
Applying Opposition-Based Ideas to the Ant Colony System

Alice R. Malisia, Hamid R. Tizhoosh
Department of Systems Design Engineering, University of Waterloo, ON, Canada

armalisi@uwaterloo.ca, tizhoosh@uwaterloo.ca

Abstract— This paper presents several extensions to an al-
gorithm in the family of Ant Colony Optimization, the Ant
Colony System. The proposed extensions are based on the idea
of opposition and attempt to increase the exploration efficiency
of the solution space. The modifications focus on the solution
construction phase of the ant colony system. Three of the
proposed methods work by pairing the ants and synchronizing
their path selection. The two other approaches modify the
decisions of the ants by using an opposite-pheromone content.
Results on the application of these algorithms on Travelling
Salesman Problem instances demonstrate that the concept of
opposition is not easily applied to the ant algorithm. Only
one of the pheromone-based methods showed performance
improvements that were statistically significant. The quality of
the solutions increased and more optimal solutions were found.
The other extensions showed no clear improvement. Further
work must be conducted to explore the successful pheromone-
based approach, as well as to determine if opposition should
be applied to a different phase of the algorithm.

I. INTRODUCTION

The concept of opposition-based learning (OBL) was
recently proposed to extend different machine learning algo-
rithms [17]. The main idea of OBL is to consider opposite
estimates, actions or states as an attempt to increase the
coverage of the solution space and to reduce exploration
time. This should lead to increased accuracy and shorter
computation time. OBL involves a general strategy that
can be tailored to the technique of interest. Opposition-
based reinforcement learning approaches, where opposite
states and opposite actions are concurrently updated, lead to
superior performance than classical reinforcement learning
[16], [14]. Opposition-based extensions of neural networks
[18] and the differential evolution algorithm [10] also lead
to improvements in performance.

Like other machine intelligence methods, Ant Colony
Optimization (ACO) algorithms are based on a phenomenon
occurring in nature, the social behaviour of ant colonies [6].
Ants are well known for their ability to efficiently find the
shortest path between their nest and their food source. Their
incredible optimizing capacity is achieved by their ability
to communicate indirectly by means of pheromone deposits
[1]. ACO implementations have been successfully applied to
many complex optimization problems, such as the travelling
salesman problem (TSP), the quadratic assignment problem
(QAP), vehicle routing, etc [6].

Despite being a powerful algorithm, ACO can remain
trapped in local optima. This situation can occur when a
certain component is very desirable on its own, but leads to a

sub-optimal solution when combined with other components.
ACO implementations are based on positive reinforcement of
good solutions. Thus, after a certain number of iterations the
ants will tend to select similar paths.

Since the introduction of ACO, researchers have developed
multiple versions to improve the performance of the algo-
rithm. Ant Colony System (ACS) is a commonly used ex-
tension of the original ant algorithm [6]. The ACS algorithm
has a greedy selection rule, but provides online pheromone
reduction (see Eq. (3)) as a measure to decrease desirability
of arcs once they are travelled [5]. This prevents all the ants
in the colony from generating the same solution.

Work has been conducted to establish more complex
pheromone mechanisms, such as multiple pheromone matri-
ces, complex pheromone updates, etc. These modifications
were implemented so ACO could solve more complex prob-
lems and to improve the performance of ACS. For instance,
one particular variant of the ant algorithm known as the best-
worst Ant System (BWAS) [2] substracts pheromone content
based on the results of the worst ant of the colony. It also uses
a form of pheromone mutation based on concepts from evo-
lutionary computation. To solve a bi-criterion vehicle routing
problem, Iredi, Merkle and Middendorf [8] proposed a ver-
sion of ACS where two different pheromone trail matrices
and two heuristic functions are considered simultaneously.
Schoonderwoerd et al. [13] were one of the first to elude
to the concept of an ‘anti-pheromone’, where ants would
decrease pheromone contents rather than reinforce them.
Randall and Montgomery [11] proposed the Accumulated
Experience Ant Colony (AEAC) as a method to determine
the effect of each component on the overall solution quality.
In their approach, the pheromone and heuristic values of an
edge are weighted.

Similarly, Montgomery and Randall [9] developped three
methods based ont the concept of anti-pheromone as an
attempt to capture complex pheromone behaviour. In the first,
the pheromone of the elements composing the worst solutions
is reduced. Their second alternative combines a pheromone
content for the best solution and pheromone content for
the worse solution (anti-pheromone). The ants select edges
based on a weighted combination of pheromone and anti-
pheromone and the heuristic. Finally, their third approach
involves the use of a small number of explorer ants that have
a reversed preference for the pheromone. Their approaches
produced better solutions on smaller TSP problems. Some of
the extensions presented in this paper make use of a form
of anti-pheromone similar to the explorer ants, but involve a

182

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

different methodology.
Therefore, the present study is motivated by the idea

of developing more complex pheromone or path selection
behaviour for the ACS. This paper proposes five different
extensions to the normal ACS based on the concept of
opposition. The goal is to assess the validity of theses
extensions, as well as establish the applicability of opposition
to ACS.

The remaining of this paper is organized as follows.
Section II gives an overview of the ACS, specifically applied
to TSP. Section III presents the opposition-based extensions
to ACS. Experimental results are included in section IV and
conclusions are presented in section V.

II. ANT COLONY SYSTEM

The Ant Colony System (ACS) falls under the set of Ant
Colony Optimization (ACO) algorithms, which are inspired
from the natural behaviour of ants. ACO was introduced in
1992 by Marco Dorigo [3]. The original intent of ACO was
to solve the travelling salesman problem (TSP). The first
instance of ACO was the Ant System (AS) [4]. Today, the AS
has been subject to many modifications to improve results.
One such variation is the Ant Colony System (ACS) [5]. This
version demonstrated considerable improvement over the AS.

The ACS and other ACO algorithms are based on the trail
laying and following behaviour of ants. In nature, ants are
easily able to find the shortest path between their nest and a
food source. This is possible because they communicate with
each other via pheromone deposits which are left behind as
they travel. The presence of pheromone on a specific path
influences its selection by the ants.

This paper presents algorithms that extend ACS. Thus,
this section will provide a general description of the ACS
algorithm and its governing equations specifically applied to
TSP. The goal of a TSP optimization is to find the shortest
path connecting a specified number of cities. The ACS
algorithm works with a colony of ants that move through
the network of cities seeking the optimal path.

The ants are initially distributed randomly among the
cities. The number of ants, m, is usually smaller than the
number of cities, n, (m < n). Each ant will in turn add a
component to its partial solution. The ant selects the next
city based on pheromone and heuristic value. At each step
of the construction, an ant k located on city i selects the next
city j using the pseudorandom rule described by

j =

argmax
l∈Nk

i

{
τil[ηil]β

}
if q < qo,

J otherwise,
(1)

where τil and ηil represent the pheromone content and
heuristic information on the edge connecting city i to city l
respectively. The city l is a node that is included in Nk

i ,
the neighbourhood for ant k given its current location i.
This neighbourhood only includes cities that have not been
visited. The parameber q is a uniform random number and
qo is the probability that an ant will use learned knowledge.

Thus, if q < qo, the ant will select the node with the highest
combined value of pheromone content and heuristic function.
Otherwise, it will use J , which represents a random variable
selected using a probabilistic action rule that dictates the
probability for ant k to choose to go to next node j given
that it is currently on node i:

pk
ij =

[τij][ηij]β∑
l∈Nk

i
[τil][ηil]β

if j ∈ Nk
i , (2)

where β represents the influence of the heuristic, which is a
measure of the cost of adding the particular edge to the partial
solution. The pseudorandom rule (see Eq. 1) is a greedy
selection approach, that will tend to favour the edges (paths)
with the best combination of pheromone and short length.

Every time an ant adds an edge to the path, the amount
of pheromone on the edge is decreased using the following
equation:

τnew
ij = (1− ξ)τ current

ij + ξτo 0 < ξ < 1, (3)

where τo is the initial amount of pheromone and ξ is the local
evaporation rate. This local update works to counterbalance
the greedy construction rule by reducing the pheromone on
the selected edge, thus making it less desirable to the next
ant.

Finally, when all the ants have completed their paths, the
solutions are evaluated. If a better solution was found, the
best solution achieved so far by the algorithm is updated.
Then, a global update is applied to the pheromone on
the edges belonging to the best-so-far solution using the
following equation:

τnew
ij = (1− ρ)τ current

ij + ρ(∆τ bs
ij) ∀(i, j) ∈ T bs, (4)

where ∆τ bs
ij is additional pheromone, p is the global evap-

oration rate and T bs is the best-so-far path. The additional
pheromone is defined by

∆τ bs
ij =

{
1

Lbs
if arc is in the path of T bs,

0 otherwise,
(5)

where Lbs is the total length of the best-so-far solution. The
ACS algorithm usually terminates after a specific number
of iterations or when the best-so-far solution achieves a
desired value. The general steps of the ACS algorithm are
summarized in Table I.

III. OPPOSITION-BASED ACS

One important idea of OBL is that it can be used to effec-
tively explore different regions in the solution space to im-
prove accuracy and convergence rates [16], [17]. The general
idea can be applied in many different ways. In Differential
Evolution algorithms, a mathematically opposite population
is generated and combined with the original population and

183

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE I
ACS ALGORITHM

Initialize pheromone matrix, τ , values to τo

Repeat until termination condition is satisfied
Repeat until solution is constructed (for each ant k):

Pick next city j
Apply local pheromone update

Update best-so-far if necessary and apply global update

only the best individuals are kept for further optimization
[10]. In this approach, opposition is a way to reach far
points in the solution space, which may have a greater
fitness. In Neural Networks, opposition has been successfully
applied by incorporating opposite transfer functions [18].
This implementation leads to faster convergence. Finally, in
reinforcement learning, opposition is used to accelerate the
learning process by additional update for opposite states and
opposite actions [16], [14].

In the case of ACS, it was determined that opposition
can be applied in the construction phase or the update
phase of the ACS algorithm. The concept of opposition as
presented in [16], [17] serves as a starting point for the
extensions proposed in this paper. The ACS algorithm does
not work with complete solutions, so it is very complicated
to establish an opposite solution. Thus, the idea was to think
of opposition as a way of increasing the coverage of the
solution space.

The ACS can be modified in the construction phase and
the update phase. This paper proposes extensions to the
construction phase of the ACS. The construction phase can
be modified in two ways:

1) Change the decision;
2) Change the parameters of the decision (pheromone or

heuristic).
The first three proposed extensions follow the first type

of modification and are based on the idea of paired ants
searching the space. By pairing ants and synchronizing their
construction, one can reduce the randomness to achieve more
accuracy. The other two methods follow the second possible
modification and work with opposite pheromone values.
While the two last approaches resemble the explorer ants
proposed in [9], they differ in that the entire colony is subject
to the possibility of using opposite pheromone content. Also,
the opposite pheromone is not always activated. In the
following subsections, these five versions will be described
in detail.

A. Synchronous Opposition

The synchronous opposition approach is the most rigid in
terms of synchronicity. The ants of the colony are paired and
each pair follows a similar construction behaviour. The first
ant (leading-ant) selects its next city as usual, but the second
ant (opposite-ant) picks its next city based on the selection
of the leading-ant. If the opposite-ant was on the same city
as the leading-ant, it selects the opposite city. The opposite

city is determined by calculating the rank of the city selected
by the leading-ant and assigning the city with the opposite
rank to the opposite-ant. The cities are ranked based on the
combination of pheromone content and heuristic on the edge
connecting them to the current city.

In contrast, if the opposite-ant was located on a different
city, then it will mimic the decision make by the leading-ant.
In other words, the opposite-ant will select a city with the
same rank as the one selected by the leading-ant. It is im-
portant to note that the same rank does not necessarily mean
the same city, because as the construction progresses, the
leading-ant and the opposite-ant will have visited different
cities. This procedure is followed for the entire construction
phase. Each pair of ants starts on a randomly selected city.

Through opposition, the opp-ants diverge from their cor-
responding leading-ant, which helps guide the ants into
different areas of the solution space, for a better coverage
of the solution space. Additionally, it maintains a constant
synchronous relationship between the two ants which reduces
the randomness of the selection process. The Synchronous
Opposition algorithm is included in Table II.

B. Free Opposition

The free opposition approach retains the opposite selection
element from the previous synchronous method, but relaxes
its synchronicity aspect. Thus, as with the Synchronous
Opposition extension, when the opposite-ant is located on
the same city as the leading-ant, the opposite-ant will move
to the opposite-ranking city. However, in the other case,
the opposite-ant will behave exactly like the leading-ant by
selecting the next city using the pseudorandom rule (see Eq.
(1)). This method was implemented to examine the effect
of removing the rigid synchronicity between the two ants.
Nevertheless, since ACS has a greedy selection process, the
leading-ant and the opposite-ant will both often select the
highest ranking city. Table II includes the Free Opposition
extension of the ACS algorithm.

C. Free Quasi-Opposition

The third synchronous algorithm is similar to the Free Op-
position extension. When the leading-ant and the opposite-
ant are located on different cities, they will both use the
pseudorandom rule (see Eq. (1)) to select their next city. In
the case when the two ants are on the same city, the opposite-
ant will also use the pseudorandom rule, but it will not be
allowed to select the city that the leading-ant chose. This
extension tries to increase the exploration of the solution
space by restricting some of the choices by the opp-ants and
guiding them into different directions. However, in contrast
to the Synchronous Opposition and Free Opposition methods,
the opposite-ant is still able to highly ranked edges when it
is on the same city as the leading-ant. Table II includes the
Free Quasi-Opposition extension of the ACS algorithm.

D. Opposite Pheromone per Node (OPN)

The OPN extension to ACS affects the pheromone value
used by the ants to make their selection. Every time an

184

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE II
PAIR-BASED ALGORITHMS (SYNCHRONOUS OPPOSITION, FREE OPPOSITION, FREE QUASI-OPPOSITION)

Initialize τ matrix values to τo

Repeat until termination condition is satisfied
Repeat until solution is constructed (for each ant k)

IF ant k is leading-ant
Pick next city j

ELSE
IF opposite-ant was on SAME city as leading-ant

Synchronous Opposition: Pick opposite-rank city
Free Oppostion: Pick opposite-rank city
Free Quasi-Opposition: Use pseudorandom rule (but cannot pick same city as leading-ant)

ELSE
Synchronous Opposition: Pick same-rank city
Free Oppostion: Pick next city j
Free Quasi-Opposition: Pick next city j

Apply local pheromone update (see 3)
Update best-so-far if necessary and apply global update

TABLE III
OPPOSITE PHEROMONE PER NODE ALGORITHM

Initialize τ matrix values to τo

Repeat until termination condition is satisfied
Repeat until solution is constructed (for each ant k):

IF λ̆ < λ̆o

Calculate opposite pheromone values, τ̆ = τo + 1
Lbs

− τ

Pick next city j
ELSE

Pick next city j (regular selection rule)
Apply local pheromone update

Update best-so-far and apply global update

TABLE IV
OPPOSITE PHEROMONE ON EDGE ALGORITHM

Initialize τ matrix values to τo

Repeat until termination condition is satisfied
Repeat until solution is constructed (for each ant k):

FOR each available city j

IF λ̆ < λ̆o

Use opposite pheromone for edge ij, τij = τo + 1
Lbs

− τij

END for
Pick next city j (using new τij)

Apply local pheromone update (see Eq. (3))
Update best-so-far and apply global update

ant k has to select a city from the available cities, the
pheromone content used for their decision will depend on an
opposite rate, λ̆o. Given λ̆ is a uniform random number, if
λ̆ < λ̆o, then the ants select their next city using the opposite
pheromone content, τ̆ ,

j =

argmax
l∈Nk

i

{
τ̆il[ηil]β

}
if q < qo,

J otherwise,
(6)

pk
ij =

[τ̆ij][ηij]β∑
l∈Nk

i
[τ̆il][ηil]β

if j ∈ Nk
i (7)

where τ̆ is defined by

τ̆ = τo +
1

Lbs
− τ, (8)

where τo represents the initial pheromone deposit and Lbs

is the length of the best-so-far path. These values are used
to determine the opposite pheromone content because they
bound the possible pheromone deposit. Given the governing
equations of ACS, the pheromone content is bounded by the
initial pheromone deposit and the global optimal value [6].
Furthermore, the pheromone of all the available edges will
be modified. In the other case, when λ̆ > λ̆o, the ant will

185

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

select the next city using the original pheromone content. The
local update and global updates are were not altered. This
pheromone-centred extension differs from the explorer ants
method proposed by Montgomery and Randall [9]. In their
approach, only a small portion of the colony used the anti-
pheromone. Additionally, these explorer ants always used the
anti-pheromone in their selection. In the method proposed in
this paper, all ants have the opportunity to use the opposite
and the affected decisions vary from ant to ant and from
iteration to iteration. Table III describes the OPN extension
on the ACS.

E. Opposite Pheromone per Edge (OPE)

The second pheromone extension, OPE, is a modification
of the OPN method. The ants also have the possibility to
use the opposite pheromone value to make their decision.
However, the opposite rate, λ̆o, is applied to each individual
edge of the decision instead of applying it to all the edges
connected to the current city. Table IV describes the OPE
extension on the ACS. The ants use the pseudorandom
selection rule (see Eq. (1)) to make their decision. The
pheromone of each edge is determined by

τij =

{
τij = τo + 1

Lbs
− τij ifλ̆ < λ̆o,

τij otherwise.
(9)

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The five extended algorithms were compared to the ACS
algorithm on 4 different TSP instances, namely eil51, eil76,
kroA100 and d198 [12]. Table V provides more details about
each problem. They are all symmetric TSP instances of ge-
ographical nature. The two opposite-action algorithms were
implemented in MATLAB, while the other three alternatives
and the regular ACS were coded in the C language based on
the code developed by T. Stützle [15]. The algorithms solved
the instances using real-valued distances, the optimal values
thus differ from the integer-based optimal tours.

The algorithms terminated after 5000 iterations. The pa-
rameters of all the algorithms were set to the same values,
β = 2, p = 0.1, ξ = 0.1, m = 10, qo = 0.9. These values
were selected based on other research done involving ACS
and TSP [5], [9]. Each algorithm completed 100 trials for the
three smaller instances and 70 trials for the 198-city problem.
The opposite rate, λ̆o, for the OPN and OPE algorithms was
set to 0.01 and 0.001 respectively.

B. Results

The performance of each algorithm was evaluated in terms
of the quality of the solution and the iteration when the
best solution was found. The Wilcoxon rank sum (or Mann-
Whitney) test was used to compare the results [7]. If the
result of the test comparing two samples is significant (p <
0.05) we can accept the alternative hypothesis that there
is a difference between the median of the two samples. A
multiple comparison adjustment was not included because

the comparisons were only done between normal ACS and
the particular modified version. Table VI summarizes the
accuracy results for the different algorithms. The median,
minimum, maximum and number of times the optimal value
was achieved are reported. Table VII includes results on the
iteration number when the final solution of the algorithm was
found.

The Synchronous Opposition and Free Opposition algo-
rithms found significantly worse solutions than ACS. How-
ever, the Free Opposition approach was still able to find the
optimal solutions for the three smaller TSP instances. When
comparing the number of iterations to achieve their best-
so-far solution, Synchronous Opposition took significantly
more iterations for the 100-city problem and significantly
less iterations for the 198-city problem (p < 0.01). The Free
Opposition method had significantly more iterations in both
the 76-city (p < 0.05) and 100-city instances (p < 0.01).
These results seem to indicate that the two methods have
a lower convergence rate, as they are unable to find the
optimal solution for the smaller city instances even with a
larger number of iterations. When considering the 198-city
problem, the smaller number of iterations is an indication
that the Synchronous Opposition algorithm has difficulty
improving and remains in a local optima.

The Free Quasi-Opposition extension to ACS was more
successful than the other two pair-based approaches. Its per-
formance is equivalent to the normal ACS with no significant
differences in their solution quality. There were also no
significant differences in the number of iterations required
to achieve the final solution. These results suggest that this
extension did not have enough impact on the ACS algorithm.
However, the Free Quasi-Opposition algorithm was able to
find optimal solutions for the three smaller instances.

The two pheromone-based approaches had better solutions
than the other three extensions. The OPN alternative had
comparable results with the normal ACS method, but it pro-
vided better solutions (p < 0.05) for the 76-city case. When
looking at the performance of all the algorithms with respect
to the number of times the optimal solution was achieved,
it seems that the 76-city case is a more complex problem
than the 100-city one. Thus, the improvement achieved by
the OPN extension is that much more important. The OPN
achieved the optimal solutions more frequently than the nor-
mal ACS for the 76- and 100-city problems. When looking
at the iteration measure, OPN had no major differences with
ACS. Overall, the results indicate that forcing the ants to use
opposite pheromone levels for some of their decisions can
lead to better solutions. Further investigation of the effects
of the rate at which the ants use the opposite-pheromones is
included in section IV-C.

The OPE approach had no significant difference in solution
quality compared to the ACS algorithm for all the instances.
This may suggest that the extension is having a very small
impact on the path construction phase. However, OPE was
still able to find the optimal solution twice in the 51-city
instance. The results of the number of iterations to reach their

186

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE V
OVERVIEW OF TSP INSTANCES

Instance #Cities Optimal Tour (real-valued)
eil51 51 428.87
eil76 76 544.37
kroA100 100 21285.44
d198 198 15808.65

TABLE VI
RESULTS FOR GLOBAL VALUE ACHIEVED COMPARING ACS AND OPPOSITION-BASED EXTENSIONS

Instance Measure ACS SyncOpp FreeOpp FreeQOpp OPN OPE
eil51 Median 429.48 435.34 433.70 430.24 429.48 429.89

Min 428.87 428.87 428.87 428.87 428.87 428.87
Max 437.80 449.65 446.54 445.81 439.61 442.79
#Opt 4 0 1 5 3 1

eil76 Median 553.77 561.53 561.38 553.83 552.37 554.82
Min 545.97 548.70 544.37 545.39 544.37 546.24
Max 565.16 576.94 573.99 563.95 562.38 566.95
#Opt 0 0 1 0 2 0

kroA100 Median 21456.98 21755.14 21708.75 21472.67 21445.23 21399.49
Min 21285.44 21316.38 21285.44 21285.44 21285.44 21285.44
Max 22499.74 22054.19 22685.28 22584.25 22460.97 22145.66
#Opt 7 0 2 7 8 9

d198 Median 16143.66 16781.00 16712.46 16127.33 16150.21 16579.46
Min 15919.55 16328.62 16266.11 15955.87 15947.49 16042.87
Max 16936.53 179433.3 17523.20 17062.47 16864.54 17671.37
#Opt 0 0 0 0 0 0

TABLE VII
MEDIAN FOR FINAL ITERATION COMPARING ACS AND OPPOSITION-BASED EXTENSIONS

Instance ACS SyncOpp FreeOpp FreeQOpp OPN OPE
eil51 2447.5 1901 2910 2181 2420 2774.5
eil76 3340 2986 3660.5 3582 3047 3947.5
kroA100 1939.5 3003 3815.5 2312 2154 2729.5
d198 4480 4343 4718 4568.5 4621 4778

final solution revealed that OPE required significantly more
iterations than ACS for the 76- and 100-city problems (p <
0.05). The results indicate that OPE has a lower convergence
rate than normal ACS. Further work is required to determine
the effects of varying the opposition-rate and the way the
rate is applied during the optimization.

C. Varying opposition-rate of OPN

Given that the OPN algorithm had a better overall per-
formance than all the other proposed extensions, more
experiments were conducted with three other versions of
the algorithm. In each version, the opposite rate (λ̆o) was
changed to 0.05, 0.1 and 0.3. This was an attempt to study
the effect of increasing the number of times ants would use
the opposite pheromone value. Table VIII summarizes the
solution quality results for the normal ACS algorithm, the
original OPN and the three new versions.

When λ̆o = 0.05, the accuracy results are the best.
The algorithm performed better than the normal ACS and
the original OPN for the three smaller instances and the
median difference was statistically significant (p < 0.05).
Additionally, it was able to reach the optimal value more

frequently. In the case of the 100-city instance, the algorithm
reached the optimal value 13 times compared to 7 and 8 times
for the ACS and original OPN respectively. For λ̆o = 0.1,
the accuracy results were only slightly better than the original
OPN version and the accuracy for the 76-city instance was
better than for ACS (p < 0.05) with statistical significance.
In contrast, the accuracy for OPN (λ̆o = 0.1) on the 198-city
problem was significantly worse than ACS and the original
OPN. Finally, setting λ̆o = 0.3 resulted in worse results for
all test instances.

The results indicate that the use of opposite pheromone
content for some decisions can improve the accuracy of the
solutions. It is noted that a very low value for the opposition-
rate will improve the results but not significantly. The results
did improve when the opposition-rate was increased from
0.01 to 0.05 and 0.1. However, the performance was not
as good when λ̆o = 0.1, suggesting that increasing the
opposition-rate too much results in a drop in accuracy. This
is supported by the fact that the performance was lower
when the opposition-rate was set to 0.3. Overall, there is an
indication that λ̆o = 0.05 is a reasonable value. Nevertheless,
it would be important to further investigate the effects of

187

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE VIII
RESULTS FOR GLOBAL VALUE OF OPN WITH VARYING OPPOSITION-RATE (λ̆o)

Instance Measure ACS OPN(0.01) OPN(0.05) OPN(0.1) OPN(0.3)
eil51 Median 429.48 429.48 429.05 429.30 431.48

Min 428.87 428.87 428.87 428.87 428.87
Max 437.80 439.61 437.50 435.70 437.92
#Opt 4 3 5 4 2

eil76 Median 553.77 552.37 551.07 551.24 558.68
Min 545 544.37 544.37 544.37 549.65
Max 565.16 562.38 558.65 564.06 576.9
#Opt 0 2 3 2 0

kroA100 Median 21456.98 21445.23 21386.47 21392.81 21982.30
Min 21285.44 21285.44 21285.44 21285.44 21539.87
Max 22499.74 22460.97 22826.44 22381.91 23223.99
#Opt 7 8 13 9 0

d198 Median 16143.66 16150.21 16267.34 16734.15 17425.06
Min 15919.55 15947.49 16061.74 16287.07 16890.30
Max 16936.53 16864.54 16716.67 17117.37 17768.70
#Opt 0 0 0 0 0

varying the opposition-rate during the optimization. In fact,
this may lead to an improvement in performance for larger
instances.

V. CONCLUSIONS

This study introduced five extensions to the ACS algo-
rithm. The extensions incorporated opposition-based con-
cepts as an attempt to improve the quality of solutions and
convergence rate of ACS. It was an opportunity to explore
the applicability of opposition ideas to ACO.

Three extensions involved pairing the ants (leading-ant
and opposite-ant) and synchronizing their construction:

• In the first, Synchronous Opposition, if the opposite-ant
is on the same city as the leading-ant, it selects a city
with opposite-rank; otherwise it selects a city with the
same rank.

• The second approach, Free Opposition, only differs
from the first when the ants are on different cities. In
that case, the opposite-ant will select cities using the
normal selection rule.

• The third pair-based extension, Free Quasi-Opposition,
is similar to the Free Opposition method, except when
the paired ants are on the same city. In that situation,
the opposite-ant selects the next city using the regular
rule, but it is not allowed to select the same city as the
leading-ant.

The other two extensions to ACS involved the use of
opposite-pheromone.

• In one approach, Opposite Pheromone per Node (OPN),
the ants would, at a specified frequency, make the selec-
tion of their next city by using an opposite-pheromone
instead of the regular pheromone value for all the
available cities.

• The other approach, Opposite Pheromone per Edge
(OPE), is the same as OPN, except that the rate at
which the opposite-pheromone is used is applied to each
individual available city instead of the decision as a
whole.

The regular ACS and proposed extensions were tested on
four TSP instances. The experimental results showed that

1) with the appropriate opposition-rate, the OPN method
generates better solutions than regular ACS for the
three smaller instances. The improvements were sta-
tistically significant.

2) the Synchronous Opposition and Free Opposition ap-
proaches performed worse than all the other extensions
and the normal ACS. The Free Quasi-Opposition and
OPE methods had comparable performance with ACS,
which may be an indication that the modifications can
potentially lead to an improvement.

Consequently, it would be interesting to fully investigate
the extent of the exploration done by each algorithm. While
the OPN extension proved successful for the three small TSP
instances, more work is required to fully explore the benefits
of this extension. The results show that the pheromone
content is a key element in the solution creation. Thus, using
more complex pheromone behaviour can lead to a better cov-
erage of the search space. There is a possibility that varying
the opposition-rate during the optimization might positively
affect the results. Additionally, it would be important to
explore the concept of opposition in combination with local
search, since the addition of local search greatly improves
the performance of algorithms. Computational expense dif-
ferences should also be evaluated. Future work will also
involve the investigation of new ways of using the pheromone
deposits.

REFERENCES

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York: Oxford University Press,
1999.

[2] O. Cordón, I. F. de Viana, F. Herrera, and L. Moreno, “A New ACO
Model Integrating Evolutionary Computation Concepts: The Best-
Worst Ant System,” in Proc. of ANTS’2000 - From Ant Colonies
to Artificial Ants: Second Interantional Workshop on Ant Algorithms,
Brussels, Belgium, pp. 22-29, 2000.

[3] M. Dorigo, Optimization, Learning and Natural Algorithms (in Ital-
ian), PhD Thesis, Dipartimento di Elettronica, Politecnico di Milano,
Italy, 1992.

188

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

[4] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimiza-
tion by a Colony of Cooperating Agents,” IEEE Trans. Systems, Man,
and Cybernetics, vol. 26, pp. 29-41, 1996.

[5] M. Dorigo, and L. M. Gambardella, “Ant Colony System: A Cooper-
ative Learning Approach to the Traveling Salesman Problem,” IEEE
Transactions On Evolutionary Computation, vol. 1, no. 1, pp. 53-66,
1997.

[6] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge,
Massachusetts: The MIT Press, 2004.

[7] M. Hollander, and D.A. Wolfe, Nonparametric Statistical Methods.
Wiley, 1973.

[8] S. Iredi, D. Merkle, and M. Midderndorf, “Bi-Criterion Optimization
with Multi Colony Ant Algorithms,” in P59roc. First Int. COnf. on
Evolutionary Multi-Criterion Optimization (EMO’01), LNCS 1993,
pp. 359-372, 2001.

[9] J. Montgomery and M. Randall, “Anti-Pheromone as a Tool for Better
Exploration of Search Spaces,” in Proc. 3rd Int. Workshop on Ant
Algorithms, ANTS2002, Brussels, Belgium, September 2002, pp. 100-
110.

[10] S.Rahnamayan, H.R.Tizhoosh, and M.M. Salama, “Opposition-Based
Differential Evolution Algorithms,” in Proc. IEEE Congress on Evo-
lutionary Computation, Vancouver, July 16-21, 2006, pp. 7363-7370.

[11] M. Randall and J. Montgomery, “The Accumulated Experience Ant
Colony for the Travelling Salesman Problem,” in Proceedings of
Inaugural Workshop on Artificial Life, Adelaide, Australia, pp. 79-87,
2001.

[12] G. Reinelt, “TSPLIB - A traveling salesman problem library,” ORSA
J. Comput., vol. 3, pp. 376-384, 1991.

[13] R. Schoonderwoerd, O.E. Holland, J.L. Bruten, and L.J.M. Rothkrantz,
“Ant-Based Load Balancing in Telecommunications Networks,”, Adap-
tive Behavior, vol. 2, 1996, pp. 169-207.

[14] M. Shokri, H.R. Tizhoosh and Mohamed Kamel, “Opposition-Based
Qλ) Algorithm,” in Proc. IEEE International Joint Conf. on Neural
Networks (IJCNN), Vancouver, July 16-21, 2006, pp. 646-653.

[15] T. Stützle, Ant Colony Optimization, Public Software, June 14, 2004.
http://iridia.ulb.ac.be/ mdorigo/ACO/aco-code/public-software.html

[16] H.R. Tizhoosh, “Opposition-Based Learning: A New Scheme for
Machine Intelligence”, in Proc. Int. Conf. on Computational Intelli-
gence for Modelling Control and Automation - CIMCA’2005, Vienna,
Austria, vol. I, pp. 695-701, 2005.

[17] H.R. Tizhoosh, “Opposition-Based Reinforcement Learning,”, Journal
of Advanced Computational Intelligence and Intelligence Informatics,,
vol. 10, no. 4, pp. 578-585, 2006.

[18] M. Ventresca and H.R. Tizhoosh, “Improving the Convergence of
Backpropagation by Opposite Transfer Functions,” in Proc. IEEE
International Joint Conf. on Neural Networks (IJCNN), Vancouver,
July 16-21, 2006, pp. 9527-9534. hebibliography

189

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

