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Abstract— A new approach to prevent negative emergent
behaviors of adaptive or organic computing systems is presented.
One characteristic of such computing systems is the use self-
organisation principles from nature and components that make
decentralized decisions. To control such systems is a difficult task.
In this paper we propose to control by introducing a swarm
of so called anti-components to the system that can prevent
the negative emergence. As an example serves a model that is
inspired by the emergent behavior of ants to cluster different
items. This model system has been used for several applications in
computer science already. Different types of anti-components (or
anti-agents) that can prevent a clustering behavior are designed
for this system. Several cluster validity measures are used to
investigate the clustering behavior of a system that contains
standard clustering agents together with anti-clustering agents.
It is shown that such systems can show a complex behavior
over time where a phase of item distributions with increasing
order is followed by distributions with increasing degree of
clustering. It is also shown that a medium number of certain anti-
clustering agents (which in a larger number completely prevent
any clustering) may even help the system to perform a good
clustering faster.

I. INTRODUCTION

Emergent behavior is a well known phenomenon that occurs
in many biological systems. Social insects are an example
where several collective activities like foraging or nest build-
ing can be called emergent. Emergent phenomena in natural
systems receive an increasing interest of computer scientists
in recent years because their underlying principles have a
potential value for the design of bio-inspired algorithms or bio-
inspired computing systems. One example is the trail laying
behavior of ants that leads to short paths between an ants
nest and the food sources. This behavior has inspired the
Ant Colony Optmization metaheuristic that is used to solve
combinatorial optimization problems. Another example is the
behavior of ants to cluster larvae or dead corpses which has
inspired the design of different clustering algorithms.

Organic computing (OC) (see, e.g., [1], [21], [26]) for exam-
ple is a new field of computer science with the aim to construct
computing system that have so called self-x properties (where
“x” stands, e.g., for “healing”, “managing”, “organizing”,
“optimizing”) and which uses principles of self-organization
from natural systems. One aspect that is considered important
for such systems is their emergent behavior (see, e.g., [25]).
Emergent behavior can be a positive or negative property of
such systems and there exist efforts to develop quantitative

measure for emergence ([20]). But so far researchers have
considered mostly the positive aspects of emergent behavior.
They have applied the principles of emergent behavior of nat-
ural systems to increase the capabilities of technical systems
or to design algorithms with improved behavior.

Recently, some concerns came up that self-organized com-
puting systems which consist of many autonomous compo-
nents might show an emergent behavior that is neither wanted
nor has it been intended or foreseen to occur when the
systems were designed. In accordance with other authors we
use the term negative emergence for such unwanted emergence
behavior (see also [22] for a discussion of emergence). One
important research question is how negative emergent behavior
of OC systems can be prevented.

The only approach to prevent negative emergence in Organic
Computing that has been proposed by several researchers is to
equip OC-Systems with a so called observer controller subsys-
tem ([23], [28]) where a set of observers collects information
about the system and based on this information the controllers
send control information to the components to influence their
behavior. Not much concrete work has been done so far in
this area. It has been proposed that the observer controller
subsystem might consist of a hierarchy of observer controller
elements where each controller computes control information
(e.g. on the basis of a rule based process) that it sends to those
components of the OC system which it controls. From a local
point of view the observer controller approach relies mainly on
classical control mechanisms. But from a global point of view
an observer controller approach differs from many classical
control approaches since it tries to apply its control functions
as distributed as possible.

It is not questioned in this paper that the observer controller
approach could be suitable for many OC systems. But we
point out here that there is a principle disadvantage of this
approach, namely that it relies fundamentally on (classical)
controllers that send control messages to the components.
Clearly, in a hierarchy of observer controller elements it might
be possible to restrict the actual control influence locally so
that only a small subset of the components receives certain
control statements. Nevertheless, the whole control function in
an observer controller architecture is realized via direct control
of the components. Hence, control is obtained only via direct
restriction of the autonomy of the single components of an OC-
system. Since this works against some central principles of OC
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like self-organisation and self-autonomy, it is argued here that
it is important to develop alternative approaches for controlling
OC systems in order to prevent negative emergence. It is
unlikely that there exists a single approach that works perfect
for all applications. It will rather be necessary to have a
bundle of control approaches that can be used for different
OC systems.

In this paper we develop an alternative approach to prevent
negative emergence in OC systems. The general idea is to de-
sign so called anti-emergence components (anti-components)
which can prevent the occurrence of certain negative emer-
gence effects when they are added to the OC system. One
of the challenges is to design anti-components that behave
not too different from the normal components of the OC
system. Ideally, then the anti-components can still do normal
work in the OC system (but eventually less efficient than the
normal components - otherwise all components could become
anti-components). We call our approach to prevent negative
emergence swarm controlled emergence.

For our approach there exist two possibilities to determine
the anti-components: i) anti-components can be permanently
added to the OC systems so that negative emergence can not
occur or, ii) the behavior of some components can be changed
from normal mode to anti mode (i.e., a normal component
becomes an anti-component) when negative emergence occurs.
The switching can be realized either by one or more observers
that send some components a message to switch to anti mode
(or back to normal mode) or self-organized so that each
components decides by itself whether to switch from normal
mode to anti mode or vice versa.

Our approach to control negative emergence in OC systems
differs fundamentally with respect to the following aspects
from the observer controller approach:

i) It does not restrict the autonomy of the components
(neither of the normal components nor of the anti-
components) or at most requires them two switch between
two modes.

ii) It does not assume that there exists a special type of
observer controller element nor is it necessary to have a
corresponding hierarchical communication structure for
delivering control information.

iii) It does not need control information at all (this is case
when the switch between normal mode and anti mode
is self-organized) or needs only one type of control
message that contains one bit of control information
(which determines whether to switch from normal mode
to anti mode or vice versa).

The aim of this paper is to explain the principle ideas of our
approach, give a proof of concept for a test system, and start
investigations on special properties of the new approach. Even
when potential applications in OC are an important motivation
for this study we consider the approach to be of general interest
for the study of emergent systems. Therefore, it is not the
intention to apply our approach directly to one of various
architectures that are studied in the field of OC.

As a test system for this study we pick one of the famous
examples of emergent behavior of social insects which has
several applications in computer science — the clustering be-
havior of ants (see [10], [11], [12], [13], [14], [15], [16], [17]).
One advantage of this system is that the agents have simple
rules for their behavior and the system is well investigated.
Another advantage is that ant clustering has not only been
applied to solve combinatorial problems (e.g., clustering and
sorting) but also to study emergence in robotics (e.g., [7]).

In the next Section we give a short overview on ant
clustering. Section III describes anti-clustering agents. Cluster
validity measures are presented in Section IV. Results are pre-
sented in Section V and conclusions are given in Section VI.

II. ANT CLUSTERING

For the ant species Lepthotorax unifasciatus it is well
studied that the brood is organized in concentric rings ac-
cording to their size around the nest center during the brood
tending process [8]. Another emergent phenomenon of ants
are their cemeteries (see [5], [7], [29]). When corpses of dead
ants are randomly distributed in a two-dimensional area they
are organized into clusters by the ants within a few hours.
Both phenomena have been addressed by simple multi-agent
models. In a model that was proposed in [7] several items are
distributed in a two-dimensional array of cells (at most one
item per cell). Each agent walks randomly within the cell array,
picks up an item that it finds with a certain probability, carries
it around and let it fall with a certain probability. Formally,
the probability ��� for an unladen agent to pick up an item

is ����� ���
	� 	��������� where � is the fraction of cells in the
neighborhood of the agent that are occupied with items and ���
is a threshold value. Analogously, the probability that a laden
agent drops an item if it is on a cell that is not occupied by

an item is given by ����� � ��� �������� with � � being a threshold
value. Several methods for calculating the value � have been
proposed. One method is to count how many items have been
encountered by the agent during the last time steps and define� as the fraction of time steps where the agent moved across
cells that are occupied by an item. Another way to calculate� is to calculate the fraction of cells in the von Neumann
neighborhood of the agent that is occupied with item.

Although this simple model is not able to reproduce the
pattern of concentric rings that occurs in the brood sorting
process of Lepthotorax, the model fits the ants clustering
behavior during the organization of cemeteries very well. For
more elaborated models for explaining brood sorting patterns
see, e.g., [27] or [19].

III. ANTI-CLUSTERING

In this paper we consider the emergent clustering effect
in the ant model that was described in the last section as
an unwanted negative emergent effect. Clearly, the clustering
effect has a biological relevance and it can be used positively
for various applications in computer science. But it is also
possible to consider it to be unwanted (even though this has
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Fig. 1. Hierarchical social entropy; depicted are an exemplary clustering situation on a ������������� field (a), the resulting dendrogramm (b, upper), and the
value of the social entropy at different taxonomic levels (b, lower)

never been done so far in the literature). In order to prevent
the clustering effect we assume that there does not exist any
control system that can directly influence the agents behavior.
Instead, we want to add agents to the system that behave
similar to the standard agents but can prevent (or reduce) the
clustering effect. These agents are called here anti-clustering
agents, or

�	�
-agents. In the following we introduce different

types of anti-clustering agents.
Reverse

�
�
-agents. An intuitive idea to prevent clustering

is to introduce agents that have a behavior which is opposite
to the behavior of the standard agents. The following two
intuitive methods are considered for

�	�
-agents: i) The two

probabilities that an agent picks up an item or drops an item
in a certain situation are exchanged. These agents are called
reverse agents (or type 1 agents). ii) Let � be the fraction of
cells that are occupied by an item in the neighborhood of an
agent. If ������ is the probability that a standard agent picks up
(respectively drops) an item, then an

�	�
-agent of type 2 picks

up (respectively drops) an item with probability ���������� .
Random

�	�
-agents. Introducing sufficient randomness in

the clustering process in the sense that items are placed on
random cells can obviously hinder a strong clustering. The
second class of

�
�
-agents pick up an item always when they

enter a cell that is occupied by an item. If such an agent carries
an item it drops it with a fixed probability ����� .

Deterministic
�
�

-agents. The third class of
�	�

-agents use
a deterministic strategy. An agent always picks up the item if
it enters a cell that is occupied by an item and always drops
the item if no item is in the neighborhood of the current cell.

IV. CLUSTER VALIDITY AND CLUSTERING MEASURES

One central aspect for our study is to measure how the
strength of an emerging clustering changes. Therefore, several
measures for the degree of clustering that have been proposed
in the literature are described in this section.

Spatial Entropy. In [9] and [4] it was suggested to use
spatial entropy to track the dynamics of clustering. The spatial
entropy is a measure to classify spatial distributions of items
according to their cluster validity on different spatial scales.

Therefore, the (two-dimensional) cell array � is partitioned
into so-called � -patches, i.e., subarrays of size ����� . Let ���
be the fraction of cells in an � -patch  that are occupied by
an item. Then the spatial entropy !#" at scale � is defined as

!$" �%� &�('*)+"+, patches - �.�0/2143��.�
Ripley’s 5 -function. Ripley’s 5 -function was defined in

[24] in the context of spatial point processes. Let � be the
intensity of the point process (i.e., the expected number of
points per unit area). Ripley’s 5 -function (also called reduced
second moment function) is defined such that �76859�;:<� equals
the expected number of additional points within a distance :
of a randomly chosen point of the point process. For a given
distribution of items in a two-dimensional cell array of size� the value 5=�>:?� can be estimated. This is done for a given
distribution of @ items in an AB�CA cell array as followsD5E�>:<� �%� A @ � �%F& G2H �

F&I H �  ��>J
G ILK :<�

where  ���� is the indicator function, i.e.,  .��J G I K :?� �M� if
the distance J G I between N and O is PQ: , otherwise  ��>J G I K:<� �R� . The estimated 5 -function is usually compared with
the value of a homogeneous planar Poisson process with the
same density as the given distribution for which 59�;:<� �TS�: � .
In this paper we denote with 5�UV�;:<� the difference between the
estimated value

D5E�;:<� and value 5=�;:<� of the corresponding
Poisson process. If the distribution of the items is regular the
value of 5�U is smaller than zero and if the items are clustered
the value of 5 U is larger than zero.

Summary Function. For a spatial point process W let X
be the distribution function of the distance from a fixed point
in space to the nearest point of W . X is called the Empty
Space Function. The Nearest Neighbour Distance Distribution
Function Y is the cumulative distribution function of the
distance from a random point of W to the nearest other point
of W . Similar as in case of Ripley’s 5 -function the functionsX and Y can be estimated for a given distribution of items
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Fig. 2. Clustering over time; no ��� -agents were used; depicted is the distribution of items after 100.000 (a), 1.000.000 (b), and 50.000.000 (c) simulation
steps; hierarchical social entropy � and spatial entropy 
�� measures are given below the subfigures

in a cell array by functions
DX , respectively

DY . Functions
DX

and
DY are often used for data analysis and usually provide a

good statistic on the sizes of gaps in the pattern. The so-called
summary function

D �>:?� that was introduced in [18] is defined
as D �>:?� � ����� DY �>:?�8�"! � �$� DX �;:<�8�
Again, similar to the case of Ripley’s 5 -function, the estima-
tions

DX ,
DY , and

D 
are often compared to a complete random

point process with intensity � , for which X �>:<� � Y �;:<� �� �$#�% ����$� 6 S 6 : � � and
 �;:<� �R� holds. Therefore, a value

of
D �>:?� K � indicates a clustered pattern, whereas a value ofD �>:<�'& � can be interpreted that the pattern is ordered. For

the computation of
D �;:<� we used the corresponding function

in the spatstat package ([2]).
Hierarchical Social Entropy In [3] Balch proposed the

hierarchical social entropy measure. Let ( � � : � � �(� � � :	) �
the items for which the measure is to be calculated. For each
pair of items a distance J��;: G � : I � is given.

In the first step a hierarchical clustering is calculated as
follows. Initially each item is assigned to its own cluster.
Then iteratively the two most similar clusters are merged,
until there is just one single cluster left. The distance between
two clusters can be computed in different ways. We choose
the so called complete linkage method. For this method
the dissimilarity between 2 clusters is the maximal distance
between two arbitrary items of both clusters. For more details
on hierarchical clustering see for example [6].

The hierarchical clustering leads to a dendrogram which
visualizes the agglomeration process in a binary tree, where
the leaves of the tree are identified by the items to be clustered.
Two nodes are siblings if their corresponding clusters are
agglomerated during the hierarchical clustering. Note, that
each inner node of the dendrogram corresponds to a taxonomic
level * , i.e., the two clusters + � and + � have a dissimilarity
of , ��+ � � + � ���-* . For a given taxonomic level * the items
of ( are classified by the hierarchical clustering into clusters� �.*.� � ��/ � � � �(� � /103254�6 � . The hierarchical social entropy of a
set of items ( is defined as

7 �8( � � 9;:
<>= �?( � *.��J@* �

where = �?( � *�� � �BA
03254�6G2H � � G /�1 3 � � �

G � is the simple social
entropy of ( at level * (� G is the proportion of agents in
the N -th subset

/ G
). The hierarchical social entropy enables a

total ordering according to the diversity of situations where
items are distributed in a (two-dimensional) space. Note, that
the hierarchical social entropy is scale invariant and allows
to address the extend of differences between clusters. In [3]
the measure was used to calculate the diversity of a set of
robots. In this paper we will use the measure to distinguish
between fine grained and coarse grained clustering situations.
In Figure 1 a clustering situation, the resulting dendrogramm,
and the value of the social entropy at different taxonomic levels
is depicted.

V. RESULTS

If not stated otherwise a two-dimensional cell array of sizeC � � � C � � is used for the experiments. In the initial state
2500 cells ( �D! �(� � of all cells) are occupied by an item. The
number of clustering agents was set to

C � . The neighborhood
of an agent is defined as the von Neumann neighborhood with
radius �(� , i.e. all cells for which JFEHG�JJI�P �(� are said to be
in the neighborhood of an agent, where JKE and JJI are the
absolute distances of the considered cell to the cell of the
agent in the two dimensions. In the following the results for
different scenarios are presented. The threshold parameters for
ant clustering were chosen as � � �T��� � C and � � � � � �ML .

A. No
�	�

-Agents

For reasons of comparison the results for clustering without
any anti-agents are presented first. In Figure 2 the clustering
behavior after 100.000, 1.000.000, and 50.000.000 simulation
steps (i.e., each of the agents performs so many simulation
steps) can be seen. As expected it can be clearly seen that
there is a clustering behavior over time. The corresponding
hierarchical social entropy and the spatial entropy measures
are given in the caption of the figure. The values for Ripley’s5 -function (more precisely the difference of the estimated 5 -
function from a random point process) are depicted in Figure
6. It is interesting to point out an effect which could not be
reflected in a one-valued validity measure: the maximal value
for 5 UV�;:<� over time is shifted towards larger values of : .
This corresponds to different strength of clustering on different
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Fig. 3. Clustering over time; different numbers of reverse ��� -agents together with 50 standard agents after 1.000.000 steps; (a) 5000 ��� -agents, (b) 1000��� -agents, (c) 100 ��� -agents
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Fig. 4. Clustering over time; different numbers of random ��� -agents together with 50 standard agents after 50.000.000 steps; (a) 100 � � -agents, (b) 50��� -agents, (c) 10 ��� -agents
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Fig. 5. Clustering over time; random ��� -agents together with 50 standard agents; depicted is the Summary Function ������� for different time steps for the
test runs for which the final clustering situation is shown in Figure 4
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Fig. 6. K’(r) after different number of iteration steps; no � � -agents were
used; (cmp. Figure 2)

scales, because it means that the deviation from the expected
number of points within a circle with radius : for a random
point distribution is maximal for different values of : . Over
time the cluster sizes increase, and therewith also the peak of5 UV�;:<� . After 500.000 steps the maximal value for 5�U>�>:<� can
be found at :
	��4� and after 50.000.000 simulation steps at:	R� �4� . Note, that due to border effects the value of 5�UV�;:<�
for large values of : may be misleading.

B. Reverse
�	�

-Agents

The influence of reverse
�	�

-agents (we describe the results
for the type 1 agents only because the results of type 2 agents
are very similar) is shown in Figure 3 where the distribution
of the items after �4� �4� � � �4�4� simulation steps is shown for
different number of reverse

�	�
-Agents. It can be seen that it
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Fig. 7. K’(r) over time for 35 deterministic ��� -agents together with 50
standard agents; (cmp. Figure 8)

is not possible for the
�	�

-Agents to hinder the standard agents
to perform a clustering - even if 100 times more reverse

�	�
-

agents are used the item distribution is similar as for the only
standard agents after �4� �4�4��� � �4� simulation steps (cmp. Figure
2b)) . The differences between using � �4� or

C �4� � reverse
�	�

-
Agents are small. For the latter the clusters are more diffuse
but the number of clusters is similar is nearly the same. This
results show that it is not a trivial task to find efficient anti-
clustering agents.

C. Random
�	�

-Agents
The results for random

�	�
-agents are depicted in figures

4 and 5. Figure 4 shows that no strong clustering occurs for
100 random

�
�
-Agents. Thus, a reasonable number of random�	�

-Agents are able to hinder the clustering and are therefore
possible candidates to be used as anti-clustering agents.

But it can also be seen that using a medium number ofC � random
�	�

-agents even enhances the degree of clustering
compared to using less ( � or 10) or more �(� � random

�	�
-

agents. Hence, the strength of clustering can even improve
with respect to using only standard clustering ants when a
certain number of random

�	�
-Agents is used. Even if the

clusters are slightly more diffuse, their number is clearly
smaller than using no ant-clustering ants. One consequence
of the more diffuse clusters is that more standard agents carry
items in later phases of the clustering. The result is that smaller
clusters are dissolved faster. It should be noted that this result
is very interesting for ant clustering algorithms in general
because it shows that the addition of agents which have the
effect to make clusters more diffuse can lead to improved
clustering methods. This aspect has never been studied before.

Clearly, what a good clustering method is depends on how
clustering is defined. For the Summary Function

 �>:?� it can be
seen that the quality of clustering decreases with an increasing
number random

�	�
-agents. Figure 5 shows that no ordered

item pattern occur (the value
 �>:?� is always smaller than � )

and that, as expected, the more
�	�

-agents are used, the longer
it takes until a certain degree of clustering occurs. This can be
seen when comparing the curves for the same simulation step
of the three subfigures in Figure 5. 100 random

�	�
-Agents

even prevent a good clustering. Note, that the hierarchical
social entropy measure shows clearly different values for the
case of using

C � or �(�4� random
�	�

-agents.
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Fig. 10. Hierarchical social entropy ������� for different number ������ ����������� � ���.��� of deterministic � � -agents together with 50 standard agents

D. Deterministic
�	�

-Agents

The most interesting type of
�	�

-agents are deterministic�	�
-agents which have a deterministic picking and dropping

behavior. Figure 8 shows the item distribution after 50 million
steps for different number of anti-clustering agents. It can
be seen that 50

�	�
-agents clearly hinder the standard ants

to perform a successful clustering. To confirm this statement
we also performed tests where the initial situation was a
clustered situation. In this case the

�
�
-agents destroyed the

clustering successfully. Hence, the deterministic
�	�

-agents
can be called efficient because they “win” against the same
number of clustering agents.

A more detailed analysis is shown in Figure 9, in which the
Summary Function

 �;:<� is depicted. In can be seen clearly in
Subfigure 9(a) that for 50 deterministic

�	�
-Agents over time

ordered patterns occur (i.e., no clustering occurs). Note, that
ordered patterns have been observed only for this type of

�	�
-

agents. Using only 10
�	�

-agents can not hinder the clustering
agents to perform their task successfully (cmp. Figure 8(c) and
9(c)).

An interesting behavior can be observed when using a
medium number of L C deterministic

�
�
-agents. Figure 9(b)

shows, that after 500.000 steps ordered patterns occur, i.e., the�	�
-agents clearly prevent a clustering. But for an increasing

number of steps, the ordered pattern disappears and a cluster-
ing occurs. After 20 million steps the value of the Summary
Function radius of � is

 �;:<� 	 � � C but for large radiuses
( : ��� )  �>:?� 	 � . This is very interesting, because over the
time a situation may occur, where there is an ordering of items
on a large scale, but a clustering on a small scale. Moreover it
shows that a system with a combination of agents that when
alone show an emergent behavior together with anti-emergence
agents can show a very complex behavior. The increase of
ordered patterns that prevents the emergence behavior might
exists only over certain time periods before the ordered pattern
brakes down and the emergent behavior can appear.

Similar as for the random
�	�

-agents, a medium number of
deterministic

�	�
-agents even supports the clustering agents

in their task. This can be clearly seen in Figure 10 where the
values of the hierarchical social entropy

7
are shown over time

for different numbers of deterministic
�	�

-agents.
C � agents

were able to hinder the clustering agents (
7 & ����� � ), when
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Fig. 9. Clustering over time; different numbers of deterministic � � -agents together with 50 standard agents; depicted is the Summary Function ������� for
different time steps for the test runs for which the final clustering situation is shown in Figure 8
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Fig. 11. Subfigure (a): clustering situation after 50 million steps when using 30 deterministic ��� -agents together with 50 standard agents; Subfigure (b):
Hierarchical social entropy � (left) and spatial entropy measure 
�� (right) after 50 million simulations steps when using 0 or 30 deterministic ��� -agents
together with 50 standard agents

using no
�	�

-agents a clustering with
7
	 � was achieved,

and interestingly L4� �
� -agents supported a final clustering
with

7
	 � . Also the 5�UV�;:<� value for the clustering is much

larger when using L C �	� -agents. This is depicted in Figure 7.
After 50 million steps it holds that 5�UV�;:<� 	 C � � �4� � , whereas
when using no

�	�
-agents a value of 5 UV�;:<� 	 � C � �4� � was

achieved.

To show that the hierarchical social entropy measure
7

can
better differentiate between situations with several clusters
both measures have been compared. � C runs using no

�	�
-

agents and � C runs using 30 deterministic
�
�

-agents have
been performed. Figure 2(c) (11(a)) shows the results of one of
those runs for no

�	�
-agent (respectively 30 deterministic

�	�
-

agents). It can be seen that the clusters are more clear without
the

�
�
-agents. Figure 11(b) shows boxplots for the spatial

entropy and the hierarchical social entropy. The spatial entropy
measure is not able to differentiate between the two situations
whereas the hierarchical social entropy measure shows that
the clustering is stronger when no

�	�
-agents are used (Note,

that also different patch sizes have been tried, results are not
given here). A Wilcoxon Signed-Rank Test shows a significant
difference for the values of the hierarchical social entropy, but
not for the spatial entropy measure (a � -value of 0.01 was
used).

E. Summary

We want to stress three interesting findings from the pre-
sented results. i.) for the random and the deterministic

�	�
-

agents there is a threshold value for the number of
�	�

-agents,
i.e. a degree of anti-emergence influence, that hinders the
clustering agents to perform their task successfully. ii) Using
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a smaller number of
�	�

-agents may even help the standard
agents to cluster faster. iii.) The combination of

�	�
-agents and

standard agents may lead to situations which have a ordered
pattern on a large scale, and a clustered pattern on a small
scale. This can not be reflected in one-valued measures like
the hierarchical social entropy or the spatial entropy.

VI. CONCLUSIONS

This study was motivated by the problem how negative
emergence can be prevented in autonomous and organic
computing systems. Existing methods rely at least partly on
classical control theory and therefor use principles which
restrict the autonomy of the controlled system components.
Here we have introduced a new approach that was called
Swarm Controlled Emergence. The main idea of this approach
is to introduce a swarm of anti-emergence components (or

�	�
-

agents) into the system which prevent the negative emergent
behavior. Ideally, this anti-emergence components should be
similar to the normal components as far as possible. As an
example system the well known emergent clustering behavior
of ants was used. Three different types of anti-clustering
agents have been investigated for this system. Namely, reverse,
random, and deterministic

�	�
-agents. The reverse

�	�
-agents

could not prevent the clustering process which shows that
simply reversing the standard agents behavior is not enough to
prevent the clustering. Both the random and the deterministic�	�

-agents could successfully prevent the clustering with a
moderate number of individuals. We could also show the
interesting effect that introducing a medium (but smaller than
necessary to prevent the clustering) number of these agents can
even increase the strength of the clustering. This observation
can be used for the design of clustering algorithm and might
lead to better ant clustering algorithms. It was shown that the
combination of clustering and anti-clustering agents can lead
to a system that prevents clustering over some time period (and
even leads to the emergence of ordered patters) after which
the order vanishes and a clustering appears. This study is only
a first step to systems that use Swarm Controlled Emergence
and it will be interesting for future research to design and
analyze other such systems.
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