
A Fuzzy-PSO Based Controller for a Grid Independent Photovoltaic System

Abstract – This paper presents a particle swarm optimization

(PSO) method for optimizing a fuzzy logic controller (FLC) for
a photovoltaic (PV) grid independent system consisting of a
PV collector array, a storage battery, and loads (critical
and non-critical loads). PSO is used to optimize both the
membership functions and the rule set in the design of the FLC.
Optimizing the PV system controller yields improved
performance, allowing the system to meet more of the loads and
keep a higher average state of battery charge. Potential benefits
of a optimized controller include lower costs through smaller
system sizing and a longer battery life.

I. INTRODUCTION

As the cost of fossil fuels continues to rise, the cost of
electricity generated by traditional means also increases.
However, as technology and manufacturing processes
improve the cost of alternative energy sources such as solar
and wind energy is decreasing [1]. This rising cost of
traditional energy sources and lowered cost of renewable
energy is driving demand growth for renewable energy to
unprecedented levels. Even so, the difference in cost of
electricity generated by wind (and especially solar) and that
generated by the conventional method is not insignificant,
thus making some optimal control of a renewable energy
source a good way to make the overall system more
economical. By using a smart or optimal controller, more of
the load can be met than by using a traditional controller with
the same sized system.

Traditionally, PV system controllers have been simple
devices that do not assign priority to various loads. Instead,
they attempt to power all loads all of the time, and if there is
any excess energy, then they use that to charge the batteries.
In this paper, an optimal fuzzy logic based controller is
developed that prioritizes the system loads and is thus able to
meet more of the critical loads than the non-critical loads.
This method also keeps a higher battery state of charge in
case of lengthy periods of unfavorable weather. The
controller that is developed in this paper is not the only
attempt at creating an optimal fuzzy logic controller. At least
one previous attempt has been made [2], but it only focused
on optimizing the membership functions and not the fuzzy
rule set. Others have also explored fuzzy controllers for
standalone PV systems [3, 4].

The rest of the paper is organized as follows. Section II
describes the PV system model. Sections III, IV and V
describe the PV priority controller, fuzzy logic controller
design and PSO respectively. Section VI presents the results
and finally, the conclusions are given in Section VII.

II. PV SYSTEM MODEL

In order to develop the optimized controller, a simulation
was carried out using Matlab and data from the Total
Meteorological Year 2 (TMY2) [5] database from the
National Renewable Energy Laboratory (NREL) for Caribou,
ME.

For this simulation, the system model shown in Fig. 1 was
used to describe the interaction between components of the
entire PV system.

Fig. 1. Component interaction diagram.

Each of the system subcomponents was then modeled. For
the battery, a simple bucket model was used. The maximum
battery capacity was 34.56 kWh, and the minimum state of
charge was 30%. The PV array was modeled as a simple
14.35 sq meter device with an efficiency of 11%. A plot of
the output PV energy derived from the solar insolation from
the TMY2 database for the Caribou, ME area is shown below
in Fig. 2.

Richard Welch, Student Member, IEEE, and Ganesh K. Venayagamoorthy, Senior Member, IEEE
Real-Time Power and Intelligent Systems (RTPIS) Laboratory

Department of Electrical and Computer Engineering
University of Missouri – Rolla, MO 65409.

rwelch@ieee.org & gkumar@ieee.org

PV Array

Pool of
Available
Energy

Battery

Non-Critical
Load (TV, etc)

Critical Load
(refrigerator,
radio, etc)

Energy Controller
Is the PV Energy >= the energy required
by the loads and to charge the battery?
 Yes: Supply loads and charge battery
 No: Use outputs of the optimal controller

227

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hrs)

G
lo

ba
l H

or
iz

on
ta

l R
ad

ia
tio

n
(k

W
/m

2)

Fig. 2. Energy from PV array.

The loads were modeled using the repeating load profile
shown below in Fig. 3. The critical (or base) load was taken
as the constant valued load (as shown by the dotted line)
whose value was a constant 0.124 kWh, and represents such
items as essential lighting or small constant refrigeration
loads. The non-critical load was taken as the remainder of
the load and might represent the loads associated with typical
morning and evening activities (television, extra lighting,
etc).

Fig. 3. Repeating daily load profile.

Each load is connected to the controller separately, and can
be controlled independently. For simulation purposes, it is
assumed that the loads can be switched on and off in arbitrary
amounts. In practice however, loads are discrete values and
would have to be turned fully on or off. The actual size of
the devices used would depend on the application.

Once the system model had been finalized, the fuzzy logic
controller was able to be developed. The fuzzy logic
controller has 3 inputs: the energy from the PV array, the
current state of charge of the battery, and the current loads. It
has the following outputs: energy to the critical load, energy
to the non-critical load, and energy to the battery.

The PV priority (or conventional) controller has 4 inputs:
the energy from the PV array, the current state of charge of
the battery, the current critical load, and the current non-
critical load. It also has the following outputs: the energy to
the critical load, energy to the non-critical load, and the
energy to the battery.

III. PV PRIORITY CONTROLLER

The PV Priority controller is a very simple controller that
is commonly deployed in conventional systems today [6].
This controller simply attempts to power all loads using
energy from the PV array and if it is not able to satisfy the
entire load then it uses any available energy from the batteries
to completely satisfy the load. If there is more energy
available from the PV array than is required by the load, then
the excess PV energy is stored in the batteries.

IV. FUZZY LOGIC CONTROLLER

Fuzzy logic controller (FLC) consists of three main
components:

• Fuzzification process
• Inference engine
• Defuzzification process

This can be seen in Fig. 4 below, which shows a block
diagram of the fuzzy logic controller. Each of the main
components is discussed below.

Fig. 4. Block diagram of fuzzy logic based PV controller.

Fuzzification Process

The input membership functions take the inputs to the
controller (after they have been normalized by some value

Real World Inputs Real World Outputs

Fuzzification Defuzzification Inference
Engine

Rule Base

Fuzzy Logic Controller

PV System
System States Controller Actions

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hrs)

Lo
ad

 (k
W

)

0 5 10 15 20 25
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hrs)

Lo
ad

 (k
W

)

228

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

suitable for the membership functions) and produce a degree
of membership for each fuzzy set in the membership
function. For each fuzzy set, this value is usually designated
by the symbol μ. For example, the membership function
shown in Fig. 5 takes as inputs the current loads and assigns
to that a degree of membership for each fuzzy set in the
graph. In this example, “Z” represents the “Zero” fuzzy set,
“VS” represents “Very Small”, “S” is “Small”, “M” is
“Medium”, L” is “Large”, and finally “VL” is “Very Large”.
In this case, an input of 0.5 would give the following degrees
of membership for each fuzzy set:

μ(z)=0, μ(vs)=0, μ(s)≈0.7, μ(m)≈0.2, μ(l)=0, μ(vl)=0

For this study, all three input membership functions and
two of the output membership functions used the above fuzzy
sets. The third output (the output for determining the energy
dispatched to the battery) used a membership function
containing only five sets: “LD” for “Large Discharge”, “SD”
for “Small Discharge”, “Z” for “Zero”, “SC” for “Small
Charge” and finally “LC” for “Large Charge”.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Input

D
eg

re
e

of
 M

em
be

rs
hi

p

z vs s m l vl

Fig. 5. Input member function for load input

Inference Engine

Once the degrees of membership for each fuzzy set have
been determined for a particular input, they are presented to
the inference engine. The inference engine takes these fuzzy
set memberships and determines which rules should be
evaluated. A typical fuzzy rule is of the form “If A, B, and C
then D, E and F”. As an example, one of the rules for this
fuzzy controller might be: If (PV energy is “Large”) and
(Current state of charge of the battery is “Large”) and
(Current loads are “Large”) then (Energy to the critical load
is “Very Large”) and (Energy to the non-critical load is
“Medium”) and (Energy to the battery is “Small Charge”).

The rules to be evaluated are selected based on non-zero
memberships of the input values. To extend the previous
example, the shown rule would only be selected if all of the
inputs had a membership value other than 0. Once this rule
(and any others meeting these criteria) was found, the output
degrees of membership would be asserted according to the
membership’s values of the inputs. Once the output degrees
of membership are found, they are sent to the final stage of
the fuzzy controller.

Defuzzification

Once the degrees of membership of the outputs have been
found via the inference engine, the defuzzification process
takes these values and translates them into an output value.
This is done much like the fuzzification process but in
reverse. In the defuzzification process, a trapezoid is formed
using the asserted membership function, bounded below by
the x-axis and bounded above by the degree of membership
for that membership function. Once this trapezoid is found,
its center of mass is found and wherever that point lies along
the x-axis, this point is taken as the output value. In the case
where multiple rules have been asserted (and hence multiple
degrees of membership for the outputs), the center of mass of
all of the asserted memberships’ trapeziods is found (ignoring
any overlapping effects, as per the “centroid” method). The
value obtained is then taken as the output of the fuzzy logic
controller and is then multiplied by a normalizing value to
return it to the level of real world outputs.

In addition to the three main components above, a check
on the outputs of the controller is made so that no excess
energy was dispatched to any of the 3 outputs (i.e., the loads
could not be over supplied nor could the battery be
overcharged). Additionally, checks were put into place to
verify that no more energy was being dispatched than was
available at any given time. If more energy was being
dispatched than energy available, the outputs were scaled
back to meet this constraint.

V. PARTICLE SWARM OPTIMIZATION

In order to optimize the fuzzy logic controller presented in
the previous section, the Particle Swarm Optimization (PSO)
[7, 8, 9] technique was used to optimize both the membership
functions and rules set of the inference engine. Using PSO to
optimize a fuzzy logic controller has been done before [2, 9],
and is an interesting way to give better performance to a
fuzzy logic system.

PSO is an iterative algorithm that represents possible
solutions to a given problem with a series of
multidimensional vectors. Each vector is called a particle
and contains one complete solution. Each dimension of each
particle represents one parameter of a solution to be
optimized. In this case, 30 particles are used and chosen to

229

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

represent each possible controller with the following
parameters:

• Each fuzzy set in each membership function (besides
the first and last fuzzy set in each membership
function) was represented by 3 values: 1 for the left-
most point, one for the right-most point, and a third for
the middle point. The end values had a fixed leg
(either the left or right, depending on which end of the
membership function the occupied), so they were only
specified by 2 values. Since there are 5 membership
functions (3 inputs and 2 outputs) with 6 fuzzy sets
and 1 membership function (1 output) with 5 fuzzy
sets, this equates to 93 parameters just to represent the
membership functions.

• Each rule was represented by 3 values (1 for each
output). Since there are 3 inputs and each can take on
as many as 6 values, there are 216 rules. Since each
rule is represented by 3 values, this adds another 648
parameters.

Summing each of these values up, it can be seen that each
solution is represented with 741 parameters, so each particle
has 741 dimensions. PSO optimizes these values by using a
process based on social interaction, much like a flock of birds
or school of fish. In PSO, a collection of particles takes on
values that represent a possible solution. As the swarm of
particles moves about (according to a defined velocity
determined by how well each is doing), the particles’ values
change. As they change, a record of each particle’s best
position (called pbest) is kept as well as the global overall
best position (called gbest). The equations to determine
velocity, and position updates are shown below in (1) to (2)
respectively. In each, the index i ranges over the number of
particles. In (1), up to 10% of the previous velocity was kept
(so as to be used as momentum for the particle) and a
weighting of 2 was chosen for the pbest and gbest terms as it
has been shown that the sum of these two weights should be
about 4 for best performance. [10]

))Position(i-(gbest*rand*2
))Position(i-(pbest(i)*rand*2)Velocity(i*rand*0.1)Velocity(i

+
+=

 (1)

)Velocity(i)Position(i)Position(i += (2)

Equations (1) and (2) can be applied directly for
continuous values (such as the membership functions), but
for discrete values (such as the rules) there has to be some
sort of quantization applied. In this case, a continuous valued
variable was quantized to the appropriate number of levels
for each rule in the PSO. For example, the output that
dispatches energy to the battery can take on 5 states ranging
from “Large Discharge” to “Large Charge”. In this example,
the continuous value ranged from -1 to 1. At each iteration
when a controller is instantiated from a particle, this

continuous value is quantized into 1 of 5 equal ranges, each
representing one of the fuzzy sets.

The quality of solution for each particle is measured by the
fitness function when evaluated at the particle’s point. In this
research, the following fitness function was used (where each
term is a percentage calculated over the entire year, using a
fuzzy logic controller instantiated from the current particle):

) SatisfiedLoad Critical-(Non(13/30)*
Charge)of ateBattery St (Average* (15/30)

 Satisfied)Load (Critical(30/23)*Fitness
+
+=

 (3)

A higher fitness function value (or just called the fitness)
results from a better performing individual. As the algorithm
progresses, it is expected that the best solution should
continue to improve over time (which is shown by an
improving fitness over time). In (3), the weights are
determined by trial and error in this and past research. They
are given their relative weighting in order to place a higher
importance on first the critical load being satisfied, then
keeping as high as possible the average battery charge and
finally powering the non-critical load.

An outline of the basic overall process that was
implemented for this paper is given below:

1. Set initial particles to a predetermined “naïve” solution
(this solution was a “good guess” as a starting place
for optimization).

2. Instantiate a solution for each particle.
3. Measure the fitness of each solution.
4. Check to see if the current fitness is better than the

current pbest for each particle; if it is, update pbest
5. Check to see if any of the current pbests are better than

the current gbest; if any is, update gbest with the best
one.

6. For the membership function portion (the first 93
dimensions) of the particles and then the rules portion
(the last 648 dimensions), perform the following steps:

a. Update the velocity of each particle and
perform limit checks.

b. Update the position of each particle
according to the particle’s velocity and
perform limit checks and other rules.

7. Measure the fitness of each solution.
8. Check to see how many iterations have been

performed and how well the best solution is
performing. If the limits have been reached, then quit.
Otherwise, loop back to step #4.

One addition to the standard PSO algorithm that was made
was to add some limit checks on the instantiated individual,
and its velocity through space. In the case of the instantiated
individual, checks were also put in place to make sure that no

230

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

entry in any membership function spanned a distance of less
than 0.1. If this case was found, then the membership
function entry was widened to a width of 0.1. Also, some
checks were put into place to verify that the entire width of
the input space was mapped to a fuzzy set. That is to say that
no possible input could fall outside of a membership function
entry. This was implemented by assigning the minimum
membership function to the lowest value and the maximum
membership function to the upper value. Then it was verified
that all remaining membership functions overlapped, thus
spanning the entire width of the inputs space.

VI. SIMULATION RESULTS

The results from this study are encouraging, and surpass
previous attempts at optimizing a fuzzy logic controller [2].
After running the PSO optimization for 50 iterations, the final
gbest fitness is 2.086250. This can be seen from Fig. 6
showing how the best particle’s (gbest) fitness increased
throughout the simulation:

0 5 10 15 20 25 30 35 40 45 50

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Number of Iterations

Fi
tn

es
s

V
al

ue

Fig. 6. Fitness of gbest particle over the entire simulation

The actual performance (as well as the performances of the
PV priority and un-optimized (naïve) fuzzy logic controllers)
is listed below in Table I. The Total Score row was
calculated by evaluating the fitness function above using the
3 measures of performance (energy to the critical load,
energy to the non-critical load, and energy to the battery).
This gives an objective method of comparing controller
performance.

These results show that optimizing the membership
functions as well as the rule set allows the fuzzy logic
controller to perform far better than the un-optimized fuzzy
controller or even just optimizing the membership functions
alone. Additionally, Figs. 7-9 show the membership functions
for the naïve fuzzy logic controller before optimization for

each of the inputs and outputs (the first graph actually
represents the first 3 inputs, and the second represents the
first 2 outputs, since they were initially all the same). Figs. 10
to 15 represent the optimized membership functions after
application of the PSO algorithm. Finally, Table II shows the
first 30 (of 216) rules before and after optimization via PSO
(only the consequents are modified). It can be seen that the
frequency of rule changes increases as the rule number
increases. More modifications are observed in the full set of
216 rules.

While performance is increased using PSO to optimize the
original FLC, it can be seen that many of the optimized
membership functions have 1 or 2 fuzzy sets which span the
entire membership function domain. In these cases, it may be
possible to reduce the number of fuzzy sets used, thus
reducing the dimensions needed for the PSO optimization.

VII. CONCLUSIONS

The design of an optimal fuzzy logic controller for a grid
independent photovoltaic system has been presented using
particle swarm optimization. PSO is able to optimize the
membership functions and develop optimal rules for FLC.
Results show more of the critical loads are met most of the
time (95.51%). Additionally, the average state of charge of
the battery is also kept at a higher level in case of time of
extended poor solar insolation (75.3%). As a result, it is
possible that a smaller (and cheaper) overall PV system
utilizing such an optimal controller would be suitable for
meeting the same loads as a larger, more expensive system
not using an optimal controller.

TABLE I.

SUMMARY OF CONTROLLER PERFORMANCE SHOWING BOTH
PERCENTAGE OF LOADS MET AND ACTUAL VALUES

 PV Priority Naïve Fuzzy Optimal Fuzzy
Percentage
Critical Load
Met

84.22

[914.80 kWh]

93.04

[1011.00 kWh]

95.51

[1038.00 kWh]
Percentage
Non-Critical
Load Met

77.21

[778.40 kWh]

32.16

[324.20 kWh]

61.8

[623.00 kWh]
Average
Battery Charge

63.87

[22.07 kWh]

76.58

[26.47 kWh]

75.3

[26.02 kWh]
Total Score 1.95 1.89 2.09

231

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Input

D
eg

re
e

of
 M

em
be

rs
hi

p
z vs s m l vl

Fig. 7. Membership function for all three inputs: PV, PV energy, and current
state of battery charge, as well as current load.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Output

D
eg

re
e

of
 M

em
be

rs
hi

p

z vs s m l vl

Fig. 8. Membership function for first two outputs: energy to critical load and
energy to non-critical load.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Output

D
eg

re
e

of
 M

em
be

rs
hi

p

ld sd z sc lc

Fig. 9. Membership function of output for dispatching energy to the battery.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Input

D
eg

re
e

of
 M

em
be

rs
hi

p

z vs sm lvl

Fig. 10. Optimized membership function for PV energy input.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Input

D
eg

re
e

of
 M

em
be

rs
hi

p

z vs s mlvl

Fig. 11. Optimized membership function for state of battery charge input.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Input

D
eg

re
e

of
 M

em
be

rs
hi

p

z vs s m l vl

Fig. 12. Optimized membership function for current load input.

232

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Output

D
eg

re
e

of
 M

em
be

rs
hi

p
z vss m l vl

Fig. 13. Optimized membership function for energy to critical load output.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Output

D
eg

re
e

of
 M

em
be

rs
hi

p

z vs sm l vl

Fig. 14. Optimized membership function for non-critical load output.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Output

D
eg

re
e

of
 M

em
be

rs
hi

p

ldsdz sc lc

Fig. 15. Optimized membership function for energy to the battery output.

REFERENCES

[1] R. A. Messenger, J. Ventre, Photovoltaic System Engineering, CRC
Press, 2004.

[2] R. L. Welch, G. K. Venayagamoorthy, “Comparison of Two Optimal
Control Strategies for a Grid Independent Photovoltaic System”, IEEE
Industry Applications Society, October 2006.

[3] J.A. Momoh, A.R. Ofoli, “Load management and control of the
photovoltaic (PV) system using fuzzy logic”, Large Engineering
Systems Conference on Power Engineering (LESCOPE), pp. 184-188,
2001.

[4] A. Moreno, J. Julve, S. Silvestre and L. Castaner, “A Fuzzy Logic
Controller For Stand Alone PV Systems”, Photovoltaic Specialists
Conference, 2000. Conference Record of the Twenty-Eighth IEEE

[5] “TMY2 User's Manual”, Jun. 1995. National Renewable Energy
Laboratory, Golden, Colorado. [Online] Available:
http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2/

[6] G. P. Henze, R. H. Dodier, “Adaptive Optimal Control of a Grid-
Independent PV-System”, Trans. ASME Journal of Solar Energy
Engineering, vol. 125, Feb. 2003, pp. 34 – 42.

[7] A. P. Engelbrecht, Computational Intelligenc An Introduction, Wiley,
2003.

[8] J. Kennedy and R. Eberhart, Swarm Intelligence, Morgan Kauffman
Publishers, San Franscisco, CA. ISBN 1-55860-595-9, 2001.

[9] S. Doctor, V. K. Venayagamoorthy, “Navigation of mobile sensors
using PSO and embedded PSO in a fuzzy logic controller”, IEEE
Industry Applications Conference, vol. 2, pp. 1200-1206, Oct. 2004.

[10] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space”, IEEE
Transactions on Evolutionary Computation, vol 6, issue 1, pp. 58-73,
Feb. 2002.

TABLE II.

FIRST THIRTY RULES OF RULE BASE BEFORE AND AFTER PSO
OPTIMIZATION

If Then
PV

Energy
Battery
State of
Charge

Load Energy
to

Critical
Load

Energy
to Non-
Critical

Load

Energy
to the

Battery

z z z z→z z→z z→z
z z vs z→z z→z z→z
z z s z→z z→z z→z
z z m z→z z→z z→z
z z l z→z z→z z→z
z z vl vs→vs z→z z→z
z vs z z→z z→z z→z
z vs vs vl→m z→z sd→sd
z vs s vl→m z→z sd→sd
z vs m vl→m z→z sd→sd
z vs l vl→m z→z sd→sd
z vs vl vl→m z→z sd→sd
z s z z→m z→z z→sd
z s vs vl→z z→z sd→z
z s s vl→m z→z sd→sd
z s m vl→m z→z sd→sd
z s l vl→m z→z sd→sd
z s vl vl→m z→z sd→sd
z m z z→vl z→z z→sd
z m vs vl→z z→z sd→z
z m s vl→m z→z sd→sd
z m m vl→m vs→z sd→sd
z m l vl→m s→vs sd→sd
z m vl vl→m s→s sd→sd
z l z z→m z→vl z→sd
z l vs vl→z z→z sd→z
z l s vl→m z→z sd→sd
z l m vl→m z→z sd→sd
z l l vl→m vs→z sd→sd
z l vl vl→m s→vs sd→sd

233

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

