applying guided evolutionary simulated
annealing to cost-based abduction,” Proceedings IEEE International
Joint Conference on Neural Networks, Vol. 3, pp. 2428-2431, 2003,.

[5] A.M. Abdelbar, Heba A. Amer, “Finding least-cost proofs with
population-oriented simulated annealing,” Proceedings Conference on
Artificial Neural Networks in Industrial Engineering (ANNIE-06), pp.
79-84, November 2006.

[6] A.M. Abdelbar, E.A.M. Andrews, and D.C. Wunsch, “Abductive rea-
soning with recurrent networks,” Neural Networks, Vol. 16, No. 5-6, pp.
665-673, 2003.

[7] A.M. Abdelbar, S.H. Gheita, and H. Amer, “Exploring the fitness
landscape and the run-time behavior of an iterated local search algorithm
for cost-based abduction,” Journal of Experimental and Theoretical
Artificial Intelligence, Vol. 18, No. 3, pp. 365-382, September 2006.

[8] A.M. Abdelbar, M.A. El-Hemaly, E.A.M. Andrews, and D.C. Wunsch,
“Recurrent neural networks with backtrack-points and negative rein-
forcement applied to cost-based abduction,” Neural Networks, Vol. 18,
pp. 755-764, August 2005.

[9] A.M. Abdelbar, and M. Mokhtar, “A k-elitist MAX-MIN ant system
approach to cost-based abduction,” Proceedings IEEE Congress on
Evolutionary Computation, Vol. 4, pp. 2635-2641, 2003.

[10] E. Charniak, and S. Husain, “A new admissible heuristic for minimal-
cost proofs,” Proceedings AAAI National Conference on Artificial Intel-
ligence, pp. 446-451, 1991.

[11] E. Charniak, and S.E. Shimony, “Probabilistic semantics for cost-
based abduction,” Proceedings AAAI National Conference on Artificial
Intelligence, pp. 106-110, 1990.

[12] E. Charniak, and S.E. Shimony “Cost-based abduction and MAP expla-
nation,” Artificial Intelligence, Vol. 66, pp. 345-374, 1994.

[13] M. Clerc and J. Kennedy, “The particle swarm—explosion, stability, and
convergence in multidimensional complex space,” IEEE Transactions on
Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.

[14] Y. Den, “Generalized chart algorithm: an efficient procedure for cost-
based abduction,” Proceedings Meeting of the Association for Compu-
tational Linguistics, pp. 218-224, 1994.

[15] R.C. Eberhart, and J. Kennedy, “A new optimizer using particle swarm
theory,” In Proceedings International Symposium on Micro Machine and
Human Science, pp. 39-43, 1995.

[16] R.C. Eberhart, and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” Proceedings IEEE International Conference
on Evolutionary Computation, pp. 81-86, 2001.

[17] J.R. Hobbs, M.E. Stickel, D.E. Appelt, and P. Martin, “Interpretation as
abduction,” Artificial Intelligence, Vol. 63, pp. 69-142, 1993.

[18] X. Hu, and R.C. Eberhart, “Multiobjective optimization using dynamic
neighborhood particle swarm optimization,” Proceedings Congress on
Evolutionary Computation, pp. 1677-1681, 2002.

[19] M. Ishizuka, and Y. Matsuo, “SL method for computing a near-optimal
solution using linear and non-linear programming in cost-based hypo-
thetical reasoning,” Proceedings Pacific Rim International Conference
on Artificial Intelligence, pp. 611-625, 1998.

[20] S. Janson, and M. Middendorf, “A hierarchical particle swarm op-
timizer,” Proceedings IEEE Congress on Evolutionary Computation,
2003.

[21] S. Janson, and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, Vol. 35, No. 6, December 2005.

[22] S. Kato, S. Oono, H. Seki, and H. Itoh, “Cost-based abduction using
binary decision diagrams,” Proceedings Industrial and Engineering
Applications of Artificial Intelligence, pp. 215-225, 1999.

[23] S. Kato, H. Seki, and H. Itoh, “Cost-based horn abduction and its optimal
search,” Proceedings Third International Conference on Automation,
Robotics and Computer Vision, pp. 831-835, 1994.

[24] S. Kato, H. Seki, and H. Itoh, “Parallel cost-based abductive reasoning
for distributed memory systems,” Proceedings Pacific Rim International
Conference on Artificial Intelligence, pp. 300-311, 1996.

[25] J. Kennedy, and R.C. Eberhart, “Particle swarm optimization,” In Pro-
ceedings IEEE International Conference on Neural Networks, Vol. IV,
pp. 1942–1948, 1995.

[26] J. Kennedy, and R.C. Eberhart, “A discrete binary version of the
PSO algorithm,” Proceedings IEEE Conference on Systems, Man and
Cybernetics, pp. 4104-4109, 1997.

[27] J. Kennedy, and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann,
San Francisco, 2001.

[28] Y. Matsuo, and M. Ishizuka, “Two transformations of clauses into
constraints and their properties for cost-based hypothetical reasoning,”
Proceedings Pacific Rim Conference on Artificial Intelligence, pp. 118-
127, 2002.

[29] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: simpler, maybe better,” IEEE Transactions on Evolutionary
Computation, Vol. 8, No. 4, pp. 204-210, 2004.

[30] Y. Ohsawa, and M. Ishizuka, “Networked bubble propagation: A
polynomial-time hypothetical reasoning method for computing near-
optimal solutions,” Artificial Intelligence, Vol. 91, pp. 131-154, 1997.

[31] Y. Ohsawa, and M. Yachida, “An extended polynomial solvability of
cost-based abduction,” Proceedings International Joint Conference on
Artificial Intelligence (poster session abstracts), p. 79, 1997.

[32] E. Santos Jr., “On the generation of alternative explanations with
implications for belief revision,” Proceedings Seventh Conference on
Uncertainty in AI, pp. 339-347, 1991.

[33] E. Santos Jr., “A linear constraint satisfaction approach to cost-based
abduction,” Artificial Intelligence, Vol. 65, pp. 1-27, 1994.

[34] E. Santos, Jr., and E.S. Santos, “Polynomial solvability of cost-based
abduction,” Artificial Intelligence, Vol. 86, pp. 157-170, 1996.

[35] Y. Shi, and R.C. Eberhart, “A modified particle swarm optimizer,” Pro-
ceedings IEEE International Conference on Evolutionary Computation,
pp. 69-73, 1998.

[36] A. Stacey, M. Jancic, and I. Grundy, “Particle swarm optimization with
mutation,” Proceedings IEEE Congress on Evolutionary Computation,
2003.

160

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

[37] I.C. Trelea, “The particle swarm optimization algorithm: convergence
analysis and parameter selection,” Information Processing Letters, Vol.
85, pp. 317-325, 2003.

[38] F. van den Bergh, and A.P. Engelbrecht, “A new locally convergent
particle swarm optimizer,” Proceedings IEEE International Conference
on Systems, Man and Cybernetics, pp. 94-99, 2002.

161

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

