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Abstract— When applying Particle Swarm Optimization (PSO)
to real world optimization problems, often boundary constraints
have to be taken into account. In this paper, we will show that
the bound handling mechanism essentially influences the swarm
behavior, especially in high-dimensional search spaces. In our
theoretical analysis, we will prove that all particles are initialized
very close to the boundary with overwhelming probability, and
that the global guide is expected to leave the search space in every
forth dimension. Afterwards, we investigate the initialization
process when optimizing the Sphere function, a widely used
benchmark, in more detail in order to provide a first step
towards explaining previously observed phenomena. Moreover,
we will present a broad experimental study of commonly applied
bound handling mechanisms on a variety of benchmark functions
which is useful for choosing an appropriate strategy in real
world applications. Finally, we will derive some guidelines for the
practical application of the PSO algorithm in high-dimensional
bounded search spaces.

I. INTRODUCTION

Since its invention in 1995, Particle Swarm Optimization
(PSO) [1] has successfully been applied to many continuous
optimization problems. The algorithm is based on the social
behavior of individuals living together in groups. Each individ-
ual, also called particle, tries to improve itself by evaluating
own experiences as well as by imitating better group members.
Translating this behavior to optimization problems, particles
are flying through the search space S, each one having a
position ~xt (where t is the iteration counter), a fitness value
f (~xt) (where f is the objective function of the optimization
problem), and is moving through the search space with a
velocity ~vt . To each particle P, a subset of the whole swarm
is assigned as its neighborhood (the resulting neighborhood
graph is called the particles’ topology), and P changes its
position and velocity according to the following equations:

~vt = ω ·~vt−1 +~U [0,c1]⊗ (~pt−1−~xt−1)
+~U [0,c2]⊗ (~lt−1−~xt−1)

~xt = ~xt−1 +~vt

where
• ~U [m,n] is a vector of random real numbers between m

and n;
• ~pt−1 is P’s best position so far, called its private guide;
• ~lt−1 is the best position ever visited by one of P’s

neighbors, called its local guide;
• ⊗ denotes element-by-element vector multiplication;
• c1 determines the importance of P’s own experiences;

• c2 determines how strong P is attracted by its local guide;
• ω is called inertia weight and determines the influence

of P’s old velocity.
In some PSO algorithms, the position of a particle is perturbed
at the end of each iteration with a very low probability in order
to allow the particles to escape local optima. This procedure
is called turbulence [2].

There is a lot of theoretical and experimental work on
particle swarm optimization, providing parameter selection
guidelines [3]–[6], or analyzing the influence of the swarm’s
neighborhood structure [7]. There, mostly optimization prob-
lems with unbounded search spaces are studied, i.e., the
objective function f is defined in the whole Rn, where n is
the number of dimensions. Real world optimization problems
often have restricted search spaces, i.e., a number of inequality
and equality constraints is given by:

gi(~x)≤ 0 i = 1, . . . ,m1
hi(~x) = 0 i = 1, . . . ,m2

In this paper, we focus on optimization problems with bound-
ary constraints, which means that the i-th dimension of the
objective function is restricted by a lower bound lbi and an
upper bound ubi:

lbi ≤ xi ≤ ubi ∀i = 1 . . .n

There have already been some proposals for bound handling
mechanisms, which will be presented below. However, until
now, these methods have only been compared experimen-
tally [8], [9], if at all, and the effects of the bound handling
strategies have hardly been explained. This paper will give in-
sight into the peculiarities of high-dimensional search spaces,
and it will provide first steps towards explaining some earlier
mentioned experimental observations [7], [9], [10]. Moreover,
we will demonstrate the importance of the bound handling
strategy as part of the particle swarm optimization algorithm.
We will show theoretically that bounds are violated very often
in high-dimensional particle swarm optimization, and thus, the
output quality strongly depends on the chosen bound handling
method.

After introducing some bound handling mechanisms in
Section II, we will provide first theoretical results on us-
ing particle swarm optimization in bounded high-dimensional
search spaces in Section III. Afterwards, experimental results
are discussed in Section IV.
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II. HANDLING BOUNDARY CONSTRAINTS

In most analytical papers on particle swarm optimization,
typical benchmark functions without any constraints are stud-
ied. But when applying particle swarm optimization on real
world problems, we need strategies for dealing with boundary
constraints due to the following reasons:

1) Boundary constraints may simplify the problem. Assume
that one of the parameters is an angle. If we reduce our
search space in the angle’s dimension to [0..2π], there
are significantly fewer local optima without changing
the optimization problem at all.

2) Using search space bounds can avoid needless objective
function evaluations. If we already know that the global
optimum and many local ones lie within a certain search
space region before running an optimization algorithm,
we can restrict the search to that region by introducing
boundary constraints. This approach especially pays
when the evaluation of the objective function is very
expensive, as often is the case in real world problems.

3) Boundary constraints might be part of the optimization
problem.

We have chosen five simple and commonly used bound
handling methods for analyzing the influence of boundary
constraints on the optimization process:

• Inf: Mendes [7] proposes to modify the objective function
such that invalid values are mapped to +∞ in mini-
mization problems and to −∞ in maximization problems,
respectively (see Fig. 1 (a)).

• Nearest: Each particle violating one or more boundary
contraints is reset on the nearest search space border, as
shown in Fig. 1 (b).

• Nearest+Turb: Like Nearest, but, additionally, the tur-
bulence operator, as explained in Section I, is used.

• Random: If a particle exceeds the lower or upper limit of
the i-th dimension, a random value, uniformly distributed
between [lbi..ubi], is assigned to the i-th component of the
particle’s position vector. This procedure is illustrated in
Fig. 1 (c). Random and Nearest have been used by Zhang
et al. [9] for comparison purposes.

• Shr: When using the Shr method [8], the magnitude
of the velocity vector is shrunken such that the particle
exactly reaches the search space bound, as illustrated in
Fig. 1 (d).

Whenever a particle is reset into the search space or on the
boundary, its velocity is adjusted according to the following
equation:

~vt =~xt −~xt−1 (1)

Other, more elaborate bound handling strategies also ex-
ist [8], but they are not discussed here, as they do not provide
further insight into the swarm’s behavior, and often, they even
do not yield superior results in comparative experiments. Some
experimental results on bound handling methods have already
been published: Alvarez-Benitez et al. [8] have investigated
four different bound handling methods. Shr has outperformed

the other ones in their experiments. Mendes [7] noticed that
sometimes, resetting particles on the boundary might lead
to bad results. From the above methods, Nearest, Shr, and
Nearest+Turb are bound resetting methods. Zhang et al. [9]
observed experimentally that Nearest might lead to premature
convergence on the boundary. Our theoretical analysis pro-
vides first steps for explaining these results.

Michalewicz and Schoenauer [11] present an overview of
constraint handling mechanisms for evolutionary algorithms.
These general constraint handling mechanisms like penalizing
unfeasible solutions can of course also be applied in particle
swarm optimization [12]. However, an analysis of such general
mechanisms is beyond the scope of this paper.

                                                               (a)                                                          ( b)

                                      ( c)                                                          ( d)                
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Fig. 1. In this figure, the bound handling methods analyzed in this paper
are shown. (a): Inf, (b): Nearest, (c): Random, and (d): Shr

III. THEORETICAL RESULTS

In this section, we will provide first theoretical results
on particle swarms in high-dimensional search spaces with
boundary constraints. The “curse of high dimensionality”,
which means that high-dimensional spaces are not intuitive,
is well known in mathematics, physics, statistics, and some
computer science research areas like data mining [13]. Our
results show that it is also an important topic for particle
swarm optimization, especially when solving optimization
problems with boundary constraints.

We assume the so-called gbest-topology, which means that
all particles are adjacent. The particle which has found the
best known position of the whole swarm, and carries this
information in its private guide, will from now on be called
global guide. Its private guide serves as local guide for all
particles (including itself).

In the following, the symbols Θ and Ω belong to the big-O
notation for expressing asymptotic behavior [14, p. 108ff].

Since particle swarm optimization is a stochastic optimiza-
tion algorithm, mostly we will only be able to evaluate the
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probability of certain events. Thus, we will apply the following
widely-used notion:

Definition 3.1: A probability p(n) is exponentially small in
n if there exists a constant α > 0 such that p(n) = e−Ω(nα).
An event A(n) happens with overwhelming probability (w.o.p.)
with respect to n if P(not A(n)) is exponentially small in n.

In this section, we will at first analyze the initialization step
of the PSO algorithm and show that in an n-dimensional search
space, particles are initialized very close to the border w.o.p.
This result already indicates the importance of the bound
handling mechanism since particles which are located near
the boundary often might leave the search space. We show
afterwards that, under the simplifying assumption ω = 1, the
global guide violates a high number of search space bounds,
namely 1

4 n. This means that w.o.p., a bound handling strategy
has to be applied to the global guide. Hence, the bound
handling mechanism essentially influences the behavior of the
whole particle swarm.

Zhang et al. [9] have already observed experimentally that
particles might converge on the boundary when using the
Nearest method. Our experiments, which will be presented
in Section IV, confirm this observation, and demonstrate that
the particles also converge in simple optimization problems
like the Sphere benchmark. Nevertheless, Nearest works well
in other scenarios. We will provide first analytical steps for
explaining these results. A necessary condition for premature
convergence is the absence of good solutions at the beginning
of the optimization process, as otherwise, the swarm would
be attracted by them. In the third part of our theoretical
analysis, we will evaluate the expected initial function values
of the particles when solving the Sphere function and show
that they can easily be outperformed by boundary solutions.
Moreover, we will prove that the probability of a particle to
be initialized on a position which is better than all boundary
ones is exponentially small.

Wolpert and Macready have shown that if an optimization
algorithm works exceptionally well for one class of optimiza-
tion problems, its output quality must be poor for another
class [15]. Although they just regard optimization algorithms
which do not converge (but the PSO algorithm mostly does
if the parameters are selected carefully), this statement has
also shown to be true for bound handling mechanisms in our
experiments. Thus, we will not provide something like “the
best” bound handling strategy in our paper since it depends
on the optimization problem which one performs best. Instead,
we will provide well-founded insights into particle swarm
optimization in high-dimensional bounded search spaces in
this section, and demonstrate the effects of bound handling
methods on a variety of benchmarks in Section IV.

A. Particle Initialization in High-Dimensional Search Spaces

In the standard PSO algorithm, particles are uniformly
distributed in the search space at the beginning of the opti-
mization process. This means that in high-dimensional search
spaces, where most of the volume is concentrated in a small

shell near its surface, particles are initialized very close to at
least one boundary, w.o.p.:

Theorem 3.1: Consider the standard PSO algorithm pre-
sented in Section I in an n-dimensional search space bounded
by [−r . . .r]n. Then, for arbitrary ε > 0, the probability
pB(r,n,ε) of a particle to be inititalized such that the distance
to its nearest border is less than ε is 1− e−Θ(n).

Proof: The volume of an n-dimensional hypercube with
side length 2r is (2r)n. Thus, pB(r,n,ε) evaluates to:

pB(r,n,ε) =
(2r)n− (2r−2ε)n

(2r)n = 1− e−Θ(n)

This result also explains why it is advantageous to not
initialize particles with uniform distribution in some scenarios,
as has been proposed by Richards and Ventura [10]: A global
optimum which is located near the center of the search space
can more easily be found if not all particles are placed near the
boundary. However, if nothing is known about the optimization
problem beforehand, it certainly makes sense to initialize the
particles with uniform distribution as most of the search space
volume is located near the boundary.

B. The Global Guide’s Border Violations in the 1st Iteration

As we have seen in Theorem 3.1, particles are initialized
very close to at least one border w.o.p., and therefore, it seems
to be very probable that particles leave the search space in the
first iteration. In fact, the number of borders violated by the
global guide in the first iteration is very high as shown in the
following theorem:

Theorem 3.2: Assume ω = 1, and assume that both po-
sitions and velocities are initialized uniformly in [−r . . .r]n.
Then, the global guide is expected to leave the search space
in 1

4 n dimensions after the first iteration, where n is the number
of search space dimensions.

Proof: In the standard PSO algorithm, the position of the
global guide after the first iteration can be evaluated to

~x1 =~x0 +~v1

with
~v1 = ω ·~v0 +~U [0,c1]⊗ (~p0−~x0)

+~U [0,c2]⊗ (~l0−~x0) .

In the first iteration, for every particle we obtain ~p0−~x0 =~0
since no position besides ~x0 has been visited so far. For the
global guide we addionally get ~l0−~x0 =~0. As ω has been set
to 1, the d-th component of the global guide’s position vector
computes to:

x1d = x0d + v0d

with x0d and v0d uniformly distributed between −r and r,
respectively, for all d = 1 . . .n, as these are the initialization
values. Thus, the density function for x0d and v0d evaluates to:

fx0d (z) = fv0d (z) =

{
1
2r for − r ≤ z≤ r
0 otherwise
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As x0d and v0d are stochastically independent, the density
function of x1d computes to:

fx1d (z) =


R z+r
−r fx0d (x) · fv0d (z− x)dxR r
z−r fx0d (x) · fv0d (z− x)dx

0

=


1

4r2 z+ 1
2r for −2r ≤ z≤ 0

− 1
4r2 z+ 1

2r for 0≤ z≤ 2r
0 otherwise

Thus, for each dimension d, the probability of the global
guide to exceed one of the search space boundaries evalutes
to:

P(|x1d |> r) =
Z −r

−2r
fx1d (z)dz+

Z 2r

r
fx1d (z)dz =

1
4

Corollary 3.3: With the assumptions of Theorem 3.2, the
global guide leaves the search space in the first iteration, w.o.p.

Proof: The probablity pC(n) of the global guide leaving
the search space evaluates to:

pC(n) = 1−
(

3
4

)n

= 1− e−Θ(n)

In most PSO applications (and also in our experimental
analysis in Section IV), ω is set to a value smaller than 1.
However, Theorem 3.1 and Theorem 3.2 show that all particles
are initialized near the search space border in high-dimensional
search spaces (which makes sense as most of the search space
volume is located near the borders) and that at least the global
guide will leave the search space in the first iteration w.o.p.
Moreover, it not only leaves the search space, but it is expected
to violate a very high number of boundaries. Theorem 3.1
indicates a similar behavior for the other particles as they also
are initialized very close to the search space bounds.

Hence, we conclude that how to deal with boundary con-
straints is not a rarely used mechanism in a PSO algorithm, but
an important procedure applied very often, particularly in high-
dimensional search spaces. It therefore has great influence on
the swarm behavior, as will also be shown in our experiments
in Section IV.

C. A concrete example: The Sphere function
As already mentioned, sometimes premature convergence

has been observed when solving the bounded Sphere function
which is a very simple optimization problem. Therefore, we
will have a closer look at the Sphere function. We will show
that boundary solutions can outperform the initial function
value, and that w.o.p., particles are not initialized to positions
which are better than the best boundary solution. These
conditions are necessary for premature convergence on the
search space bound, but they are not intuitive as they are not
true for low-dimensional search spaces. The Sphere function
description is as follows:

f (~x) =
n

∑
i=1

x2
i

where n is the number of search space dimensions and can be
arbitrarly large. The search space is restricted to [−r . . .r]n.

Some bound handling strategies such as Nearest, Near-
est+Turb, and Shr reset particles on the search space bounds
which might lead to premature convergence if the global guide
arrives on a good position on the search space boundary. When
a particle converges on one boundary by optimizing all other
dimensions, the objective function value evaluates to f (~x) = r2

which is much better than the expected initial function value:
Theorem 3.4: We assume that all particles are initialized

with uniform distribution in an n-dimensional search space
bounded by [−r . . .r]n. Then, the expected initial function
value of a particle solving the Sphere function is nr2

3 and its

standard deviation is 2
√

nr2

3
√

5
.

Proof: Let y = ∑
n
i=1 x2

i be the initial function value. Then,
x1,x2, . . . ,xn are stochastically independent and uniformly dis-
tributed in [−r . . .r] each. We obtain:

E(y) = n ·E(x2
i ) = n

Z r

−r
x2 1

2r
dx =

nr2

3

and

σy =
√

Var(y) =
√

n(E(x4
i )−E(x2

i )2) =
2
√

nr2

3
√

5

For example, for n = 100 and r = 100 we get:

E(y) ≈ 333 333
σy ≈ 29 814

As the standard deviation is very small compared to the
expected initial function value, this means that nearly all
particles have a poor initial function value. A particle which
is reset on a boundary therefore might attract other particles
at the beginning of the optimization process, and lead to
premature convergence.

Whenever the swarm converges, this means that no better
solution has been found during the whole optimization process,
because if there had already been a better solution, it would
attract the particles. The Sphere function has the following
property:

∀~x,~y ∈ S : |~x|< |~y| ⇒ f (~x) < f (~y)

where S is the search space. It is important to note that the
results presented below are relevant not only for the Sphere
function but for all functions with the above property. In Fig. 2,
this property is illustrated. All solutions lying on the boundary
of the circle have the same objective value. Solutions which lie
inside the circle are better, solutions lying outside are worse.
Let P be a particle which is located on one boundary in this
two-dimensional example, by optimizing the other dimension.
All solutions inside the circle are better, and thus, it seems to
be very unlikely that P is the best solution visited so far. In
fact, we evaluate:

Circle area
Square area

=
πr2

(2r)2 =
π

4
≈ 0.785
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VS(r,n) =
Z

π

βn=0

Z
π

βn−1=0
· · ·

Z
π

β3=0

Z 2π

α=0

Z r

R=0
(Rsinβn . . .sinβ3dα)(Rsinβn . . .sinβ4dβ3) . . .(Rsinβndβn−1)(Rdβn)dR (2)

which means, that already in the initialization step, 78.5% of
the particles are expected to lie inside the circle.

However, high-dimensional search spaces are not intuitive:
Theorem 3.5: Assume the search space bounded by

[−r . . .r]n. Then, the probability pA(n) of a particle to be
initialized inside a hypersphere around the origin with radius
r is exponentially small in n.

Proof: Extending an approach of Jägersküpper who eval-
uated the hypersurface of an n-dimensional sphere [16], we
compute the hypervolume VS(r,n) of an n-dimensional sphere
with radius r for n ≥ 3 to Equation (2), which then can be
simplified to:

VS(r,n) =
1
n

rn2π

n−2

∏
i=1

Z
π

0
(sinβ)idβ

The volume of an n-dimensional hypercube with side length
2r is VC(r,n) = (2r)n. Obviously,

g(i) =
Z

π

0
(sinβ)idβ

is a monotonic decreasing function. Furthermore, we evaluate
g(1) = 2 and g(6) = 5

16 π < 1. Thus, the probability of a
particle to be initialized inside the n-dimensional hypersphere
computes to:

pA(n) = VS(r,n)
VC(r,n) = 2π∏

n−2
i=1

R
π
0 (sinβ)idβ

n2n

= 2π

n2n ·∏5
i=1

R
π

0 (sinβ)idβ ·∏n−2
i=6

R
π

0 (sinβ)idβ

≤ 2π

n2n ·25 ·1 = e−Θ(n)

P

Fig. 2. In the Sphere function the following property holds: the farer away
a particle is from the origin, the poorer is its quality.

For example, for 30-dimensional search spaces, pA(n) com-
putes to 2.04 · 10−14. This means that in high-dimensional
search spaces bounded by [−r . . .r]n, particles are usually
initialized outside a sphere around the origin with radius r,
which is a necessary condition for the particles to converge
on a boundary when solving an arbitrary problem with the
above property.

Our experimental results presented in the next section show
that when solving the bounded Sphere function in high-
dimensional search spaces, premature convergence is a serious
problem when using bound handling strategies which reset the
particles on the search space bound.

Our theoretical analysis provided a first step towards ex-
plaining the swarm’s behavior in high-dimensional bounded
search spaces. However, further research has to be done to
completely understand the experimental results discussed in
the next section.

IV. EXPERIMENTAL RESULTS

In the following experiments, the effects of the bound
handling strategy on the algorithm’s output quality are studied
on six benchmark functions. The chosen test functions are
commonly used to analyze the PSO algorithm [1], [3]–[7]. It
has to be noticed that many benchmarks are designed such that
the global optimum is located at the center of the search space.
In order to get a broader overview on the effects of bound
handling mechanisms, we have studied those functions in both
balanced (commonly used) und unbalanced search spaces.

A. Test Functions

All test functions used in the experiments are bounded min-
imization problems. The function descriptions and the lower
and upper limits of the search spaces can be found below. All
chosen benchmarks can have arbitrary many dimensions. If
not stated otherwise, 30 dimensions have been used.

• Sphere: xi ∈ [−100 . . .100],∀i = 1 . . .n

f (~x) =
n

∑
i=1

x2
i

Sphere is a very simple function with only one local
optimum (which also is the global one): f (0, . . . ,0) = 0.

• Rastrigin: xi ∈ [−5.12 . . .5.12],∀i = 1 . . .n

f (~x) = 10 ·n+
n

∑
i=1

(
x2

i −10 · cos(2 ·π · xi)
)

The Rastrigin function has many local optima, which
are regularly distributed. The global minimum is
f (0, . . . ,0) = 0.

• Rosenbrock: xi ∈ [−2.048 . . .2.048],∀i = 1 . . .n

f (~x) =
n−1

∑
i=1

(
100 ·

(
xi+1− x2

i
)2

+(1− xi)
2
)

Rosenbrock is an unimodal function whose optimum
f (1, . . . ,1) = 0 is inside a long and narrow valley.

• Schwefel: xi ∈ [−500 . . .500],∀i = 1 . . .n

f (~x) =
n

∑
i=1

(
−xi · sin

(√
|xi|
))

The global optimum f (420.9687, . . . ,420.9687) = −n ·
418.9829 is located far away from the second best local
minimum, in one corner of the search space. There are
many local optima.
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• Griewank: xi ∈ [−600 . . .600],∀i = 1 . . .n

f (~x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+1

With its many local minima regularly distributed over the
search space, the Griewank function resembles the Rastri-
gin test function. The global minimum is f (0, . . . ,0) = 0.

• Michalewicz: xi ∈ [0 . . .3.14],∀i = 1 . . .n

f (~x) =−
n

∑
i=1

(
sin(xi) ·

(
sin
(

i · x2
i

π

))2·m)
Michalewicz is a parameterized, multi-modal function
with many local optima located between plateaus. The
higher the parameter m, the more difficult it is to find the
global optimum. In our experiments, m is set to 10.

B. Settings

In the following experiments, the impact of the bound
handling mechanism on the swarm’s behavior is studied. All
other parameters of the PSO algorithm are kept constant for all
experiments, and have been set to commonly used values [7],
[17]: The control parameters c1 and c2 are set to 1.49445
and the inertia weight ω is set to 0.729. A population of 20
particles is used, whose positions and velocities are initialized
randomly, with uniform distribution, in the respective search
space. The gbest topology is used, which means that all
particles are connected. When using turbulence, the position
~xt of each particle is reinitialized with a probability of 0.01 at
the end of each iteration. If turbulence took place, the velocity
is updated according to Equation 1. Each optimization run
terminates after 1000 iterations. In order to provide reliable
statistic results, each experiment, i.e., each combination of
test function and bound handling method, was repeated 1000
times. In all diagrams and tables below, mean values and
standard deviations are presented.

C. Results

The results of our experiments for balanced search spaces,
i.e., using the upper and lower search space limits presented
above with the function descriptions, are shown in Table I. In
all test functions besides the Schwefel function, using Nearest
or Nearest+Turb as boundary handling mechanism resulted in
very poor solution quality on average, and also the Shr strategy
was slightly worse than Inf or Random.

In Fig. 3, the average objective values and standard de-
viations (vertical bars) of solving the Sphere function with
different bound handling mechanisms are shown. The high
standard deviations when using Nearest or Nearest+Turb
indicate that mostly, the optimum is found, but sometimes
very bad solutions are produced. A closer look at the outputs
of the PSO algorithm applying Nearest reveals that either the
global optimum has been found (in 922 from 1000 runs), or the
swarm converged on at least one boundary (in the remaining
78 runs). This results are conform with Zhang et al. [9]
who mentioned that particles might converge on the boundary
when using Nearest. In our experiments, even turbulence often

could not prevent premature convergence. In Theorem 3.4
we have already learned that boundary solutions can easily
outperform the initial ones. Theorem 3.1 and Theorem 3.2
indicate that particles often leave the search space at the
beginning of the optimization process, especially in high-
dimensional search spaces. Thus, we expect the particles to
converge more often on the boundary in high-dimensional
spaces than in low-dimensional ones. In further experiments
we varied the search space dimensions for the Sphere function.
Non-surprisingly when resuming our theoretical analysis, we
yielded the following results: The higher the search space
dimension, the more often the particles converged on at least
one boundary. In two-dimensional search spaces, the global
optimum has been found in all runs no matter which bound
handling strategy is applied. In an 100-dimensional search
space, however, only 488 of 1000 optimization runs using
the Nearest mechanism succeeded to find the global optimum
of the sphere function, whereas in 512 runs the particles
converged on at least one boundary. More details can be found
in Table II.

Kennedy and Eberhart propose to initialize positions as well
as velocities to random values [1, p. 314], but velocities might
also be set to zero at the beginning [18]. Then, when solving
the 30-dimensional Sphere function using Nearest, the global
optimum has been found in 980 from 1000 runs, and the
swarm only converged on the boundary in the remaining 20
runs. When solving the Sphere function in 100 dimensions,
the swarm converged on at least one boundary in 275 runs.
Hence, initializing velocities to zero yields to better results on
average when solving the Sphere function, but cannot prevent
the particles from converging on the boundary.

 0
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Sphere, 30 dim, 20 particles, gbest
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Fig. 3. For most of the benchmark functions, the bound handling methods
Nearest and Nearest+Turb lead to very poor output quality.

In the Sphere, Rastrigin and Griewank function, the global
optimum is located exactly in the center of the search space
which is unrealistic for real PSO applications. Thus, we run
further experiments in unbalanced search spaces. The new
lower and upper bounds as well as mean values and standard
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TABLE I
EFFECTS OF THE BOUND HANDLING METHOD ON THE PARTICLES’ CONVERGENCE BEHAVIOR IN BALANCED SEARCH SPACES.

Sphere Schwefel Rosenbrock Rastrigin Michalewicz Griewank
Inf 0±0 −8205.30±641.45 30.71±18.58 84.59±19.79 −21.58±1.94 0.09±0.19
Random 0±0 −7866.42±571.86 28.50±15.50 62.18±14.89 −24.71±1.16 0.09±0.26
Shr 30.00±546.90 −7818.01±795.88 30.89±27.58 96.21±25.38 −22.95±1.51 0.38±4.97
Nearest 840.00±2845.07 −8862.64±717.41 91.81±212.40 131.33±33.35 −19.72±1.75 8.37±26.56
Nearest+Turb 490.04±2158.67 −9666.85±673.25 80.90±183.64 123.95±33.42 −19.15±1.94 5.28±21.49

This table shows the average best found objective value and its standard deviation for each combination of test function and bound handling method.

TABLE II
WHEN SOLVING THE BALANCED SPHERE FUNCTION, THE PARTICLES

OFTEN CONVERGED ON ONE OR MORE BOUNDARIES WHEN USING THE

Nearest METHOD IN HIGH-DIMENSIONAL SEARCH SPACES.

2-dim 30-dim 50-dim 100-dim

Global optimum found 1000 922 847 488
Convergence on 1 bound 0 76 143 348
Convergence on 2 bounds 0 2 9 133
Convergence on 3 bounds 0 0 1 28
Convergence on ≥ 4 bounds 0 0 0 3

For each number of dimensions (2, 30, 50, 100), 1000 optimization runs have
been performed. This table shows the exact number of runs in which the
global optimum has been found and in which the particles converged on one
or more boundaries, respectively.

deviations of the best found solutions of 1000 runs are shown
in Table III. The obtained results totally differ from running
the PSO algorithm in balanced search spaces. When solving
the Sphere function, using Random and Inf lead to slow
convergence, whereas Nearest, Nearest+Turb, and Shr pro-
duced better results. However, convergence on the boundary
has not been prevented. On contrary, when using Nearest, the
particles converged on the boundary in all optimization runs.
But this swarm behavior of course nevertheless produces good
solutions when good, near optimal solutions are located on the
boundary.

TABLE III
EFFECTS OF THE BOUND HANDLING METHOD ON THE PARTICLES’

CONVERGENCE BEHAVIOR IN UNBALANCED SEARCH SPACES.

Sphere Rastrigin Griewank
[−1..100] [−0.512..5.12] [−6..600]

Inf 247.76±711.51 110.75±24.02 3.21±6.55
Random 3578.4±1127.5 91.37±19.48 33.21±10.15
Shr 9.95±84.94 125.92±30.09 1.23±1.90
Nearest 61.73±631.13 104.14±35.42 1.56±5.68
Nearest+Turb 22.16±2.61 90.50±32.94 1.20±0.02

This table shows the average best found objective value and its standard
deviation for each combination of test function and bound handling method.

Our experimental results show that the bound handling
mechanism has great influence on the swarm’s behavior. In
many scenarios, Nearest, Nearest+Turb, and Shr have proven
to promote premature convergence on the boundary, as has
already been observed by Mendes [7] and Zhang et al. [9].
However, when solving the Schwefel function, Nearest and
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Fig. 4. In unbalanced search spaces, e.g. using xi ∈ [−1..100],∀i = 1..n for
the Sphere function, the effects of the bound handling method are totally
different than in balanced search spaces (see Fig. 3). Here, applying random
and inf resulted in very slow convergence.

Nearest+Turb lead to outstandingly good results (see Fig. 5).
Moreover, Alvarez-Benitez et al. [8] demonstrated that Shr,
which also is a bound resetting strategy, on average performed
best in their experiments. Thus, we definitely cannot conclude
that bound resetting generally is a bad idea. It depends on the
concrete structure of the optimization problem which bound
handling mechanism works best.

Our analysis of particle swarm optimization in high-
dimensional search spaces has shown that the bound handling
mechanism essentially influences the swarm behavior. We
provided first steps towards explaining why particles are in
danger of converging on the boundary. Based on our theo-
retical analysis, we now can understand some of the experi-
mental observations mentioned earlier [7], [9], [10], and we
provided deep insights into high-dimensional particle swarm
optimization. Our broad experimental study of commonly
applied bound handling mechanisms is useful for choosing an
appropriate strategy in real world applications. Some hints for
practical application of the PSO algorithm will be discussed
in the next section.

V. CONCLUSION

In this paper, we presented both theoretical and experimental
results demonstrating that the bound handling mechanism is
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Fig. 5. Applying the bound handling method Nearest+Turb or Nearest lead
to remarkably good solutions for the Schwefel function.

an important feature of the PSO algorithm in high-dimensional
search spaces, and it should therefore be chosen carefully. Our
theoretical analysis about high-dimensional bounded search
spaces gave valuable insight for practical particle swarm
application. Our experiments have shown that it strongly
depends on the optimization problem which bound handling
strategy performs best. In real world applications, often a
priori knowledge about the optimization problem is available,
and can be exploited to choose an adequate bound handling
mechanism. From our analysis, we can give the following
guidelines for applying particle swarm optimization in high-
dimensional bounded search spaces:

• If the optimum is expected to lie near or on the search
space boundary, bound handling mechanisms like Ran-
dom or Inf distract particles from the boundary, and
therefore lead to slow convergence (often too slow for
practical applications where the evaluation of the ob-
jective function is very expensive). This observation is
illustrated in Fig. 4 and Fig. 5.

• If the optimum is expected to lie near the center of
the search space, better results can be obtained if the
particles’ positions and velocities are not initialized with
uniform distribution since particles are then located very
close to the boundary (see Theorem 3.1), and at least the
global guide leaves the search space with overwhelming
probability (see Corollary 3.3). Initialization with Gaus-
sian distribution or the calculation of Voronoi diagrams,
as was proposed by Richards and Ventura [10], might
lead to better results.

• If the optimum is expected to lie near the center of
the search space, bound handling mechanisms which
reset particles on the boundary, such as Nearest or Shr,
should not be used as particles might converge on the
boundary. This phenomenon has already been noticed ex-
perimentally by Zhang et al. [9]. Our theoretical analysis
provides first results for understanding this observation:

We have shown in Theorem 3.1 that particles are ini-
tialized very close to the boundary w.o.p., and proven in
Theorem 3.2 that the global guide is expected to be set on
1
4 n boundaries when using the Nearest method. Premature
convergence on the boundary has been especially surpris-
ing when optimizing a simple function like the Sphere
benchmark. However, Theorems 3.4 and 3.5 reveal that
boundary solutions easily outperform the initialization
values. Moreover, we have shown in our experiments that
even turbulence or initializing the velocities to zero often
cannot prevent premature convergence.
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