
 

Abstract—The performance of two recent variants of Particle 
Swarm Optimization (PSO) when applied to Integer
Programming problems is investigated. The two PSO variants, 
namely, barebones Particle Swarm (BB) and the exploiting 
barebones Particle Swarm (BBExp) are compared with the 
standard PSO and standard Differential Evolution (DE) on 
several Integer Programming test problems. The results show
that the BBExp seems to be an efficient alternative for solving 
Integer Programming problems.

I. INTRODUCTION

MANY real-world applications (e.g. production

scheduling, resource allocation, VLSI circuit design, etc.)

require the variables to be optimized to be integers. These 

problems are called Integer Programming problems.

Optimization methods developed for real search spaces can 

be used to solve Integer Programming problems by rounding 

off the real optimum values to the nearest integers [1]. 

The unconstrained Integer Programming problem can be 

defined as

dN,f ZSxx ⊆∈)(min (1)

where dN
Z  is an dN –dimensional discrete space of

integers, and S represents a feasible region that is not 

necessarily a bounded set. Integer Programming problems

encompass both maximization and minimization problems.

Any maximization problem can be converted into a

minimization problem and vice versa . The problems  tackled in 

this paper are minimization problems . Therefore, the

remainder of the discussion focuses on minimization

problems.

The Branch and Bound method [2] is one common

deterministic approach to tackle the Integer Programming 

problems. Evolutionary algorithms (EAs) [3] are general-

purpose stochastic search methods simulating natural
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selection and evolution in the biological world. EAs have

been used successfully to solve Integer Programming

problems [4]. On the other hand, Particle Swarm Optimization 

(PSO) [5] is a population-based stochastic optimization 

algorithm modeled after the simulation of the social behavior

of bird flocks, where a swarm of individuals (called particles)

fly through the search space. PSO has also been used to 

solve Integer Programming problems with promising results 

[1,6,7].

Kennedy [8] proposed a new PSO approach where the 

standard PSO velocity equation is removed and replaced 

with samples from a normal distribution. This approach,

known as barebones Particle Swarm (BB), requires no

parameter tuning. Kennedy [8] proposed a variation of the 

BB PSO where approximately half of the time velocity is 

based on samples from a normal distribution, and for half of 

the time velocity is derived from the particle's personal best 

position. This version is called exploiting barebones Particle

Swarm (BBExp).

This paper investigates the performance of BB and BBExp

methods on Integer Programming problems. The two variants 

are compared to both PSO (as proposed in [1]) and standard 

Differential Evolution (DE) [9].

The reminder of the paper is organized as follows: Section

II provides an overview of PSO, BB and BBExp. An overview

of DE is given in Section III. Benchmark functions to measure 

the performance of the different approaches are provided in 

Section IV. Results of the experiments are presented in 

Section V. Finally, Section VI concludes the paper.

II. PARTICLE SWARM OPTIMIZATION AND ITS VARIANTS

In PSO, each particle in the swarm is represented by the 

following characteristics:

xi: The current position of the particle;

vi: The current velocity of the particle;

yi: The personal best position of the particle.

The personal best position of particle i is the best position 

(i.e. one resulting in the best fitness value) visited by particle 

i so far. Let f denote the objective function. Then the

personal best of a particle at time step t is updated as
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If the position of the global best particle is denoted by the 

vector ŷ , then

}{ { }))((,)),(()),((min,,,)(ˆ 1010 tftftft ss yyyyyyy KK =∈  (3)

where s denotes the size of the swarm.

For each iteration of a PSO algorithm, the velocity vi
update step is specified for each dimension j ∈ 1,…, Nd,

where Nd is the dimension of the problem. Hence, vi,j
represents the jth element of the velocity vector of the ith

particle. The velocity of particle i is updated as
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where w is the inertia weight, 1c  and 2c  are the acceleration 

constants and jr1, , (0,1)~2, Ur j . Equation (4) consists of 

three components, namely

• The inertia weight term, w, which serves as a memory 

of previous velocities. The inertia weight controls the impact 

of the previous velocity: a large inertia weight favors

exploration, while a small inertia weight favors exploitation.

• The cognitive component, ii xy − , which represents 

the particle's own experience as to where the best solution is.

• The social component, iˆ xy − , which represents the 

belief of the entire swarm as to where the best solution is.

The position of particle i, xi, is then updated using

)1()()1( ++=+ ttt iii vxx                                         (5)

The reader is referred to [10,11] for a study of the

relationship between the inertia weight and acceleration 

constants, in order to select values for these control

parameters which will ensure convergent behavior. Velocity 

updates can also be clamped through a user defined

maximum velocity, Vmax, which would prevent them from

exploding, thereby reducing the chances that particles will 

leave the boundaries of the search space.

The PSO algorithm performs the update equations above, 

repeatedly, until a specified number of iterations have been 

exceeded, or velocity updates are close to zero. The quality 

of particles is measured using a fitness function which 

reflects the optimality of a particular solution.

A. Barebones Particle Swarm approaches

BB PSO replaces equations (4) and (5) with the following 

equation,
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Equation (6) is based on theoretical studies where formal 

proofs have shown that each particle converges to a

weighted average of its personal best and neighborhood 

best positions [10,11]. Therefore, the mean of

2

)()( tŷty jji, +

is used for the normal distribution. The deviation of

)(-)( tŷty jji,

allows particles whose personal best position are far away 

from the global best position to make large step sizes 

towards the global best position. This may cause personal 

best positions to move closer to the global best position. 

When a personal best position is close to the global best 

position, step sizes are small to limit exploration in favor of 

exploitation.

The BBExp, on the other hand, replaces equations (4) and 

(5) with
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The fact that position updates are set equal to the

personal best position for 50% of the time causes the BBExp 

to exploit personal best positions more than BB PSO, thereby 

limiting exploration.

According to [8], BBExp generally outperformed other 

variants of PSO when applied to a set of benchmark

functions.

III. DIFFERENTIAL EVOLUTION

Differential evolution does not make use of a mutation 

operator that depends on some probability distribution

function, but introduces a new arithmetic operator which 

depends on the differences between randomly selected pairs 

of individuals.

For each parent, )(tix , of generation t, an offspring, 

)(tix′ , is created in the following way: Randomly select 

three individuals from the current population, namely )(
1

tix ,
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)(
2

tix  and )(
3

tix , with iiii ≠≠≠ 321 and i1, i2, i3 ~ 

U(1,…, s), where s is the population size. Select a random 

number r ~ U(1,…, Nd), where Nd is the number of genes 

(parameters) of a single chromosome. Then, for all parameters 

j = 1,…, Nd, if U(0, 1) < Pr, or if j = r, let

))(-)(()()(
21

txtxFtxtx j,ij,ij,iji, 3
+=′ (8)

otherwise, let

)()( txtx ji,ji, =′ (9)

In the above, Pr is the probability of reproduction (with Pr

∈ [0, 1]), F is a scaling factor with F ∈ (0, 8), and )(tx ji,′  and 

)(tx ji,  indicate respectively the j-th parameter of the

offspring and the parent.

Thus, each offspring consists of a linear combination of 

three randomly chosen individuals when U(0,1) < Pr;

otherwis e the offspring inherits directly from the parent.

Even when Pr = 0, at least one of the parameters of the 

offspring will differ from the parent (forced by the condition j
= r).

The mutation process above requires that the population 

consists of more than three individuals.

After completion of the mutation process, the next step is 

to select the new generation. For each parent of the current 

population, the parent is replaced with its offspring if the 

fitness of the offspring is better, otherwise the parent is 

carried over to the next generation.

Price and Storn [12] proposed ten different strategies for 

DE based on the individual being perturbed (i.e. )(tj,i3
x ),

number of individuals used in the mutation process and the 

type of crossover used. The strategy shown in this section is 

known as DE/rand/1. This strategy is considered to be the 

most widely used strategy.

IV. BENCHMARK FUNCTIONS

Six commonly used Integer programming benchmark

problems [1] were chosen to investigate the performance of 

the PSO variants. Elements of the particle position vectors 

are rounded to the nearest integer, after the application of the 

position update equation.

Test Problem 1:

∑
=

=
dN

i
ix

1

1 )(xF

where 0=∗
x  and 0)( =∗

xf . This problem was

considered for dimensions 5, 15 and 30.

Test Problem 2:

( ) ( )22

21

22

2

2

12 7431129)( −++−+= xxxxxF

where ( )T1,1=∗
x  and 0)(2 =∗

xF .

Test Problem 3:
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4

32

2

43

2
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where 0=∗
x  and 0)(3 =∗

xF .

Test Problem 4:

2121

2

2

2

14 36432)( xxxxxxxF −−++=

where 0=∗
x  and 0)(4 =∗

xF .

Test Problem 5:

21

2

2

2

1215 2518264203081239223208138843803)( xx.x.x.x.x..xF +++−−−=

where ( )T0,1=∗
x  and 3833.12-)(5 =∗

xF .

Test Problem 6:

xxxF
T

6 )( =

where 0=∗
x  and 0)( =∗

xf . This problem was

considered for dimension 5 as in [1].

For all the above problems, Z⊆−∈ ]100100[ ,xi .

V. EXPERIMENTAL RESULTS

In this section, BB and BBExp are compared with standard

gbest PSO and DE/rand/1. For PSO, w =0.72, 1c = 2c = 1.49

(these values were suggested by [13]). For DE, F = 0.5, Pr = 

0.9 (these values were suggested by [12]). For BB and 

BBExp, no control parameter tuning is needed (except for the

swarm size s). For all the algorithms used in this section, s = 

50.

The results reported in this section are averages and 

standard deviations over 30 simulations. Each simulation was 

allowed to run for 50 000 evaluations of the objective

function.

Table I summarizes the results of the experiments. For all 
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the test problems, except for F1 with Nd = 15 and F1 with Nd = 

30, all the algorithms found the global optimum solutions. For 

larger dimensional problems (F1 with Nd = 30), the BBExp 

performed best, giving significantly better results than the 

other algorithms. What is interesting to note is that the BB 

PSO performed worse than the other algorithms for F1 with 

Nd = 15 and Nd = 30. This may be due to larger step sizes 

caused by the deviation, )(-)( tŷty jji, , of the normal 

distribution.

Examining the results, BBExp significantly outperformed 

the other approaches when applied to the 30-dimensional F1.

BB performed worse than the other approaches when applied 

to F1. Examining Figure 1 it can be shown that BBExp

converges faster than the other approaches when applied to 

the 30-dimensional F1. Furthermore, Figure 1 shows that BB

suffers from premature convergence. The expected reason for 

the premature convergence is that BB lost its diversity faster

than the other approaches as shown in Fig. 2. For all the 

other functions, all the approaches performed equally well

and exhibit similar convergence characteristics. Although the 

algorithms achieved the same accuracy for the lower

dimensional problems, BBExp have shown the following 

advantages:

• Better accuracy for the higher dimensional problems.

• Faster convergence.

• Requires no parameter tuning, whereas the

performance of PSO and DE is dependent on values 

selected for their control parameters.

VI. CONCLUSION

This paper evaluated the performance of two version of 

the barebones PSO in solving Integer Programming

problems. In comparison with a gbest PSO and DE/rand/1, 

the algorithms showed the same performance in terms of 

accuracy for the lower dimensional problems. For higher 

dimensional problems, BBExp showed to be significantly 

better than the other algorithms. The results also showed 

that BBExp converges faster to good solutions.
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T ABLE I

MEAN, STANDARD DEVIATION (SD) AND 95% CONFIDENCE INTERVAL O F THE TEST PROBLEMS

Function Method Mean (SD) 95% Confidence Interval (z-

distribution)

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F1

( dN = 5)

BBExp 0(0) [0,0]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0.433333(0.897634) [0.201565,0.665101]

F1

( dN = 15)

BBExp 0(0) [0,0]

PSO 4.066667(18.339581) [0.718333,7.415001]

DE 1.5 (1.978331) [1.138808,1.861192]

BB 10.600000(6.234498) [9.461742,11.738258]

F1

( dN = 30)

BBExp 0.366667(0.556053) [0.265146,0.468188]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F2

BBExp 0(0) [0,0]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F3

BBExp 0(0) [0,0]

PSO -6(0) [-6,-6]

DE -6(0) [-6,-6]

BB -6(0) [-6,-6]

F4

BBExp -6(0) [-6,-6]

PSO -3833.12(0) [-3833.12,-3833.12]

DE -3833.12(0) [-3833.12,-3833.12]

BB -3833.12(0) [-3833.12,-3833.12]

F5

BBExp -3833.12(0) [-3833.12,-3833.12]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F6

( dN = 5)

BBExp 0(0) [0,0]
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Fig. 1: Comparison between PSO, DE, BB and BBExp for the 30-dimensional F1 benchmark 

problem. The vertical axis represents the function value and the horizontal axis represents 

the number of generations.
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Fig. 2: Comparison between PSO, DE/rand/1, BB and BBExp for the 30-dimensional F1

benchmark problem. The vertical axis represents the diversity and the horizontal axis 

represents the number of generations.
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