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Abstract – This paper presents a particle swarm optimization 

(PSO) method for optimizing a fuzzy logic controller (FLC) for 
a photovoltaic (PV) grid independent system consisting of a 
PV collector array, a storage battery, and loads (critical 
and non-critical loads).  PSO is used to optimize both the 
membership functions and the rule set in the design of the FLC. 
Optimizing the PV system controller yields improved 
performance, allowing the system to meet more of the loads and 
keep a higher average state of battery charge.  Potential benefits 
of a optimized controller include lower costs through smaller 
system sizing and a longer battery life.  

I. INTRODUCTION 

As the cost of fossil fuels continues to rise, the cost of 
electricity generated by traditional means also increases.  
However, as technology and manufacturing processes 
improve the cost of alternative energy sources such as solar 
and wind energy is decreasing [1].  This rising cost of 
traditional energy sources and lowered cost of renewable 
energy is driving demand growth for renewable energy to 
unprecedented levels. Even so, the difference in cost of 
electricity generated by wind (and especially solar) and that 
generated by the conventional method is not insignificant, 
thus making some optimal control of a renewable energy 
source a good way to make the overall system more 
economical.  By using a smart or optimal controller, more of 
the load can be met than by using a traditional controller with 
the same sized system. 

Traditionally, PV system controllers have been simple 
devices that do not assign priority to various loads.  Instead, 
they attempt to power all loads all of the time, and if there is 
any excess energy, then they use that to charge the batteries.  
In this paper, an optimal fuzzy logic based controller is 
developed that prioritizes the system loads and is thus able to 
meet more of the critical loads than the non-critical loads.  
This method also keeps a higher battery state of charge in 
case of lengthy periods of unfavorable weather. The 
controller that is developed in this paper is not the only 
attempt at creating an optimal fuzzy logic controller.  At least 
one previous attempt has been made [2], but it only focused 
on optimizing the membership functions and not the fuzzy 
rule set.  Others have also explored fuzzy controllers for 
standalone PV systems [3, 4]. 

The rest of the paper is organized as follows. Section II 
describes the PV system model. Sections III, IV and V 
describe the PV priority controller, fuzzy logic controller 
design and PSO respectively. Section VI presents the results 
and finally, the conclusions are given in Section VII. 

II. PV SYSTEM MODEL 

In order to develop the optimized controller, a simulation 
was carried out using Matlab and data from the Total 
Meteorological Year 2 (TMY2) [5] database from the 
National Renewable Energy Laboratory (NREL) for Caribou, 
ME.   

For this simulation, the system model shown in Fig. 1 was 
used to describe the interaction between components of the 
entire PV system. 

 

Fig. 1. Component interaction diagram. 

Each of the system subcomponents was then modeled.  For 
the battery, a simple bucket model was used.  The maximum 
battery capacity was 34.56 kWh, and the minimum state of 
charge was 30%.  The PV array was modeled as a simple 
14.35 sq meter device with an efficiency of 11%.  A plot of 
the output PV energy derived from the solar insolation from 
the TMY2 database for the Caribou, ME area is shown below 
in Fig. 2. 

Richard Welch, Student Member, IEEE, and Ganesh K. Venayagamoorthy, Senior Member, IEEE  
Real-Time Power and Intelligent Systems (RTPIS) Laboratory 

Department of Electrical and Computer Engineering 
University of Missouri – Rolla, MO 65409. 

rwelch@ieee.org & gkumar@ieee.org 
 

PV Array 

Pool of 
Available 
Energy 

Battery 

Non-Critical 
Load (TV, etc) 

Critical Load 
(refrigerator, 
radio, etc) 

Energy Controller 
Is the PV Energy >= the energy required 
by the loads and to charge the battery? 
  Yes: Supply loads and charge battery 
  No: Use outputs of the optimal controller

227

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hrs)

G
lo

ba
l H

or
iz

on
ta

l R
ad

ia
tio

n 
(k

W
/m

2 )

 

Fig. 2.  Energy from PV array. 

The loads were modeled using the repeating load profile 
shown below in Fig. 3.  The critical (or base) load was taken 
as the constant valued load (as shown by the dotted line) 
whose value was a constant 0.124 kWh, and represents such 
items as essential lighting or small constant refrigeration 
loads.  The non-critical load was taken as the remainder of 
the load and might represent the loads associated with typical 
morning and evening activities (television, extra lighting, 
etc). 

 

Fig. 3. Repeating daily load profile. 

Each load is connected to the controller separately, and can 
be controlled independently.  For simulation purposes, it is 
assumed that the loads can be switched on and off in arbitrary 
amounts.  In practice however, loads are discrete values and 
would have to be turned fully on or off.  The actual size of 
the devices used would depend on the application. 

Once the system model had been finalized, the fuzzy logic 
controller was able to be developed.  The fuzzy logic 
controller has 3 inputs: the energy from the PV array, the 
current state of charge of the battery, and the current loads.  It 
has the following outputs: energy to the critical load, energy 
to the non-critical load, and energy to the battery. 

The PV priority (or conventional) controller has 4 inputs: 
the energy from the PV array, the current state of charge of 
the battery, the current critical load, and the current non-
critical load.  It also has the following outputs: the energy to 
the critical load, energy to the non-critical load, and the 
energy to the battery. 

III. PV PRIORITY CONTROLLER 

The PV Priority controller is a very simple controller that 
is commonly deployed in conventional systems today [6].  
This controller simply attempts to power all loads using 
energy from the PV array and if it is not able to satisfy the 
entire load then it uses any available energy from the batteries 
to completely satisfy the load.  If there is more energy 
available from the PV array than is required by the load, then 
the excess PV energy is stored in the batteries.   

IV. FUZZY LOGIC CONTROLLER 

Fuzzy logic controller (FLC) consists of three main 
components: 

• Fuzzification process 
• Inference engine 
• Defuzzification process 

This can be seen in Fig. 4 below, which shows a block 
diagram of the fuzzy logic controller. Each of the main 
components is discussed below.  

 

Fig. 4. Block diagram of fuzzy logic based PV controller. 

Fuzzification Process 

The input membership functions take the inputs to the 
controller (after they have been normalized by some value 
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suitable for the membership functions) and produce a degree 
of membership for each fuzzy set in the membership 
function.  For each fuzzy set, this value is usually designated 
by the symbol μ.  For example, the membership function 
shown in Fig. 5 takes as inputs the current loads and assigns 
to that a degree of membership for each fuzzy set in the 
graph. In this example, “Z” represents the “Zero” fuzzy set, 
“VS” represents “Very Small”, “S” is “Small”, “M” is 
“Medium”, L” is “Large”, and finally “VL” is “Very Large”. 
In this case, an input of 0.5 would give the following degrees 
of membership for each fuzzy set: 

μ(z)=0, μ(vs)=0, μ(s)≈0.7, μ(m)≈0.2, μ(l)=0, μ(vl)=0 

For this study, all three input membership functions and 
two of the output membership functions used the above fuzzy 
sets.  The third output (the output for determining the energy 
dispatched to the battery) used a membership function 
containing only five sets: “LD” for “Large Discharge”, “SD” 
for “Small Discharge”, “Z” for “Zero”, “SC” for “Small 
Charge” and finally “LC” for “Large Charge”. 
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Fig. 5. Input member function for load input 

Inference Engine 

Once the degrees of membership for each fuzzy set have 
been determined for a particular input, they are presented to 
the inference engine.  The inference engine takes these fuzzy 
set memberships and determines which rules should be 
evaluated.  A typical fuzzy rule is of the form “If A, B, and C 
then D, E and F”.  As an example, one of the rules for this 
fuzzy controller might be:  If (PV energy is “Large”) and 
(Current state of charge of the battery is “Large”) and 
(Current loads are “Large”) then (Energy to the critical load 
is “Very Large”) and (Energy to the non-critical load is 
“Medium”) and (Energy to the battery is “Small Charge”). 

The rules to be evaluated are selected based on non-zero 
memberships of the input values.  To extend the previous 
example, the shown rule would only be selected if all of the 
inputs had a membership value other than 0.  Once this rule 
(and any others meeting these criteria) was found, the output 
degrees of membership would be asserted according to the 
membership’s values of the inputs.  Once the output degrees 
of membership are found, they are sent to the final stage of 
the fuzzy controller. 

Defuzzification 

Once the degrees of membership of the outputs have been 
found via the inference engine, the defuzzification process 
takes these values and translates them into an output value.  
This is done much like the fuzzification process but in 
reverse.  In the defuzzification process, a trapezoid is formed 
using the asserted membership function, bounded below by 
the x-axis and bounded above by the degree of membership 
for that membership function.  Once this trapezoid is found, 
its center of mass is found and wherever that point lies along 
the x-axis, this point is taken as the output value.  In the case 
where multiple rules have been asserted (and hence multiple 
degrees of membership for the outputs), the center of mass of 
all of the asserted memberships’ trapeziods is found (ignoring 
any overlapping effects, as per the “centroid” method).  The 
value obtained is then taken as the output of the fuzzy logic 
controller and is then multiplied by a normalizing value to 
return it to the level of real world outputs. 

In addition to the three main components above, a check 
on the outputs of the controller is made so that no excess 
energy was dispatched to any of the 3 outputs (i.e., the loads 
could not be over supplied nor could the battery be 
overcharged).  Additionally, checks were put into place to 
verify that no more energy was being dispatched than was 
available at any given time.  If more energy was being 
dispatched than energy available, the outputs were scaled 
back to meet this constraint. 

V. PARTICLE SWARM OPTIMIZATION 

In order to optimize the fuzzy logic controller presented in 
the previous section, the Particle Swarm Optimization (PSO) 
[7, 8, 9] technique was used to optimize both the membership 
functions and rules set of the inference engine.  Using PSO to 
optimize a fuzzy logic controller has been done before [2, 9], 
and is an interesting way to give better performance to a 
fuzzy logic system. 

PSO is an iterative algorithm that represents possible 
solutions to a given problem with a series of 
multidimensional vectors.  Each vector is called a particle 
and contains one complete solution.  Each dimension of each 
particle represents one parameter of a solution to be 
optimized.  In this case, 30 particles are used and chosen to 
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represent each possible controller with the following 
parameters: 

• Each fuzzy set in each membership function (besides 
the first and last fuzzy set in each membership 
function) was represented by 3 values: 1 for the left-
most point, one for the right-most point, and a third for 
the middle point.  The end values had a fixed leg 
(either the left or right, depending on which end of the 
membership function the occupied), so they were only 
specified by 2 values.  Since there are 5 membership 
functions (3 inputs and 2 outputs) with 6 fuzzy sets 
and 1 membership function (1 output) with 5 fuzzy 
sets, this equates to 93 parameters just to represent the 
membership functions. 

• Each rule was represented by 3 values (1 for each 
output).  Since there are 3 inputs and each can take on 
as many as 6 values, there are 216 rules.  Since each 
rule is represented by 3 values, this adds another 648 
parameters. 

Summing each of these values up, it can be seen that each 
solution is represented with 741 parameters, so each particle 
has 741 dimensions. PSO optimizes these values by using a 
process based on social interaction, much like a flock of birds 
or school of fish.  In PSO, a collection of particles takes on 
values that represent a possible solution.  As the swarm of 
particles moves about (according to a defined velocity 
determined by how well each is doing), the particles’ values 
change.  As they change, a record of each particle’s best 
position (called pbest) is kept as well as the global overall 
best position (called gbest).  The equations to determine 
velocity, and position updates are shown below in (1) to (2) 
respectively.  In each, the index i ranges over the number of 
particles.  In (1), up to 10% of the previous velocity was kept 
(so as to be used as momentum for the particle) and a 
weighting of 2 was chosen for the pbest and gbest terms as it 
has been shown that the sum of these two weights should be 
about 4 for best performance. [10] 

   ))Position(i-(gbest*rand*2                
))Position(i-(pbest(i)*rand*2)Velocity(i*rand*0.1)Velocity(i

+
+=

        (1) 

)Velocity(i )Position(i)Position(i +=                           (2) 

Equations (1) and (2) can be applied directly for 
continuous values (such as the membership functions), but 
for discrete values (such as the rules) there has to be some 
sort of quantization applied.  In this case, a continuous valued 
variable was quantized to the appropriate number of levels 
for each rule in the PSO.  For example, the output that 
dispatches energy to the battery can take on 5 states ranging 
from “Large Discharge” to “Large Charge”.  In this example, 
the continuous value ranged from -1 to 1.  At each iteration 
when a controller is instantiated from a particle, this 

continuous value is quantized into 1 of 5 equal ranges, each 
representing one of the fuzzy sets. 

The quality of solution for each particle is measured by the 
fitness function when evaluated at the particle’s point.  In this 
research, the following fitness function was used (where each 
term is a percentage calculated over the entire year, using a 
fuzzy logic controller instantiated from the current particle): 

) SatisfiedLoad Critical-(Non(13/30)*
Charge)of ateBattery St (Average* (15/30) 

 Satisfied)Load (Critical(30/23)*Fitness
+
+=

              (3) 

A higher fitness function value (or just called the fitness) 
results from a better performing individual.  As the algorithm 
progresses, it is expected that the best solution should 
continue to improve over time (which is shown by an 
improving fitness over time).  In (3), the weights are 
determined by trial and error in this and past research.  They 
are given their relative weighting in order to place a higher 
importance on first the critical load being satisfied, then 
keeping as high as possible the average battery charge and 
finally powering the non-critical load. 

An outline of the basic overall process that was 
implemented for this paper is given below: 

1. Set initial particles to a predetermined “naïve” solution 
(this solution was a “good guess” as a starting place 
for optimization). 

2. Instantiate a solution for each particle. 
3. Measure the fitness of each solution. 
4. Check to see if the current fitness is better than the 

current pbest for each particle; if it is, update pbest 
5. Check to see if any of the current pbests are better than 

the current gbest; if any is, update gbest with the best 
one. 

6. For the membership function portion (the first 93 
dimensions) of the particles and then the rules portion 
(the last 648 dimensions), perform the following steps: 

a. Update the velocity of each particle and 
perform limit checks. 

b. Update the position of each particle 
according to the particle’s velocity and 
perform limit checks and other rules. 

7. Measure the fitness of each solution. 
8. Check to see how many iterations have been 

performed and how well the best solution is 
performing.  If the limits have been reached, then quit.  
Otherwise, loop back to step #4. 

One addition to the standard PSO algorithm that was made 
was to add some limit checks on the instantiated individual, 
and its velocity through space.  In the case of the instantiated 
individual, checks were also put in place to make sure that no 
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entry in any membership function spanned a distance of less 
than 0.1.  If this case was found, then the membership 
function entry was widened to a width of 0.1.  Also, some 
checks were put into place to verify that the entire width of 
the input space was mapped to a fuzzy set.  That is to say that 
no possible input could fall outside of a membership function 
entry. This was implemented by assigning the minimum 
membership function to the lowest value and the maximum 
membership function to the upper value.  Then it was verified 
that all remaining membership functions overlapped, thus 
spanning the entire width of the inputs space. 

VI. SIMULATION RESULTS 

The results from this study are encouraging, and surpass 
previous attempts at optimizing a fuzzy logic controller [2].  
After running the PSO optimization for 50 iterations, the final 
gbest fitness is 2.086250.  This can be seen from Fig. 6 
showing how the best particle’s (gbest) fitness increased 
throughout the simulation: 
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Fig. 6. Fitness of gbest particle over the entire simulation 

The actual performance (as well as the performances of the 
PV priority and un-optimized (naïve) fuzzy logic controllers) 
is listed below in Table I.  The Total Score row was 
calculated by evaluating the fitness function above using the 
3 measures of performance (energy to the critical load, 
energy to the non-critical load, and energy to the battery).  
This gives an objective method of comparing controller 
performance. 

These results show that optimizing the membership 
functions as well as the rule set allows the fuzzy logic 
controller to perform far better than the un-optimized fuzzy 
controller or even just optimizing the membership functions 
alone. Additionally, Figs. 7-9 show the membership functions 
for the naïve fuzzy logic controller before optimization for 

each of the inputs and outputs (the first graph actually 
represents the first 3 inputs, and the second represents the 
first 2 outputs, since they were initially all the same). Figs. 10 
to 15 represent the optimized membership functions after 
application of the PSO algorithm. Finally, Table II shows the 
first 30 (of 216) rules before and after optimization via PSO 
(only the consequents are modified). It can be seen that the 
frequency of rule changes increases as the rule number 
increases.  More modifications are observed in the full set of 
216 rules. 

While performance is increased using PSO to optimize the 
original FLC, it can be seen that many of the optimized 
membership functions have 1 or 2 fuzzy sets which span the 
entire membership function domain.  In these cases, it may be 
possible to reduce the number of fuzzy sets used, thus 
reducing the dimensions needed for the PSO optimization. 

VII. CONCLUSIONS 

The design of an optimal fuzzy logic controller for a grid 
independent photovoltaic system has been presented using 
particle swarm optimization. PSO is able to optimize the 
membership functions and develop optimal rules for FLC. 
Results show more of the critical loads are met most of the 
time (95.51%).  Additionally, the average state of charge of 
the battery is also kept at a higher level in case of time of 
extended poor solar insolation (75.3%).  As a result,  it is 
possible that a smaller (and cheaper) overall PV system 
utilizing such an optimal controller would be suitable for 
meeting the same loads as a larger, more expensive system 
not using an optimal controller. 

TABLE I. 

SUMMARY OF CONTROLLER PERFORMANCE SHOWING BOTH 
PERCENTAGE OF LOADS MET AND ACTUAL VALUES 

 PV Priority Naïve Fuzzy Optimal Fuzzy 
Percentage 
Critical Load 
Met 

84.22 

[914.80 kWh] 

93.04 

[1011.00 kWh] 

95.51 

[1038.00 kWh] 
Percentage 
Non-Critical 
Load Met 

77.21 

[778.40 kWh] 

32.16 

[324.20 kWh] 

61.8 

[623.00 kWh] 
Average 
Battery Charge 

63.87 

[22.07 kWh] 

76.58 

[26.47 kWh] 

75.3 

[26.02 kWh] 
Total Score 1.95 1.89 2.09 
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Fig. 7. Membership function for all three inputs: PV, PV energy, and current 
state of battery charge, as well as current load. 
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Fig. 8. Membership function for first two outputs: energy to critical load and 
energy to non-critical load. 
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Fig. 9. Membership function of output for dispatching energy to the battery. 
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Fig. 10. Optimized membership function for PV energy input. 
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Fig. 11. Optimized membership function for state of battery charge input. 
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Fig. 12. Optimized membership function for current load input. 
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Fig. 13. Optimized membership function for energy to critical load output. 
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Fig. 14. Optimized membership function for non-critical load output. 
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Fig. 15. Optimized membership function for energy to the battery output. 
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z s z z→m z→z z→sd 
z s vs vl→z z→z sd→z 
z s s vl→m z→z sd→sd 
z s m vl→m z→z sd→sd 
z s l vl→m z→z sd→sd 
z s vl vl→m z→z sd→sd 
z m z z→vl z→z z→sd 
z m vs vl→z z→z sd→z 
z m s vl→m z→z sd→sd 
z m m vl→m vs→z sd→sd 
z m l vl→m s→vs sd→sd 
z m vl vl→m s→s sd→sd 
z l z z→m z→vl z→sd 
z l vs vl→z z→z sd→z 
z l s vl→m z→z sd→sd 
z l m vl→m z→z sd→sd 
z l l vl→m vs→z sd→sd 
z l vl vl→m s→vs sd→sd 
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