
Some Issues and Practices for Particle Swarms
James Kennedy

Bureau of Labor Statistics
Washington, DC

Kennedy_Jim@bls.gov

Abstract: As the particle swarm paradigm matures, some
bad habits are adopted and some good practices are ignored.
This paper gives an informal discussion of some of issues
and practices that may affect the course of future develop-
ment of the algorithm.

In the more than ten years since the particle swarm algo-

rithm was first described, researchers have devised literally
hundreds of modifications to improve it. Almost every paper
reports that its new version performs better than previous
ones. Some of the modifications are quite helpful, and yet
very few of the innovations are adopted by the wider com-
munity. At the same time, some methods in widespread use
are neither efficient nor effective.

The present paper informally notes a few instances where
bad habits can be broken, and where performance of the par-
ticle swarm can be improved with little or no extra effort. As
always in this paradigm, parsimony is considered a virtue; a
simpler algorithm that performs as well as a more compli-
cated one will be preferred.

Constriction and Inertia

Since Shi and Eberhart (1999) and Clerc and Kennedy
(2002) it has been customary to use a set of coefficients on
the various terms of the velocity formula. Shi and Eberhart’s
inertia weight method is described as:

vid = W1*vid +

rand()*W2*(pid – xid) +
rand()*W2*(pgd – xid)

xid = xid + vid

where W1 is the inertia weight; vid is the velocity of individ-
ual i on dimension d; pid is the location of the best problem
solution vector found by i; xid is i’s current position on di-
mension d; and g is the index of i’s best neighbor. W2 has
been called, since the earliest papers, the acceleration coeffi-
cient. Though some researchers find reasons to make one or
the other bigger, in general use they are assigned the same
value.

The inertia weight is usually less than 1.0. While the first
term on the right-hand side of the velocity formula tells the
particle to keep going in the direction it moved on the previ-
ous time-step, the function of the inertia weight is to attenuate
or control that tendency. Various strategies have been intro-
duced, such as varying the inertia weight over time (Shi and

Eberhart, 1998), using random values constrained to some
range (Eberhart and Shi, 2001), etc.

The Type 1" constriction coefficient (Clerc and Kennedy,
2002) weights the entire right-hand side of the velocity equa-
tion:

vid = W1*(vid +

rand1*W2*(pid – xid) +
rand2*W2*(pgd – xid))

xid = xid + vid

Clerc’s analysis found that the values to be used for W1 –

now called the constriction coefficient – and W2 needed to
satisfy some constraints in order for the particle’s trajectory
to converge. Infinite pairs of values satisfied the constraints,
but experience showed that some values produced better op-
timization results than others. In particular, Clerc and Ken-
nedy (2002) recommended using a value of 4.1 for the sum of
the acceleration constants, which results in a constriction co-
efficient value W1≈0.7298 and W2=2.05.

Note that the inertia weight and constriction coefficient
variations are algebraically equivalent, if one multiplies the
constriction coefficient through the parentheses. The notation
gets a little bulky, however:

vid = W1*vid +

rand1*W1*W2*(pid – xid) +
rand2*W1*W2*(pgd – xid)

xid = xid + viid

This paper will use the inertia-weight form, and use Greek

letters alpha and beta for the two types of coefficients. Also,
since the value used for W2 depends on the sum of the accel-
eration constants, beta will stand for that sum; thus, each
weight in the standard algorithm, with two difference terms,
will be given as (β/2):

vid = α*vid +

rand1*(β/2)*(pid – xid) +
rand2*(β/2)*(pgd – xid)

xid = xid + vid

162

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

Note that there are no parameters to adjust once this deci-
sion has been made. While it may be possible to find slightly
better values for either or all coefficients for a particular
problem, a version where α=0.7298 and β~2.992 performs
well on a wide range of problem types.

Vmax

The earliest versions of particle swarms, before inertia
weights and constriction coefficients had been devised, re-
quired the use of a constant called Vmax, which limited the
velocity of the particle. Without Vmax, the particle simply
exploded, velocity increased toward infinity and the particle’s
trajectory careened wildly and uselessly. Vmax prevented
this explosion.

if vid > Vmax then vid=Vmax
else if vid < -Vmax then vid=-Vmax

Though the particle remained within the predefined

search space, the Vmax version without an iner-
tia/constriction factor had no tendency to converge. As an
optimal region was discovered, the particle’s trajectory might
reduce to a certain range of step-sizes, but there was nothing
to make it approach a limit of zero velocity as particles con-
verged. If the value of Vmax was set too low, the particle
could find itself unable to escape local optima, yet as the
value became higher it lost its ability to perform local search
very well; values had to be tailored to particular problems.
Thus, it was mostly regarded as a necessary evil, as Vmax
particle swarms performed notably well but not as well as
anyone would have liked.

With the application of coefficients to the first right-hand
term of the velocity formula, Vmax became unnecessary.
Explosion is prevented by reducing the effect of the previous
iteration’s velocity, in concert with appropriate acceleration
constants. On the other hand, Eberhart and Shi (2000) noted
that it was still helpful to use a very liberal Vmax, for in-
stance limiting velocity to the initialization range of the vari-
ables or some large fraction of that, in order to prevent the
particles flying into “outer space,” as they put it.

Thus, at this time, Vmax is an option and not a necessity.
It may propitiate convergence by disallowing entirely absurd
problem solutions to be proposed, but if it is not applied, the
system will still tend to behave well enough. Clamping the
velocity when it exceeds a pathological value is generally not
a very intrusive technique, as it will only occur rarely, and it
does reduce the number of wasted iterations.

The Random Numbers

Wilke (2005) asserted in his dissertation that there is am-
biguity in the application of the random numbers in the parti-
cle swarm, and that various researchers are using them differ-
ently. He wrote:

It is unclear whether the random numbers are scalar num-
bers which simply scale the magnitude of the cognitive
and social components of learning, or whether the random
numbers are vectors that scale each component of the
cognitive and social components of learning.

(In this quote, the “cognitive component” is the (pid – xid)

term, and the “social component” is the (pgd – xid) term.)
Wilke listed some references to papers where he believed that
the authors had used the same set of random numbers for all
dimensions of a particle on a single iteration. Efforts by the
present author and another researcher to contact the six re-
searchers named in Wilke’s report resulted in only two re-
sponses; both researchers reported that they had correctly
refreshed the random numbers each time they occurred, or in
Wilke’s terminology, had scaled each component.

It is possible that the other papers cited did make the error
attributed to them by Wilke. At the very least, all of the au-
thors were ambiguous in their algebraic notation, as have
been many other writers in the field, the present author in-
cluded.

In any case, the fact is that every random number should
be uniquely generated. There will be a unique random num-
ber for each source of influence for every single dimension
for every single particle for every single iteration.

It appears that the real issue is the correct way to write al-
gebra or pseudocode for the random numbers; if researchers
are using the random numbers incorrectly, it is because the
papers they are studying are not clear about it. The rest of the
formulas occur within nested loops for iteration, individual,
and dimension, and there is a tendency not to properly anno-
tate the fact that there are two unique random numbers nested
within those loops. Further, some researchers write it as a
variable and some write it as a function, which makes it even
more difficult to decipher.

Notation

We can simplify the notation of the algorithm quite a bit,
which will help us understand how it works and suggest in-
novations. First, adding time notation to the last line of the
formula, xid(t+1)=xid(t)+vid(t+1) , we see by rearranging that
vid(t+1) = xid(t+1) – xid(t). Since the same thing happened on
the previous time-step, we can infer that vid(t)=xid(t) – xid(t-1).
This notation can replace the first reference to vid on the right-
hand side of the formula, collapsing the two formulas into
one:

xid(t+1)= xid(t)+

α*(xid (t)-xid (t-1)) +
rand1()*(β/2)*(pid – xid(t)) +
rand2()*(β/2)*(pgd – xid(t))

163

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Further, since the last two terms are identical in form, we
can simplify the notation by combining them in a summation:

xid = xid +

α*(xid(t)-xid(t-1)) +
Σ(rand()idk*(β/K)*(pkd – xid))

Where k represents the indexes of a source of influence –
which will be i and g in the best-neighbor version that has
been discussed thus far, and K represents the number of
sources of influence on particle i (K=2 in the canonical ver-
sion).

With this notation, we can easily see that, at each time-
step, the particle

1. begins at its current location
2. moves some amount in the same direction it was going,
and
3. moves in the direction of a randomly-weighted average
of its sources of influence from the initial position xid

The Population Best

The index g is used to refer to the member of i’s
neighborhood that has attained the best result so far. If the
population is completely connected in what is called the gbest
topology, then g will be the best member of the entire popula-
tion. This usage means that every particle has access to the
best information that has been discovered by any member of
the swarm so far. While this elitism is one source of bias
toward better solutions, it also weakens the population in
some ways.

When all particles are influenced by the same source, the
swarm has little ability to explore in parallel. Some diversity
is introduced through the specific search histories of each
individual, that is, each one is affected by its own unique
pi
r vector, but this is neutralized by the fact that they are all

searching a region half-defined by a single source of influ-
ence. As all particles receive the same information about
successful problem solutions, they all tend to go to the same
place. Thus the effect of the gbest topology is to weaken the
swarm’s ability to navigate around spaces with local optima;
whatever region first produces a good result will become an
attractor for the entire population, and potentially better loca-
tions will never be investigated.

There is also a problem with no known elegant solution,
for the particle g which has the best function result so far. Its
two difference terms are the same, as i=g. Thus it tends only
to oscillate around its own previous success. This is not es-
pecially damaging to the swarm’s performance, since it af-
fects only one particle in the population at a time, but as that
particle is essentially searching without external influence, it
does not have much chance of improving. Since pid=pgd in
this situation, and the variance of the trajectory is scaled to

the difference |(pid-pgd)|, if no better point is found by another
particle, this best one’s velocity will eventually approach 0.0
and it will stop moving, though it will continue to be evalu-
ated. Various researchers have published extrinsic ways to
cope with this issue; the best thing may be to prevent it in the
first place, by avoiding the gbest topology.

The worst problem with the gbest variation is its tendency
to premature convergence. Numerous papers have been writ-
ten, suggesting ways to repulse particles, reinitialize them,
and adjust them in other ways in order to offset the tendency
of the gbest population to converge prematurely. In fact, the
convergence rate is largely a property of the population to-
pology, and is easily controlled through more attentive appre-
ciation of the way solutions propagate through the swarm. A
judicious choice of topological structure can improve per-
formance without increasing the complexity of the algorithm.

For simple monotonic functions, the gbest configuration
works fast. But of course, if a researcher only needs a hill-
climber, it should not be necessary to use a stochastic, popu-
lation-based method like this at all. Further, other more ver-
satile topologies will work perfectly well, if not quite as fast,
on monotonic functions. Therefore it is recommended that
investigators use the gbest population structure only as a last
resort unless there is some special reason.

Other Topologies For Best-Neighbor Swarms

The traditional alternative to the gbest topology has been
one called lbest. This is a ring lattice, with each individual
particle connected to its k nearest neighbors in the population
array. Where K=2, for instance, each particle i communicates
only with its immediate neighbors, i-1 and i+1. Because the
mean distance between particles is minimal in the gbest and
maximal in the lbest topology, these two are sometimes con-
sidered as opposites.

The lbest topology slows the propagation of solutions
through the swarm population. In the best-neighbor particle
swarm versions, influence can only spread when a particle
becomes the “best neighbor” to its neighbor. When j is the
best neighbor of i, then i searches around a location partly
defined by j’s best success so far. If i finds a problem solu-
tion in that region that is better than its own previous best,
then it will store that location in its previous best vector
pi
r and subsequent iterations will be affected by that discov-

ery, at least until something better is found. If, in lbest, i be-
comes the best neighbor to its other neighbor, then that
neighbor too will be attracted to that region, and eventually
the same series of events may unfold. Thus, a good region of
the search space will attract one particle after the other,
around the population, adding adherents slowly. (Note that
we can think of this as if new problems solutions were passed
through a stable population, or a dynamic population passed
through a stable search space.)

The lbest topology is good at exploring multiple regions
in parallel, and so is good for functions with local optima.
One subset of neighbors can explore one region of the search

164

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

space while another subset explores somewhere else. Even-
tually, whichever region returns the best function results will
win out; chances are, this will be the region containing the
superior optimum (with the usual caveats about there being
no guarantees). Thus the lbest topology increases the prob-
ability of finding the global optimum, where a gbest popula-
tion will likely converge on the first decent region it finds.

There are innumerable ways to structure the communica-
tions among the particles. The fact is, very little effort is re-
quired in writing code to implement a good topology, and as
the assignment is only run at the start of a trial, very little
CPU time is dedicated to the task. Some memory will be
used to store the vector of neighbors for each individual, oth-
erwise computational costs are negligible.

Some topologies, such as lbest, are geometrically simple,
and can be coded algorithmically. Another example of such a
topology is the “square” or von Neumann structure, where the
population is conceptualized as a rectangle, and each particle
is connected to the ones above, below, and on either side of
it. The population is wrapped, so top and bottom are adja-
cent, as are left and right edges. Each particle communicates
with four neighbors, and solutions can propagate out in all
those directions. Thus this structure has some of the parallel-
ism of lbest, as distant neighborhoods can explore independ-
ently, yet it has more communication channels, so better
ideas can spread more rapidly.

Custom topologies can be easily implemented using inci-
dence matrices. In its simplest form, this is an N×N matrix,
initialized with zeroes, with a one in the jth column of row i
indicating that i is influenced by the particle with index j. If
all communications are reciprocal, e.g., j is also influenced by
i, then only half of a diagonally-split matrix is needed.

The question of which topology is best, and what makes a
good topology, is one that has not been satisfactorily an-
swered (Mendes, et al., 2004). Several researchers (e.g.,
Clerc, 2006; Liang and Suganthan 2005; Mohais, et al., 2005,
etc.) have experimented with adaptive topologies, randomiz-
ing, adding, deleting, and moving links in response to aspects
of the iterative search, and it seems very likely that the ulti-
mate particle swarm will adapt its social network depending
on the situation. Various rules have been proposed for edge
adaptation, and some of them perform very well. So far it is
not obvious which ones will prove successful. We can imag-
ine topologies where communication is probabilistic, fuzzy,
where links are impermanent, unidirectional, or weighted by
some factor. The question is still an open one.

FIPS

In the traditional particle swarm the particle receives informa-
tion from its best neighbor and itself; thus the acceleration
constant is divided between two terms. The constants how-
ever can be partitioned any number of ways, as long as the
sum is correct.

Mendes (2004) developed a type of particle swarm where
each particle used information from all its neighbors, and not

from its own history. Thus a particle with K neighbors sums
K (p-x) differences, each weighted by rand()*(β/K). This
version, called the Fully Informed Particle Swarm, or FIPS,
was found to perform better than the traditional version on an
aggregated suite of various test functions, when an appropri-
ate topology was used.

FIPS has some surprising implications about how particle
swarms work. Whereas it was noted above that the positive
bias derived from using the population best is unnecessary,
and may even be detrimental to performance under some
conditions, FIPS suggests that it is not necessary to select the
best neighbor at all. Further, the particle swarm does not
require that a particle be attracted toward its own previous
successes – all influence in FIPS comes from external
sources.

The pattern of propagation of problem solutions through
the population topology is quite different in FIPS. Now a
particle need not become its neighbor’s best neighbor in order
to influence it, as the FIPS particle searches around the mean
of all its neighbors’ previous best positions in the search
space. The random numbers determine whether the particle
will search nearer to one neighbor’s success or another’s, but
the general trend drives it toward the centroid.

The topology takes on a different meaning in FIPS, and
structures that produce good performance in the best-
neighbor varieties will not be expected to do the same in this
version. For instance, where the gbest topology informs each
particle in the best-neighbor versions of the exact location of
the best solution found thus far, in FIPS gbest introduces a
tendency to search around the average of all previous-best
locations. Because each influence is randomly weighted, the
FIPS particle can be attracted toward any or all members of
the population, resulting in behavior that is little better than
random.

Mendes (2004) found that FIPS performed best with to-
pologies where the mean degree (number of neighbors) was
between 4 and 4.25. In the von Neumann configuration, K=4
for every particle, and it has been found to be a good topol-
ogy for implementing FIPS.

FIPS is still new, and there is more to learn about how to
get the most out of it. Researchers will be exploring better
implementations of it, both in theory and applications.

Research Methods I

The standard research methodology for studying the proper-
ties of optimization algorithms, at least under the evolution-
ary computation umbrella, has been to optimize a suite of test
functions using several competing algorithms and to compare
the results. The test suite varies somewhat from one study to
the next, but a small number of functions appear in almost all
of them. It is common to optimize functions in 30 dimen-
sions where that is possible.

Suganthan, et al. (2005) published a recommendation
containing a new test suite of 25 functions. Those authors
were concerned that the standard test functions often have

165

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

their global optimum at the origin, and that almost none of
the functions were rotated, that is, gradients aligned with Car-
tesian axes, among other things. While several papers have
come out recently using the CEC05 test suite, as it is called,
there are some difficulties. Most importantly, the descrip-
tions of some of the functions are not clear enough to allow
coding by an independent researcher. Thus, nearly all inves-
tigators so far who have used the new test suite have literally
used code available from the authors. This may induce a high
level of standardization, but there are concerns when every-
one is running the same code; further, this situation forces
programmers to write programs that are compatible with
those authors’ conventions. Time will tell whether the
CEC05 test suite becomes widely accepted; the best predic-
tion now is that some of the functions from that set (the suite
is too large, for one thing, and some of the functions are very
CPU-intensive and time-consuming) will be added to the list
of widely accepted test functions.

Mendes’ (2004) thesis reported that evaluations of algo-
rithms depend strongly on the way performance is measured.
In running a test function iteratively, it is common to track
the population best function result over time. The average of
these scores at the end of a number of trials, a measure that
Mendes called “average performance,” is really a measure of
local search, of the algorithm’s ability to find the extreme
value in a region of the search space. Another measure that is
often used compares the population best performance against
a criterion which has been determined ahead of time to indi-
cate that the global optimum has been found; this can be
viewed as a measure of global search ability.

Mendes’ research found a dissociation between these two
measures of success. He standardized performance results
for each function and combined results from six functions in
order to get a measure of the algorithm’s performance across
the entire test suite. Likewise, proportions of success were
aggregated across the set of test functions for each algorithm.

Interestingly, some versions (these were FIPS and canoni-
cal particle swarms run with 1,343 different topologies) pro-
duced reliably good function results but had low proportions
of success, and vice versa. In other words, some topol-
ogy/interaction-mode versions were good at global or local
search, but not the other. There was a small set of FIPS ver-
sions that scored well by both standards, but most particle
swarm versions did better on one measure than the other.
This advises future researchers to decide carefully which
measure to use; a good mean function result indicates an al-
gorithm that, when it does well, does very well, while a good
proportion of successes demonstrates that the algorithm con-
sistently gets near the global optimum, though it may not find
the very best point in the optimal region.

Bounding the Search Space

A rather surprising problem has begun appearing in the litera-
ture, surprising because it seems so easy to prevent. For
some reason, some researchers have begun clamping particles

when they get to the edge of the search space, using various
artificial techniques to keep the particle near the boundary,
slow down its movement, or otherwise turn it back into the
legal search space.

It is considered good practice to initialize the swarm, at
least in research implementations, so that the global optimum
is outside the range of the initial starting positions (Gehlhaar
and Fogel, 1996; Angeline, 1998; Kennedy and Eberhart with
Shi, 2001). Some investigators put the initial swarm at the
edge of the search space, with the optimum near the center of
it. This procedure ensures that the population is not simply
collapsing upon the optimum due to some convergence ten-
dency; the population is required to actually move some-
where to search for the optimum.

Some researchers, however, seem to believe that it is nec-
essary to keep the particles inside some given range of the
search space. Thus when a particle goes out of bounds, the
program may tell it to stop on the boundary, or to bounce
back according to some rule or other. This obviously makes
it hard for the particle to behave properly when the optimum
is near the border of the constrained space, and introduces
anomalies into the trajectory.

It is not easy to think of reasons for trying to keep the par-
ticle in bounds. Two general approaches that will not upset
the particle’s trajectory can be recommended for commonly-
found situations; these work by tampering with the objective
function, not the behavior of the particle. First, it is not un-
usual to simply add a penalty to the function evaluation when
the particle has gone into infeasible territory or outside the
search space. If the penalty is adequately large, the forbidden
location will not become the particle’s previous best, and it
cannot have any effect on the particle’s or its neighbors’ fu-
ture trajectories.

As it is more meaningful to rate a trial by counting func-
tion evaluations than iterations, this second suggestion is
preferable: if a particle has gone out of bounds, simply don’t
evaluate it. This skipped evaluation then can be made up on
a later iteration.
 If there is concern about the particle exploring outside the
familiar search space, it is preferable to limit its velocity, as
suggested in Eberhart and Shi (2000), rather than its position.

Research Methods II

Many statistical techniques have been developed for the
analysis of experimental data. The question in this field is
usually how to tell if one algorithm performs better than an-
other on a function or set of functions. Sadly, today’s stan-
dard analysis consists of a graph of several performance
curves over time and a statement to the effect that “my algo-
rithm is better than their algorithm.”

In order to decide whether the difference between two
sets of trials reflects a real difference, it is necessary to know
something of the variance of the trials. At the least, standard
deviations should be reported, it is better to report confidence

166

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

intervals, and even better to do inferential statistical tests
comparing the conditions.

It is not necessary to get extremely sophisticated in this.
For instance, in comparing numerical performance results for
two algorithms on a function, a t-test can be run. These tests
use the variance as a scale to determine whether the differ-
ence between sample means is “significant.”

But note: there is a problem with performing multiple
significance tests. Because the tests are probabilistic and use
samples of observations to estimate populations, there is
some chance that the conclusions are incorrect; and the
greater the number of tests, the greater is the probability that
one of the tests will appear significant when it actually is not.

Several methods have been devised for correcting for this:
Duncan, Sheffé, Tukey, and Bonferroni adjustments are just a
few. A simple method for getting valid significance tests
from a number of t-tests is a modified Bonferroni adjustment
(Jaccard and Wan, 1996). The simple Bonferroni adjustment
simply takes alpha, the significance level, and divides it by
the number of tests being conducted. Thus, if you were con-
ducting five t-tests, and defining significance as p<0.05, then
you would divide 0.05/5=0.01; then when you have done the
t-test, only accept as significant those with p<0.01.

The problem with this adjustment is that it is too conser-
vative. The researcher ends up rejecting results that are, in
fact, significant. The Jaccard and Wan adjustment is con-
ducted in these steps:

• Rank results so that p-values go from smallest to
largest

• Number ranks inversely, from N to 1
• For each test, divide the p-value by its inverse rank:

this is the new significance level
• Go from top to bottom, comparing the p-value to the

new significance level, until a nonsignificant result is
attained

This simple adjustment ensures that researchers do not re-

port significant results based on chance.

“Origin-Seeking Bias”

Monson and Seppi (2005) published a paper with the pro-
vocative title “Exposing Origin-Seeking Bias in PSO,” which
has caused some readers to assume that there is origin-
seeking bias in the particle swarm. This would mean that the
algorithm is better at solving problems whose solutions lie at
the origin, which includes many of the standard test func-
tions. They also discussed another kind of bias, which is that
of finding solutions at the center of the initialization region.

It is hard to see why the particle swarm would favor the
origin. There is nothing in the formulas that would seem to
cause the particle to gravitate toward that region. Impor-
tantly, the only thing that affects the position of the particle is
the velocity, and if there is an “origin-seeking bias” in the

velocity, e.g., the value tends toward zero, it only means that
the particle will tend to stop moving.

Monson and Seppi did not test a standard version of parti-
cle swarm, though. They used Clerc’s TRIBES algorithm,
which is a kind of particle swarm, though an unusual one, and
it did not show signs of bias. They also tested the “pivot
method,” which is not similar to PSO, the bare bones PSO
(Kennedy, 2003), which is an unusual version not considered
standard, and a Gaussian method that they devised. Thus,
findings of bias could not very well be attributed to the parti-
cle swarm, as their title suggested.

Those writers reported, on the basis of inspection of some
performance graphs, finding origin-seeking bias in the pivot
method and in the bare bones PSO, with TRIBES and the
Gaussian PSO not showing any such marked tendency.

In order to further check this phenomenon, some experi-
ments were conducted, using a typical two-term best-
neighbor particle swarm, with von Neumann topology, N=20,
on the same three functions that Monson and Seppi used:
sphere, Rastrigin, and Rosenbrock, in 30 dimensions. The
optimum was offset by 0, 50, and 100 percent of the problem
space given in their paper.

Log-linear graphs were plotted for the three functions,
shown in Figure 1. On the sphere and Rastrigin functions,
there was no visible difference among the three versions. On
the Rosenbrock function, there were differences, but the pat-
tern was not clear. With offset=0.00, the mean best perform-
ance after 2,000 iterations was 74.516; with offset=50.00,
performance mean was 58.482; and with offset=100.00, per-
formance was 132.826. Thus, moving the optimum away
from the origin actually improved performance, though mov-
ing it further made it worse.

Sphere

-15

-10

-5

0

5

10

0 500 1000 1500 2000

CO=0.0
CO=0.5
CO=1.0

Rastrigin

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

0 500 1000 1500 2000

CO=0.0

CO=0.5

CO=1.0

167

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Rosenbrock

0

2

4

6

8

10

12

0 500 1000 1500 2000

CO=0
CO=0.5
CO=1.0

Figure 1. Graphs of performance of three functions, varying the center
offset (CO) of each function by the proportion given.

Note that the version used was not intended to be an espe-

cially excellent particle swarm, but just a typical one. The
Rosenbrock results called for closer examination. Final
means for the three conditions are given in Table 1.

Table 1. Mean best performance for three levels of off-
sets on the 30-dimensional Rosenbrock function.
Offset% Mean S.D.
0.00 74.52 50.67
50.00 58.48 59.20
100.00 132.83 233.96

The offset of 100 percent resulted in a relatively high

mean performance, and a very high standard deviation.
Looking at the raw scores revealed an outlier, one trial with a
mean of 1082.59. Removing this trial dropped the mean for
the offset=100 cell to 82.84, s.d.=70.91. Thus all conditions,
with one outlier removed, performed within one standard
deviation of one another. T-tests comparing all pairs of
means were nonsignificant, p>0.25, even with the outlier in-
cluded, as large standard deviations explained the differences
among means.

Since Angeline (1998), it has been standard practice for
particle swarm researchers to initialize their populations in
such a way that the global optimum is outside the range cov-
ered by the population; very many published results support
the fact that the swarm is not limited to finding solutions in-
side the initialization range.

In sum, there does not appear to be any reason to think
that the ordinary particle swarm algorithm has any bias to-
ward the origin.

Probabilistic Algorithms

 The trajectory of the particle sweeps it back and forth
across a range of points that is centered on the mean of the
sources of influence and is scaled to the differences among
them. The series of positions tested represents a sample from
a probability distribution, and some researchers have experi-
mented with various ways to simulate the particle trajectories
by directly sampling, using a random number generator
(RNG), from a distribution of some theoretical interest.

 Numerous researchers have been looking into this line of
thought. For example, Krohling (2004) updated the velocity
using the absolute value of a Gaussian distribution with
mean=0.0 and s.d.=1.0 with good results. Sun, et al. (2004)
used a strategy based on a quantum Delta potential well
model to sample around the previous best points. Richer and
Blackwell (2006) show good results using a Lévy distribu-
tion. Kennedy (2003) sampled with a Gaussian distribution,
and later with various probability distributions (Kennedy,
2006).
 These projects provide the insight that the power of the
particle swarm algorithm is not to be found in the trajectories
of the particles, but in their interactions. Because they teach
one another and learn from one another, the population as a
whole is able to progress from random guesses to very accu-
rate solutions to difficult problems.

Conclusions

 Early papers reported on a simple algorithm based on a
metaphor of social behavior; primitive as it was, even those
first swarms were powerful enough to catch the attention of
the larger research community. The early reaction was, “We
know it works, but we can’t figure out how it works!”
 Today, approximately eleven years later, a lot has been
understood, but basic questions remain. The swarm works
through the interactions of members of the population, but as
has been seen, the exact methods for moving the particles, for
communicating among the particles, and for structuring the
population as a whole are quite flexible. Some methods work
better than others, and methods often interact with one an-
other as well as with features such as problem type, and it is
still difficult to express fundamental principles describing
how the swarm works and how best to implement it.
 Parsimony has always been a valued ethic within the
paradigm. While many researchers have shown that the algo-
rithm can be improved by adding features to it, making it
more complicated, the real research goal, at least at this time
in the life of the young paradigm, is to strip it down to its
essentials. When the principles that drive improvement over
time are understood, then better versions can be built on that
firm foundation.
 In the meantime, as the particle swarm is used for various
applications, a set of common practices has evolved. Gener-
ally these are practices that have proven themselves, but
sometimes suboptimal methods become common in the
community, as the swarm of researchers flocks around local
optima.
 The particle swarm is an optimistic tradition, based on
cooperation and social learning. As the research community
collaborates, greater wisdom accumulates about this new
approach to problem solving. Over time, better problem so-
lutions will propagate through the population, and those who
have fixated on locally optimal ways of programming the
swarm will be attracted to better methods. It just seems to be
the way science works.

168

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

References

Angeline, P. J. (1008). Using selection to improve particle
swarm optimization. Proceedings of the 1998 IEEE Con-
gress on Evolutionary Computation, Anchorage.

Clerc, M. (2006). Particle Swarm Optimization. London:
ISTE Publishing Company.

Clerc, M., and Kennedy, J. (2002). The particle swarm: Ex-
plosion, stability, and convergence in a multi-dimensional
complex space. IEEE Transactions on Evolutionary
Computation, 6, 58-73.

Eberhart, R. C., and Shi, Y.. (2000). Comparing inertia
weights and constriction factors in particle swarm optimi-
zation. Proceedings of the 2000 IEEE Congress on Evo-
lutionary Computation, San Diego, CA, pp 84-88.

Eberhart, R. C., and Shi, Y.. (2001). Particle swarm optimiza-
tion: developments, applications and resources. Proceed-
ings of the Congress on Evolutionary Computation 2001,
Seoul, Korea. Piscataway, NJ: IEEE Service Center.

Gehlhaar, D. K., and Fogel, D. B. (1006). Tuning evolution-
ary programming for conformationally flexible molecular
docking. In Evolutionary Programming, 419-429.

Jaccard, J., and Wan, C. K. (1996). LISREL approaches to
interaction effects in multiple regression. Thousand Oaks,
CA: Sage Publications.

Kennedy, J. (2006). In Search of the Essential Particle
Swarm. Proceedings of the 2006 IEEE World Congress
on Computational Intelligence (DVD).

Kennedy, J. (2003) Bare bones particle swarms. Proceedings
of the IEEE Swarm Intelligence Symposium, 80-87. Indi-
anapolis, IN.

Kennedy, J., and Eberhart, R. C., with Shi, Y. (2001). Swarm
Intelligence. Morgan Kaufmann/ Academic Press.

Krohling, R. A. (2004). Gaussian swarm: A novel particle
swarm optimization algorithm. Proceedings of the 2004
IEEE Conference on Cybernetics and Intelligent Systems
(CIS), Singapore, 372-376.

Liang, J. J., and Suganthan, P. N. (2005). Dynamic Mul-
tiswarm Particle Swarm Optimizer (DMS-PSO). Pro-
ceedings of the IEEE Swarm Intelligence Symposium,
Pasadena, CA, 124-129.

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully
informed particle swarm: simpler, maybe better. IEEE
Transactions on Evolutionary Computation, 8, 204-210.

Mendes, R. (2004). Population Topologies and Their Influ-
ence in Particle Swarm Performance. Doctoral Thesis,
Universidade do Minho.

Mohais, A., Mendes, R., Ward, C., and Postoff, C. (2005).
Neighborhood Re-Structuring in Particle Swarm Optimi-
zation. Proceedings of the 18th Australian Joint Confer-
ence on Artificial Intelligence (AI 2005), Sydney.

Monson, C. K., and Seppi, K. D. (2005). Exposing origin-
seeking bias in PSO. Proceedings of the 2005 conference
on Genetic and Evolutionary Computation, 241 - 248.

Sun, J., Feng, B., and Wenbo, X. (2004). Particle swarm
optimization with particles having quantum behavior.
Proceedings of the IEEE Congress on Evolutionary Com-
putation, Portland, Oregon, 325-331.

Richer, T. J., and Blackwell, T. M. (2006). The Levy Particle
Swarm. Proceedings of the 2006 Congress on Evolution-
ary Computation (CEC-2006), Vancouver, Canada.

Shi, Y., and Eberhart, R. C. (1998). A modified particle
swarm optimizer. Proceedings of the IEEE Int. Conf. on
Evolutionary Computation, 69-73.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen,
Y.-P., Auger, A., and Tiwari, S. (2005). Problem Defini-
tions and Evaluation Criteria for the CEC 2005 Special
Session on Real-Parameter Optimization. Technical Re-
port, Nanyang Technological University, Singapore, May
2005 AND KanGAL Report #2005005, IIT Kanpur, In-
dia.

Wilke, D. N. (2005).Analysis of the particle swarm optimiza-
tion algorithm. Master's dissertation, University of Preto-
ria, South Africa.

169

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

