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Abstract – In this paper, the performance of some 
evolutionary algorithms on grinding process optimization of 
silicon carbide (SiC) is investigated.  The grinding of SiC is not 
an easy task due to its low fracture toughness, therefore making 
the material sensitive to cracking.  The efficient grinding 
involves the optimal selection of operating parameters to 
maximize the Material Removal Rate (MRR) while maintaining 
the required surface finish and limiting surface damage.  In this 
work, optimization based on the available model has been 
carried out to obtain optimum parameters for silicon carbide 
grinding via three prominent evolutionary algorithms. They are 
Particle Swarm Optimization (PSO), Differential Evolution (DE) 
and Genetic Algorithm (GA).  The objective of this optimization 
process is to maximize the MRR, subject to surface finish and 
damage constraints of the grinding process.  Numerical results 
show that PSO is comparatively superior in comparison with DE 
and GA algorithms for grinding process optimization in terms of 
its accuracy and convergent capability. 

I. INTRODUCTION 
Currently, the usage of advanced structural ceramics such 

as silicon carbide (SiC), silicon nitride, alumina or partially 
stabilized zirconiums are demanding for engineering 
applications.  These materials feature a high strength at 
elevated temperatures, resistance to chemical degradation, 
wear resistance and low density.  The effective use of these 
structural ceramics in such functional applications demands 
the grinding of ceramic components with good surface finish 
and low surface damage. The main concern about the use of 
ceramics in industry is the complexity involved in machining 
due to the high hardness and low fracture toughness which 
involves a high cost of machining. Therefore, the process 
optimization in ceramic processing and manufacturing 
technology are necessary for the commercialization of 
ceramic use. 

SiC is a non-oxide ceramic which consists of 9:1 ratio of 
covalent to ionic bonding.  The special features of ceramics 
with covalent bonding are that they have a low thermal 
coefficient of expansion and a relatively high thermal 
conductivity.  In regards to these properties, SiC is expected 
to be used increasingly for heat resistant parts in the work 
done by Inasaki [1].  The damage introduced during grinding 
has strong influence on the performance and reliability of 
ceramic components. Two possible cracks, namely median 
and radial cracks produced during grinding are responsible 
for chip formation and eventually material removal.  Malkin 
and Malkin [2] explained that these cracks are due to the 
energy introduced in the layers close to the surface. 

Models are pre-requisite for producing an efficient and 
high quality grinding tool.  Tonshoff et al. [3] described the 

state-of-the-art modeling and a simulation of the grinding 
processes, making comparison of the different approaches to 
modeling.  Suresh et al. have developed a surface roughness 
prediction model and optimize this model using Genetic 
Algorithms (GAs) in [4].  Meanwhile, Konig and Wemhoner 
[5] have conducted experiments to determine the optimal 
conditions for the surface grinding of sintered SiC that result 
in high MRR while improving the strength of the ground 
components.  In their study, no mathematical model was 
developed and hence it would be difficult to optimize the 
process.  The optimum parameters suggested in their work is 
based on experimental results, which might not be very 
accurate.  Mayer and Fang [6] have carried out empirical 
studies on the grinding of hot pressed silicon nitride to obtain 
the relationships of grit depth of cut and grind direction with 
respect to the strength and surface characteristics of the 
ground sample.  It was reported that no loss of strength for 
grinding in longitudinal direction as the grit depth of cut 
increases.  However, for transverse grinding as the grit depth 
of cut goes beyond a critical grit size value, there was a 
decrease in strength.  This work could have been further 
strengthened by modeling and optimization for the optimal 
parameters of the process.   

Other optimization methods that have published in 
literatures and applied to the related machining processes are 
deterministic optimization approach [8] applied to peripheral 
milling processes; fuzzy optimization [9] for turning; 
evolutionary computation [10] for end milling and abductive 
networks [11] for drilling.  The machining of ceramics with a 
low surface damage and good surface finish is utmost 
important for its applications in industries. A model available 
in literature [7] is adopted as a test problem to be solved by 
PSO [12, 13] and comparison of results are made with the 
solutions obtained using Differential Evolution (DE) and 
Genetic Algorithm (GA). 

This paper is organized as follows: in Section II the 
relevant evolutionary algorithms are briefly described.  The 
objective function formulation and constraints handling are 
detailed in Section III.  Experimental settings for all the 
algorithms and parameter sensitivity analysis are available in 
Section IV. This is followed by Section V which presents the 
numerical experimental results and discussions concerning 
the convergent capability and efficiency of the algorithms. In 
Section VI, statistical evaluation for each of the algorithm 
namely GA, DE and PSO are carried out and analyzed and 
finally the conclusions are derived in Section VII. 
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II. OVERVIEW OF EVOLUTIONARY ALGORITHMS 
In this work we employ some prominent evolutionary 

algorithms to investigate their performance in the grinding 
process optimization.  Three well-know evolutionary 
algorithms namely Particle Swarm Optimization (PSO), 
Differential Evolution (DE) and Genetic Algorithm (GA) are 
chosen for performance analysis in grinding process 
optimization.  As the information of GA is available from 
[14] and in many resources, the explanation is omitted here, 
thereby only PSO and DE are elaborated in the sub-section 
below. 

A. Particle Swarm Optimization (PSO) 
Kennedy and Eberhart [12] first introduced the particle 
swarm optimization (PSO) method.  Similar to evolutionary 
computation, a population of candidate solutions is used.  The 
method has been found to be robust in solving real-world 
problems featuring non-differentiability, high dimension, 
multiple optima and non-linearity.  PSO algorithm is a model 
that mimics the movement of individuals (fishes, birds, or 
insects) within a group (school, flock, and swarm).  Similar to 
GA, a PSO consists of a population refining its knowledge of 
the given search space.  PSO is inspired by models of 
flocking behaviour.   

Instead of using evolutionary operators such as selection, 
mutation and crossover, each particle in the population moves 
in the search space with velocity which is dynamically 
adjusted and all particles are assumed to be of no volume.  In 
short, the whole concept of PSO can be concluded in a 
sentence that is “A population consisting N particles, each 
particles has d variables (dimensions) which have its own 
ranges for each value, velocities and positions are updated 
every iteration until maximum iteration is reached”.  Each 
particle keeps track of its coordinates in the search space, 
which are associated with the best solution it has achieved so 
far.  This value is known as pbest.  Another best value that is 
tracked by the global version of the particle swarm optimizer 
is the overall best value or the best solution in the population 
is called gbest.   

The PSO concept consists of, at each time step, changing 
the velocity of each particle toward its pbest and gbest 
solutions.  The movement is weighted by a random term, with 
separate random numbers being generated toward pbest and 
gbest values.  For example the ith particle consisting d 
dimensions is represented as Xi = (Xi,1, Xi,2, Xi,3, …, Xi,d).  The 
same notation applied to the velocity, Vi = (Vi,1, Vi,2, Vi,3, …, 
Vi,d).  The best previous position of the ith particle is recorded 
and represented as pbesti = (pbesti,1, pbesti,2, pbesti,3,… 
pbesti,d).  In the case of minimization that we consider in this 
paper, the value of pbesti with lowest fitness is known as 
gbest.  The modification of velocity and position can be 
calculated using the current velocity and the distance from 
pbesti to gbest as shown in the following formulas: 

 
1 1 1

, 1 1 , , 2 2 , ,( ) ( )t t t t
i j i i j i j i j i jV wV r gbest X r pbest Xρ ρ− − −= + − + −  (1) 
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t
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t
ji VXX ,

1
,, += −  (2) 

where TtdjNi ...1,...1,...1 ∈∈∈ with N is the number of 
population size, d is the number of dimension and T is the 
number of maximum generation. 

The position, X of each particle is updated for every 
dimension for all particles in each iteration. This is done by 
adding the velocity vector to the position vector, as described 
in equation (2) above.  In equation (1), w is known as the 
inertia weight.  This parameter was introduced by Shi and 
Eberhart [13] to accelerate the convergence of PSO.  Suitable 
selection of w provides a balance between global and local 
explorations, thus requiring less iteration on average to find 
sufficiently optimal solution.  Low values of w limits the 
contribution of the previous velocity to the new velocity, 
limiting step sizes and therefore, limiting exploration.  On the 
other hand, high values result in abrupt movement toward 
target regions.   

The parameters ρ1 and ρ2 are set to constant values, which 
are normally given as 2.0 whereas r1 and r2 are two random 
values, uniformly distributed in [0, 1].  The constants, ρ1 and 
ρ2 represent the weighting of the stochastic acceleration terms 
that pull each particle toward pbest and gbest positions.  The 
general flow of PSO is illustrated in Fig. 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  A general flow chart of PSO 
 

B. Differential Evolution (DE) 
DE is a new heuristic approach for optimizing non-linear 

and non-differentiable continuous space function. This 
evolutionary algorithm is a powerful tool for optimizing real-
valued and multi-modal functions. In previous work, the 
algorithm has been shown to be superior to other methods 
presented [15]. The simplicity and robustness of this 
algorithm is further testified and applied to a wide variety of 
test functions [16]. DE has a simple adaptive mutation 
scheme whereby random vector differentials are perturbed 
around the best solution. DE always accepts improved 

Y 

N 
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Create a population of N particles 

For each particle i, evaluate its fitness

Update velocity and position as in Eqns (1) and (2) 

Update pbest and gbest values
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End
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solution and neither tournament selection nor annealing 
criteria are needed. Beneath the superiority of DE algorithm 
is the mutation strategy of manipulating the vector with the 
knowledge of the best solution so far. Each dimension of a 
vector is manipulated in the following steps: 

 
1. For a vector, choose four vectors randomly 

from the population. Let those vectors be 
Xa, Xb, Xc and Xd.  These four vectors are 
then combined to form Xabcd: 

 

( ) ( )= − + −abcd a b c dX X X X X  (3) 
 
2. For jth dimension of the first vector, Xj, 

generate a random number r.  If r < cr, 
apply Eqn (4.1), else apply Eqn (4.2). 

 
abcd

j j jTrial Best F X= + ×  (4.1) 

j jTrial X=  (4.2) 
where F is the scaling factor(0 ≤ F ≤ 
1.2).  
 

3. Go to Step 2 for the next dimension,(j+1)th 
until all dimensions are evaluated. 

 
4. Evaluate the trial vector, Trial. If the 

fitness is better than the fitness of 
current vector, f(X), assign current 
vector, X to vector Trial. (X=Trial).  
Also compare f(Trial) with f(Best). If 
better, Best = Trial. 

 
5. Continue with step 1 for the next vector 

until all vectors are evaluated. 
 

Repeat Steps 1-5 for the next generation until maximum 
number of generation is reached.  In the step 3 above, a 
checking is done so as to ensure that the trial value in 
equation (4) does not exit the specified boundaries. Whenever 
the boundary is violated, the related value will be reinitialized 
within the specified range. This will introduce a more 
diversified population, and therefore increases the 
performance of the DE algorithm. 

III. METHODOLOGY AND IMPLEMENTATION  
In this section, we formulate the objective function, which 

is the fitness function, used to evaluate every particle in the 
population.  The technique of constraint handling and 
encoding scheme of the variables are discussed here. 

A. Formulation of the Objective Function 
The objective of the optimization problem of the ceramic 

grinding process can be described as maximizing the MRR 
subject to a set of constraints on surface roughness, number 
of flaws and input variables.  The constrained optimization 
problem is formulated as the maximization of the following 
objective function: 

( ) cF X MRR f d= = ×   (5) 

where f = table feed rate [m/min] and cd = depth of cut [μm] 
The maximization of (5) is subject to some inequality 
constraints: 
 

0.1939 0.7071 0.2343
(max) , 0.145a a a cR R R d f M −≤ =  (6) 

 
0.4167 0.8333

(max) , 29.67c c c cN N N d f −≤ =   (7) 
 

5 30cm d mμ μ≤ ≤   (8) 
 

8.6m/min 13.4m/minf≤ ≤   (9) 
 

120 500M≤ ≤    (10) 
 

where Ra(max) and Nc(max) are the maximum allowable values of 
surface roughness and number of flaws respectively while M 
is the grit size.  As for the objective function above, three 
variables are present which are depth of cut (dc), table feed 
rate (f) and grit size (M).  Therefore, this is a 3-dimensional 
problem whereby the values of dc, f and M are to be 
determined through optimization process. 
 

B.  Constraints Handling 
To apply the evolutionary algorithms for searching the 

optimal parameters, we replace the three variables, dc, f and 
M with X1, X2 and X3, equivalent to the X values in equations 
(1) to (4).  Hence, the dimension of this problem is only 
three.  We use real values representation for this X vector.  As 
the number of dimension is 3, there are three values in a 
candidate solution that changes continuously until it 
converges.  In a population consisting of a pool of N 
candidate solutions, only the best solution will be the choice 
after a number of N iterations.   

In order to ensure the feasibility of each particle, checking 
of constraint violation is employed.  Constraints (8), (9) and 
(10) are handled by the algorithm itself through re-
initialization whenever any of these values exceed the 
specified range.  The advantage of this technique is that it 
creates more diversity in the population which will help the 
algorithm to find the optimal values.  However, the drawback 
of using this technique is that the algorithm will not be able to 
find optimal solution if it is located exactly at the boundaries.  
To tackle this problem, we generate a random number and if 
this random number is less than 0.5, re-initialization is done, 
else assign the current X to boundary value.  The pseudocode 
below illustrates this scenario: 
 

If X violates upper or lower range  
If r > 0.5 then 

Re-initialize X value within the 
boundary 

Else 
Set the X value to its boundary 
value 

End if 
End if 
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The method above has been found to be effective in 

handling boundary constraints in the aim of maximizing the 
objective function described in Eqn. (5) as some of the 
variables are found to be exactly at the boundary when 
optimal solutions are obtained.  Results using this 
methodology are better compared to the previous work 
reported in [17].  Further details of the solution are available 
from the results in Section V. 

For (6) and (7) inequality constraints, the penalty method is 
employed here.  Individuals that violate any of these 
constraints will be penalized heavily with a penalty factor, pf 
=10000 as shown in the pseudocode shown below.  The 
following test is employed in the fitness evaluation of a 
particle, assuming Ra(max) = 0.3 and Nc(max) = 7 and X1, X2 and 
X3 represent  dc, f and M respectively. 

 
Ra = 0.1453 × X1

0.1939 × X2
0.7071 × X3

-0.2343 
   If Ra > 0.3 Then 
   Error1 = abs(Ra-0.3)  
   End If 
 
Nc = 29.67 × X1

0.4167 × X2
-0.8333 

   If Nc > 7 Then 
   Error2 = abs(Nc-7)  
   End If 
 
SumError = Error1 + Error2 
Fitness = Fitness – SumError × pf 

IV. EXPERIMENTAL SETTINGS 
In this experiment, the population size is fixed at 20 

particles for all the algorithms in order to keep the 
computational requirements low.  The maximum number of 
iterations or the maximum number of generations is set to 
500 and a total of 50 runs/trials are performed.  Table I 
summarizes the parameter settings of the relevant 
evolutionary algorithms.  These are optimal values found by 
parameter sensitivity analysis to ensure optimum 
performance of each algorithm. 
 

 

V. NUMERICAL SIMULATION RESULTS AND DISCUSSION 
First, the PSO algorithm is applied on a total of 9 problems 

with different combinations of constraints and results are 
recorded in Table II.  From this table, all the constraints from 
(6) to (10) are not violated.  It can be observed from the 

optimization results that the MRR is remaining constant 
(MRR = 75.1342) at a lower range of number of flaws (7 in 
this case) even with different values of roughness.  Thus, it 
will be more advantageous to grind SiC at a depth of cut, 
dc=5.6070 μm and feed, f =13.40 m/min with a grit size, 
M=500 mesh.  As for the higher range of number of flaws 
(Nc(max)), an increase of 30% to 60% in MRR can be observed 
by increasing roughness value from 0.3 μm to 0.4 μm.  This 
can be a good approach to achieve the specified MRR with a 
constraint on surface roughness and surface damage. 

The same problem is run and solved using DE and GA 
algorithms.  The results are shown in Tables III and IV.  
Results of DE algorithm as shown in Table III is very similar 
to the one obtained by PSO except for the case of Ra(max) = 0.4 
and Nc=11 whereby results obtained by PSO is slightly better 
with MRR = 222.2834.  The MRR recorded by DE method is 
222.2833.  Further analysis in the next section shows that 
PSO has faster convergence capability and is very consistent 
(very low standard deviation values).  Both algorithms are 
able to find the optimal values of the variables without any 
violation to the specified constraints.  However, the results of 
GA seems discouraging as all the MRR values recorded are 
lower compared to either PSO or DE.  This is due to the fact 
that for the same Nc for these three methods, the PSO and DE 
are able to suggest either to use finer grain size to grind SiC 
or use the higher Ra values but still without violating Ra(max) 
constraint. Therefore, we can cut with deeper depth or faster 
speed. As a result of this, the MRR values obtained using 
PSO and DE are better as compared to GA. 
 

 
 

 

TABLE III 
OPTIMIZATION RESULTS OF DE (50 TRIALS) 

Constraints Value of Variables Values of 
ConstraintsNo Ra(max) 

[μm] Nc(max)
dc  

[μm] 
f  

[m/min] M Ra  
[μm] Nc 

MRR 

1 7 5.6070 13.4000 476.6414 0.2998 7 75.1342
2 9 8.4558 12.1716 500.0000 0.3000 9 102.9024
3 

0.30 
0.30 
0.30 11 11.5405 11.1766 500.0000 0.3000 11 128.9838

4 7 5.6070 13.4000 255.7044 0.3470 7 75.1342
5 9 10.2485 13.4000 483.4113 0.3359 9 137.3293
6 

0.35 
0.35 
0.35 11 15.2935 12.8663 500.0000 0.3500 11 196.7708

7 7 5.6070 13.4000 256.5515 0.3467 7 75.1342
8 9 10.2485 13.4000 404.9179 0.3502 9 137.3293
9 

0.40 
0.40 
0.40 11 16.5883 13.4000 381.3980 0.3899 11 222.2833

TABLE II 
OPTIMIZATION RESULTS OF PSO (50 TRIALS) 

Constraints Value of Variables Values of 
ConstraintsNo Ra(max) 

[μm] Nc(max)
dc  

[μm] 
f  

[m/min] M Ra  
[μm] Nc 

MRR 

1 7 5.6070 13.4000 500.0000 0.2965 7 75.1342 
2 9 8.4557 12.1715 500.0000 0.3000 9 102.9204
3 

0.30 
0.30 
0.30 11 11.5405 11.1765 500.0000 0.3000 11 128.9838

4 7 5.6070 13.4000 258.2402 0.3461 7 75.1342 
5 9 10.2484 13.4000 430.7846 0.3451 9 137.3293
6 

0.35 
0.35 
0.35 11 15.2934 12.8663 500.0000 0.3500 11 196.7708

7 7 5.6070 13.4000 238.4232 0.3527 7 75.1342 
8 9 10.2484 13.4000 295.0714 0.3771 9 137.3293
9 

0.40 
0.40 
0.40 11 16.5883 13.4000 452.2157 0.3746 11 222.2834

TABLE I 
PARAMETER SETTINGS FOR EVOLUTIONARY ALGORITHMS 

Evolutionary 
Algorithm Parameter Settings 

PSO Inertia weight, w=0.5 
ρ1 and ρ2 = 2.0 

DE Crossover rate, cr = 0.5 
Scaling, F=0.5 

GA 
Dynamic Mutation [14] with probability, mp = 0.3 
Arithmetic crossover with probability, cr = 0.85 
Tournament based selection with 5 candidates in each cycle 
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VI. STATISTICAL EVALUATION  
Further, we record the average values of MRR for GA, DE 

and PSO out of 100 trials as depicted in Table V.  Careful 
analysis of the results in the table proves that PSO is very 
stable and consistent as it has very low standard deviation 
values for all 9 cases.  The standard deviation here can be 
regarded as zero as we examine the similar results printed to 
the file from the program which is written in Visual Basic 6.0 
language.  It means that all the solutions of 100 trials are 
exactly the same.  The performance of GA is inconsistent and 
unstable as it recorded high standard deviation for all the 
cases.  The highest standard deviation is 1.0011 for case 
number 3 which can be regarded as discouraging value.  DE 
is very competent as it recorded the same average values 
except for the last row.  However the DE algorithm lacks 
slightly in terms of its consistency.  This is shown by higher 
standard deviation which means that the final solution by 
some trials differs slightly.  Further, the convergence graphs 
for GA, DE and PSO are plotted in Figs. 2, 3 and 4 
respectively for all the three cases with Ra(max) = 0.4µm.  From 
these graphs, the PSO depicts fastest convergence in all three 
cases. This is followed by DE and GA respectively. 
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Fig.2. Convergence graph for Ra(max) = 0.4 and Nc=7 
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 Fig. 3. Convergence graph for Ra(max) = 0.4 and Nc=9 
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Fig. 4. Convergence graph for Ra(max) = 0.4 and Nc=11 
 

TABLE V 
STATISTICAL COMPARISON BETWEEN GA, DE AND PSO (100 TRIALS) 
Constraints Material Removal Rate, MRR 

GA DE PSO No Ra(max) 
[μm] Nc(max) Ave Std Dev Ave Std Dev Ave Std Dev 

1 7 75.02 0.0995 75.1342 0 75.1342 7.18×10-14

2 9 101.67 0.8839 102.9204 7.19×10-6 102.9204 1.44×10-14

3 

0.30 
0.30 
0.30 11 127.31 1.0011 128.9838 1.08×10-5 128.9838 0 

4 7 75.05 0.0557 75.1342 0 75.1342 7.18×10-14

5 9 136.99 0.2958 137.3293 4.60×10-6 137.3293 8.61×10-14

6 

0.35 
0.35 
0.35 11 195.42 0.9215 196.7708 6.85×10-6 196.7710 1.44×10-13

7 7 75.06 0.0505 75.1342 0 75.1342 7.18×10-14

8 9 137.10 0.2007 137.3293 4.60×10-6 137.3293 8.61×10-14

9 

0.40 
0.40 
0.40 11 221.90 0.3140 222.2833 1.01×10-3 222.2834 1.15×10-13

TABLE IV 
OPTIMIZATION RESULTS OF GA (50 TRIALS) 

Constraints Value of Variables Values of 
ConstraintsNo Ra(max) 

[μm] Nc(max) 
dc  

[μm] 
f  

[m/min] M Ra  
[μm] Nc 

MRR 

1 7 5.6067 13.3996 492.4720 0.2975 7 75.1285
2 9 8.4520 12.1688 499.4811 0.3000 9 102.8518
3 

0.30 
0.30 
0.30 11 11.5332 11.1730 499.2599 0.3000 11 128.8612

4 7 5.6067 13.3996 467.0716 0.3012 7 75.1278
5 9 10.2477 13.3995 451.8736 0.3412 9 137.3147
6 

0.35 
0.35 
0.35 11 15.2933 12.8662 499.9865 0.3500 11 196.7674

7 7 5.6069 13.3999 368.3301 0.3185 7 75.1335
8 9 10.2480 13.3997 335.3639 0.3659 9 137.3201
9 

0.40 
0.40 
0.40 11 16.5879 13.3998 373.7518 0.3917 11 222.2769
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VII. CONCLUSION 
The effect of parameters such as depth of cut (dc), feed rate 

(f) and grit size (M) has been studied in silicon carbide 
grinding.  In this work, three prominent evolution algorithms 
namely GA, DE and PSO are investigated for the grinding 
process optimization with the objective of maximizing the 
Maximum Removal Rate, MRR subject to some operating 
constraints. The similar constraints handling are applied to all 
the algorithms.  From the numerical results, PSO 
methodology is superior in comparison with other 
optimization algorithms such as DE or GA.  Thus, we 
recommend the usage of PSO for better quality ceramics 
production in industrial applications.  
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