

Abstract—The performance of two recent variants of Particle
Swarm Optimization (PSO) when applied to Integer
Programming problems is investigated. The two PSO variants,
namely, barebones Particle Swarm (BB) and the exploiting
barebones Particle Swarm (BBExp) are compared with the
standard PSO and standard Differential Evolution (DE) on
several Integer Programming test problems. The results show
that the BBExp seems to be an efficient alternative for solving
Integer Programming problems.

I. INTRODUCTION

MANY real-world applications (e.g. production

scheduling, resource allocation, VLSI circuit design, etc.)

require the variables to be optimized to be integers. These

problems are called Integer Programming problems.

Optimization methods developed for real search spaces can

be used to solve Integer Programming problems by rounding

off the real optimum values to the nearest integers [1].

The unconstrained Integer Programming problem can be

defined as

dN,f ZSxx ⊆∈)(min (1)

where dN
Z is an dN –dimensional discrete space of

integers, and S represents a feasible region that is not

necessarily a bounded set. Integer Programming problems

encompass both maximization and minimization problems.

Any maximization problem can be converted into a

minimization problem and vice versa . The problems tackled in

this paper are minimization problems . Therefore, the

remainder of the discussion focuses on minimization

problems.

The Branch and Bound method [2] is one common

deterministic approach to tackle the Integer Programming

problems. Evolutionary algorithms (EAs) [3] are general-

purpose stochastic search methods simulating natural

Manuscript received November 3, 2006.

M. G. Omran is with the Department of Computer Science, Gulf

University for Science and Technology, Kuwait (phone: 886644 (Ext.

5542); e-mail: mjomran@gmail.com).

A. Engelbrecht is with the Department of Computer Science,

University of Pretoria, Pretoria, South Africa.

A. Salman with the Department of Computer Engineering, Kuwait

University, Kuwait .

selection and evolution in the biological world. EAs have

been used successfully to solve Integer Programming

problems [4]. On the other hand, Particle Swarm Optimization

(PSO) [5] is a population-based stochastic optimization

algorithm modeled after the simulation of the social behavior

of bird flocks, where a swarm of individuals (called particles)

fly through the search space. PSO has also been used to

solve Integer Programming problems with promising results

[1,6,7].

Kennedy [8] proposed a new PSO approach where the

standard PSO velocity equation is removed and replaced

with samples from a normal distribution. This approach,

known as barebones Particle Swarm (BB), requires no

parameter tuning. Kennedy [8] proposed a variation of the

BB PSO where approximately half of the time velocity is

based on samples from a normal distribution, and for half of

the time velocity is derived from the particle's personal best

position. This version is called exploiting barebones Particle

Swarm (BBExp).

This paper investigates the performance of BB and BBExp

methods on Integer Programming problems. The two variants

are compared to both PSO (as proposed in [1]) and standard

Differential Evolution (DE) [9].

The reminder of the paper is organized as follows: Section

II provides an overview of PSO, BB and BBExp. An overview

of DE is given in Section III. Benchmark functions to measure

the performance of the different approaches are provided in

Section IV. Results of the experiments are presented in

Section V. Finally, Section VI concludes the paper.

II. PARTICLE SWARM OPTIMIZATION AND ITS VARIANTS

In PSO, each particle in the swarm is represented by the

following characteristics:

xi: The current position of the particle;

vi: The current velocity of the particle;

yi: The personal best position of the particle.

The personal best position of particle i is the best position

(i.e. one resulting in the best fitness value) visited by particle

i so far. Let f denote the objective function. Then the

personal best of a particle at time step t is updated as

⎩
⎨
⎧

<++
≥+

=+
))(())1((if)1(

))(())1((if)(
)1(

tftft

tftft
t

i

i
i

ii

ii

yxx

yxy
y (2)

Barebones Particle Swarm for Integer Programming Problems

Mahamed G. H. Omran, Andries Engelbrecht and Ayed Salman

170

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

If the position of the global best particle is denoted by the

vector ŷ , then

}{ { }))((,)),(()),((min,,,)(ˆ 1010 tftftft ss yyyyyyy KK =∈ (3)

where s denotes the size of the swarm.

For each iteration of a PSO algorithm, the velocity vi
update step is specified for each dimension j ∈ 1,…, Nd,

where Nd is the dimension of the problem. Hence, vi,j
represents the jth element of the velocity vector of the ith

particle. The velocity of particle i is updated as

))()()((

))()()(()(1)(

2,2

1,1

txtŷtrc

txtytrctwvtv

ji,jj

ji,ji,jji,ji,

−

+−+=+
 (4)

where w is the inertia weight, 1c and 2c are the acceleration

constants and jr1, , (0,1)~2, Ur j . Equation (4) consists of

three components, namely

• The inertia weight term, w, which serves as a memory

of previous velocities. The inertia weight controls the impact

of the previous velocity: a large inertia weight favors

exploration, while a small inertia weight favors exploitation.

• The cognitive component, ii xy − , which represents

the particle's own experience as to where the best solution is.

• The social component, iˆ xy − , which represents the

belief of the entire swarm as to where the best solution is.

The position of particle i, xi, is then updated using

)1()()1(++=+ ttt iii vxx (5)

The reader is referred to [10,11] for a study of the

relationship between the inertia weight and acceleration

constants, in order to select values for these control

parameters which will ensure convergent behavior. Velocity

updates can also be clamped through a user defined

maximum velocity, Vmax, which would prevent them from

exploding, thereby reducing the chances that particles will

leave the boundaries of the search space.

The PSO algorithm performs the update equations above,

repeatedly, until a specified number of iterations have been

exceeded, or velocity updates are close to zero. The quality

of particles is measured using a fitness function which

reflects the optimality of a particular solution.

A. Barebones Particle Swarm approaches

BB PSO replaces equations (4) and (5) with the following

equation,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+)(-)(

2

)()(
)1(tŷty,

tŷty
Ntx jji,

jji,
ji, (6)

Equation (6) is based on theoretical studies where formal

proofs have shown that each particle converges to a

weighted average of its personal best and neighborhood

best positions [10,11]. Therefore, the mean of

2

)()(tŷty jji, +

is used for the normal distribution. The deviation of

)(-)(tŷty jji,

allows particles whose personal best position are far away

from the global best position to make large step sizes

towards the global best position. This may cause personal

best positions to move closer to the global best position.

When a personal best position is close to the global best

position, step sizes are small to limit exploration in favor of

exploitation.

The BBExp, on the other hand, replaces equations (4) and

(5) with

⎪⎩

⎪
⎨
⎧

>⎟⎟⎠

⎞
⎜⎜⎝

⎛ +
+

otherwise)(

0.5(0,1)if)(-)(
2

)()(

)1(

ty

Utŷty,
tŷty

N
tx

ji,

jji,
jji,

ji,
 (7)

The fact that position updates are set equal to the

personal best position for 50% of the time causes the BBExp

to exploit personal best positions more than BB PSO, thereby

limiting exploration.

According to [8], BBExp generally outperformed other

variants of PSO when applied to a set of benchmark

functions.

III. DIFFERENTIAL EVOLUTION

Differential evolution does not make use of a mutation

operator that depends on some probability distribution

function, but introduces a new arithmetic operator which

depends on the differences between randomly selected pairs

of individuals.

For each parent,)(tix , of generation t, an offspring,

)(tix′ , is created in the following way: Randomly select

three individuals from the current population, namely)(
1

tix ,

171

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

)(
2

tix and)(
3

tix , with iiii ≠≠≠ 321 and i1, i2, i3 ~

U(1,…, s), where s is the population size. Select a random

number r ~ U(1,…, Nd), where Nd is the number of genes

(parameters) of a single chromosome. Then, for all parameters

j = 1,…, Nd, if U(0, 1) < Pr, or if j = r, let

))(-)(()()(
21

txtxFtxtx j,ij,ij,iji, 3
+=′ (8)

otherwise, let

)()(txtx ji,ji, =′ (9)

In the above, Pr is the probability of reproduction (with Pr

∈ [0, 1]), F is a scaling factor with F ∈ (0, 8), and)(tx ji,′ and

)(tx ji, indicate respectively the j-th parameter of the

offspring and the parent.

Thus, each offspring consists of a linear combination of

three randomly chosen individuals when U(0,1) < Pr;

otherwis e the offspring inherits directly from the parent.

Even when Pr = 0, at least one of the parameters of the

offspring will differ from the parent (forced by the condition j
= r).

The mutation process above requires that the population

consists of more than three individuals.

After completion of the mutation process, the next step is

to select the new generation. For each parent of the current

population, the parent is replaced with its offspring if the

fitness of the offspring is better, otherwise the parent is

carried over to the next generation.

Price and Storn [12] proposed ten different strategies for

DE based on the individual being perturbed (i.e.)(tj,i3
x),

number of individuals used in the mutation process and the

type of crossover used. The strategy shown in this section is

known as DE/rand/1. This strategy is considered to be the

most widely used strategy.

IV. BENCHMARK FUNCTIONS

Six commonly used Integer programming benchmark

problems [1] were chosen to investigate the performance of

the PSO variants. Elements of the particle position vectors

are rounded to the nearest integer, after the application of the

position update equation.

Test Problem 1:

∑
=

=
dN

i
ix

1

1)(xF

where 0=∗
x and 0)(=∗

xf . This problem was

considered for dimensions 5, 15 and 30.

Test Problem 2:

() ()22

21

22

2

2

12 7431129)(−++−+= xxxxxF

where ()T1,1=∗
x and 0)(2 =∗

xF .

Test Problem 3:

() () () ()4

41

4

32

2

43

2

213 102510)(xxxxxxxxxF −+−+−++=

where 0=∗
x and 0)(3 =∗

xF .

Test Problem 4:

2121

2

2

2

14 36432)(xxxxxxxF −−++=

where 0=∗
x and 0)(4 =∗

xF .

Test Problem 5:

21

2

2

2

1215 2518264203081239223208138843803)(xx.x.x.x.x..xF +++−−−=

where ()T0,1=∗
x and 3833.12-)(5 =∗

xF .

Test Problem 6:

xxxF
T

6)(=

where 0=∗
x and 0)(=∗

xf . This problem was

considered for dimension 5 as in [1].

For all the above problems, Z⊆−∈]100100[,xi .

V. EXPERIMENTAL RESULTS

In this section, BB and BBExp are compared with standard

gbest PSO and DE/rand/1. For PSO, w =0.72, 1c = 2c = 1.49

(these values were suggested by [13]). For DE, F = 0.5, Pr =

0.9 (these values were suggested by [12]). For BB and

BBExp, no control parameter tuning is needed (except for the

swarm size s). For all the algorithms used in this section, s =

50.

The results reported in this section are averages and

standard deviations over 30 simulations. Each simulation was

allowed to run for 50 000 evaluations of the objective

function.

Table I summarizes the results of the experiments. For all

172

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

the test problems, except for F1 with Nd = 15 and F1 with Nd =

30, all the algorithms found the global optimum solutions. For

larger dimensional problems (F1 with Nd = 30), the BBExp

performed best, giving significantly better results than the

other algorithms. What is interesting to note is that the BB

PSO performed worse than the other algorithms for F1 with

Nd = 15 and Nd = 30. This may be due to larger step sizes

caused by the deviation,)(-)(tŷty jji, , of the normal

distribution.

Examining the results, BBExp significantly outperformed

the other approaches when applied to the 30-dimensional F1.

BB performed worse than the other approaches when applied

to F1. Examining Figure 1 it can be shown that BBExp

converges faster than the other approaches when applied to

the 30-dimensional F1. Furthermore, Figure 1 shows that BB

suffers from premature convergence. The expected reason for

the premature convergence is that BB lost its diversity faster

than the other approaches as shown in Fig. 2. For all the

other functions, all the approaches performed equally well

and exhibit similar convergence characteristics. Although the

algorithms achieved the same accuracy for the lower

dimensional problems, BBExp have shown the following

advantages:

• Better accuracy for the higher dimensional problems.

• Faster convergence.

• Requires no parameter tuning, whereas the

performance of PSO and DE is dependent on values

selected for their control parameters.

VI. CONCLUSION

This paper evaluated the performance of two version of

the barebones PSO in solving Integer Programming

problems. In comparison with a gbest PSO and DE/rand/1,

the algorithms showed the same performance in terms of

accuracy for the lower dimensional problems. For higher

dimensional problems, BBExp showed to be significantly

better than the other algorithms. The results also showed

that BBExp converges faster to good solutions.

REFERENCES

[1] E. Laskari, K. Parsopoulos and M. Vrahatis. Particle Swarm

Optimization for Integer Programming. In: Proceedings of

the 2002 Congress on Evolutionary Computation, vol. 2, pp.

1582-1587, 2002.

[2] R. Horst and H. Tuy. Global Optimization, Deterministic

Approaches, Springer, 1996.

[3] A. Engelbrecht. Computational Intelligence: An

Introduction. John Wiley and Sons, 2002.

[4] G. Rüdolph. An Evolutionary Algorithm for Integer

Programming. Y. Davidoe, H. Schwefel and R. Männer (eds.),

Parallel Problem Solving from Nature, vol. 3, pp. 139-148,

Springer, 1994.

[5] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In

Proceedings of IEEE International Conference on Neural
Networks, Perth, Australia, vol. 4, pp. 1942-1948, 1995.

[6] T. Tsukada, T. Tamura, S. Kitagawa and Y. Fukuyama.

Optimal operational planning for cogeneration system using

part icle swarm optimization. In Proceedings of the IEEE
Swarm Intelligence Symposium 2003 (SIS 2003),
Indianapolis, Indiana, USA. pp. 138-143, 2003.

[7] K. Parsopoulos and M. Vrahatis. Recent approaches to global

optimization problems through particle swarm optimization.

Natural Computing, vol. 1, no. 2-3, pp. 235-306, 2002.

[8] J. Kennedy. Bare bones particle swarm, IEEE Swarm
Intelligence Symposium , pp. 80-87, 2003.

[9] R. Storn and K. Price. Differential Evolution – A Simple and

Efficient Adaptive Scheme for Global Optimization over

Continuous Spaces. Technical Report TR-95-012,

International Computer Science Institute, Berkeley, CA,

1995.

[10] F. Van den Bergh. An analysis of particle swarm optimizers,
Ph.D. dissertation. Department of Computer Science,

University of Pretoria, 2002.

[11] F. Van den Bergh and A. P. Engelbrecht. A Study of Particle

Trajectories. Information Sciences, vol. 176, no. 8, pp. 937-

971, 2006.

[12] K. Price and R. Storn. DE Web site,

http://www.ICSI.Berkeley.edu/~storn/code.html (visited 8

Aug 2006), 2006.

[13] M. Clerc and J. Kennedy. The particle swarm: Explosion,

Stability and Convergence in a multi-dimentional complex

space. IEEE Transactions on Evolutionary Computation,

vol. 6, pp. 58-73, 2002.

173

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

T ABLE I

MEAN, STANDARD DEVIATION (SD) AND 95% CONFIDENCE INTERVAL O F THE TEST PROBLEMS

Function Method Mean (SD) 95% Confidence Interval (z-

distribution)

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F1

(dN = 5)

BBExp 0(0) [0,0]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0.433333(0.897634) [0.201565,0.665101]

F1

(dN = 15)

BBExp 0(0) [0,0]

PSO 4.066667(18.339581) [0.718333,7.415001]

DE 1.5 (1.978331) [1.138808,1.861192]

BB 10.600000(6.234498) [9.461742,11.738258]

F1

(dN = 30)

BBExp 0.366667(0.556053) [0.265146,0.468188]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F2

BBExp 0(0) [0,0]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F3

BBExp 0(0) [0,0]

PSO -6(0) [-6,-6]

DE -6(0) [-6,-6]

BB -6(0) [-6,-6]

F4

BBExp -6(0) [-6,-6]

PSO -3833.12(0) [-3833.12,-3833.12]

DE -3833.12(0) [-3833.12,-3833.12]

BB -3833.12(0) [-3833.12,-3833.12]

F5

BBExp -3833.12(0) [-3833.12,-3833.12]

PSO 0(0) [0,0]

DE 0(0) [0,0]

BB 0(0) [0,0]

F6

(dN = 5)

BBExp 0(0) [0,0]

F1 (30 dim)

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000

t

F
1

gbest PSO

DE/rand/1

BB

BBExp

Fig. 1: Comparison between PSO, DE, BB and BBExp for the 30-dimensional F1 benchmark

problem. The vertical axis represents the function value and the horizontal axis represents

the number of generations.

174

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

F1 (30 dim)

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000

t

d
iv

e
rs

it
y gbest PSO

DE/rand/1

BB

BBExp

Fig. 2: Comparison between PSO, DE/rand/1, BB and BBExp for the 30-dimensional F1

benchmark problem. The vertical axis represents the diversity and the horizontal axis

represents the number of generations.

175

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

