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Abstract— With the stricter environmental regulation and di-
minishing fossil-fuel reserve, various renewable sources of energy
are being exploited recently. These alternative sources of energy
are usually environmentally friendly and emit no pollutants.
However, the capital investments for those renewable sources
of energy are normally high and there are also maintenance
cost differences to be considered. Furthermore, due to the
variability of these power sources, reliability issues should be
addressed when integrating different power sources. In this pa-
per, a grid-connected hybrid generating system comprising wind
turbine generators, photovoltaic panels, and storage batteries is
designed. In this multi-source generation system design, three
design objectives are considered, that is, costs, reliability, and
pollutant emissions. Considering the complexity of this problem,
we have developed a multi-objective particle swarm optimization
(MOPSO) algorithm to derive a set of non-dominated solutions,
each of which represents a candidate system design. A numerical
example is discussed to illustrate the design procedure and the
simulation results are analyzed.

I. INTRODUCTION

Distributed generation (DG) differs significantly from the
conventional large-scale, centrally located power plants [9,
12, 27]. DG is usually located near the point of power
consumption while central generation system is most often
away from where the power is used. DG is generally operated
as a complement to the conventionally supplied power and it
defers investments on the expansion of existing transmission
and distribution capacity. DG using renewables is also able to
help to reduce the pollutant emissions from power industry
and improve the security of the global energy supply [1-
8, 10, 19, 22, 24, 25, 28]. However, they also have certain
drawbacks. They need high capital investments and also bring
about reliability concerns due to their undispatchability. For
instance, the generation of both wind power and solar power is
very dependent on the weather conditions, which are difficult
to be precisely forecasted. Since no single source of energy is
capable of supplying cost-effective, clean, and reliable power
so far, the combined use of multiple power sources can be
a viable way to achieve tradeoff solutions in terms of costs,
emissions, and reliability. Proper integrated resource planning
(IRP) is crucial to achieve a cost-effective, clean, and reliable
generation system. Hybrid power generation is a promising
solution for this purpose and several such hybrid systems have

already been built and are now in stable practical operations
[13-15, 23]. In this study, we intend to design a grid-connected
hybrid generating system which includes renewable sources
of energy such as wind turbine generators, solar photovoltaic
panels, and storage batteries. The power of utility grid is
dispatchable and may also be relatively inexpensive, but will
cause significant pollutant emissions and thus incur environ-
mental concerns. On the contrary, the renewable sources of
power are clean but they cannot be accurately predicted and
are not always available due to their intermittent nature [21,
29]. The adoption of renewable generation technologies poses
risks of compromising system reliability if the multiple power
sources cannot be managed in an appropriate manner. Thus,
through utilization of their respective merits, a reasonably
designed system may be obtained. Furthermore, to achieve a
reasonable compromise between these three design objectives,
we propose a multi-objective particle swarm optimization
(MOPSO) algorithm to handle the problem. PSO is especially
suited to deal with complex engineering designs due to its fast
convergence performance and simple operations. The standard
PSO is extended to solve the multi-objective optimization
problem.

The remainder of the paper is organized as follows. Section
II introduces the characteristics of different energy resources.
Section III formulates the hybrid system design problem
including its multiple objectives coupled with a set of design
constraints. The operation strategy is discussed in Section
IV. Section V introduces the mechanism of particle swarm
optimization algorithms. The proposed MOPSO algorithm is
detailed in Section VI. Simulation results and analysis are
presented in Section VII. Finally, conclusions are drawn and
future research directions are outlined.

II. GRID-CONNECTED HYBRID GENERATION SYSTEMS

As shown in Figure 1, the grid-connected hybrid generation
system comprises different power sources including the tradi-
tional fuel-fired generators (FFGs), wind turbine generators
(WTGs), PV panels (PVs), and storage batteries (SBs). These
power sources have different impacts on cost, environment,
and reliability. In a hybrid generation system, they are inte-
grated together and complement one another in order to serve
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the load while satisfying certain economical, environmental,
and reliability criteria.
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Fig. 1. Configuration of a typical grid-linked hybrid generation system.

A. Fuel-Fired Generators (FFGs)

In the traditional fuel-fired generators (FFGs), pollutant
emissions are the major drawback. For instance, coal has been
a reliable, abundantly available, and relatively inexpensive fuel
source, but coal-fired power generation is facing increasing
pressure since environmental regulations are becoming more
stringent than ever around the world. Affordable control
scheme for air pollution reduction is a deciding factor in
fossil fuels’ continued role as a major power source in
power generation industry. As a result, combined use of fuel
sources and other cleaner sources may be a viable way to
abate pollutant emissions while still fulfilling certain cost
and reliability requirements. In the restructured power market,
distributed generation using renewable sources of energy is
being connected to the utility grid at the distribution level
attempting to diminish the demerits in traditional central
generation plants. Renewable power sources are promising to
play an important role in complementing the fossil-fuel-fired
generation by reducing its negative environmental impacts.

B. Wind Turbine Generators (WTGs)

The average US wind energy growth rate for the past five
years is 24%. Wind turbine generators (WTGs) are powered
by windmills and they are usually operated by utilities and
independent power producers (IPPs). They are located in areas
with rich wind resources (both onshore and offshore), and
wind power is a type of clean energy. Thus, effective utiliza-
tion of wind energy is particularly attractive in spurring the
reduction of pollutant emissions, which is a major drawback
in the traditional fossil-fuel-based generation. However, the
availability of wind power is primarily determined by the
weather conditions and thus it is quite fluctuating in a year
or even in a day. The volatility of wind power should be
addressed when designing a renewable-based power plant.
In our investigation, other power sources are also used in
order to mitigate or even out the fluctuations caused by the
intermittency of wind power.

C. Photovoltaic cells (PVs)

Sunlight can be directly converted into electric energy
by PV panels. Like the wind power, the production of a
solar system is also influenced considerably by the varying
meteorological conditions. Because of its nature of inter-
mittency, to continuously supply power, other supplemental
power sources such as storage batteries are usually needed.
PV panels produce no direct emissions and can be considered
as environmentally friendly. The advance of manufacturing
technologies has made the cost of PV system significantly
reduced and PVs also have lower maintenance demands.

D. Storage Batteries (SBs)

Since both wind and PVs are intermittent sources of
power, it is highly desirable to incorporate energy storage
into such hybrid power systems. Energy storage can smooth
out the fluctuation of wind and solar power and improve the
load availability [2]. In a certain sense, storage batteries can
be deemed as a buffer to balance the supply and demand
relationship. When the power generated by WTGs and PVs
exceeds the load demand, the surplus power will be stored
in the batteries for future use. On the contrary, when there
is any deficiency in the overall power generation, the stored
power will be used to supply the load so as to enhance the
system reliability. Energy storage reduces the power dumped
and thus helps to minimize the operational cost.

Optimum generation mix is crucial to achieve an
economically viable, environmentally friendly, and
operationally reliable hybrid generation system.

III. PROBLEM FORMULATION

The objective of this study is to achieve a grid-linked hybrid
generation system, which should be appropriately designed in
terms of economic, reliability, and environmental measures
subject to physical and operational constraints/strategies [4,
5, 14, 15].

A. Design objectives

• Objective 1: Costs [4, 5, 14, 15]
The total cost COST ($/year) includes initial cost, op-
erational and maintenance (OM) cost for each type of
power source, and the salvage value of each equipment
should be deducted:

COST =

∑
i=w,s,b(Ii − SPi

+ OMPi
)

Np

+ Cg (III.1)

where w, s, b indicate the wind power, solar power, and
battery storage, respectively; Ii, SPi

, OMPi
are the

initial cost, present worth of salvage value, and present
worth of operation and maintenance cost for equipment
i, respectively; Np(year) is the life span of the project;
and Cg is the annual costs for purchasing power from
the utility grid. Here we assume that the life time of the
project does not exceed those of both WTGs and PV
arrays.
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1) For the WTGs,

Iw = αwAw (III.2)

where αw($/m2) is the initial cost of WTGs; the present
worth of the total salvage value is

SPw
= SwAw(

1 + β

1 + γ
)Np (III.3)

where Sw($/m2) is the salvage value of WTGs per
square meter, β and γ are the inflation rate and interest
rate, respectively; the present worth of the total operation
and maintenance cost (OM) in the project life time is

OMPw
= αOMw

∗ Aw ∗

Np∑
i=1

(
1 + ν

1 + γ
)i (III.4)

where αOMw
($/m2/year) is the yearly OM cost per

unit area and ν is the escalation rate.

2) For the PV panels, the initial cost is

Is = αsAs (III.5)

where αs($/m2) is the initial cost; the present worth of
the total salvage value is

SPs
= SsAs(

1 + β

1 + γ
)Np (III.6)

where Ss($/m2) is the salvage value of PVs per square
meter of PV panels; the present worth of the total
operation and maintenance cost (OM) in the project life
time is

OMPs
= αOMs

∗ As ∗

Np∑
i=1

(
1 + ν

1 + γ
)i (III.7)

where αOMs
($/m2/year) is the yearly OM cost per

unit area and ν is the escalation rate.

3) For the storage batteries, since their life span is
usually shorter than that of the project, the total present
worth of capital investments can be calculated as follows:

Ib = αb ∗ Pbcap
∗

Xb∑
i=1

(
1 + ν

1 + β
)(i−1)Nb (III.8)

where Nb is the life span of SBs; Xb is the number of
times to purchase the batteries during the project life span
Np; the salvage value of SBs is ignored in this study; and
the present worth of the total OM cost in the project life
time is calculated as follows:

OMpb
= αOMb

∗ Pbcap
∗

Np∑
i=1

(
1 + ν

1 + γ
)i (III.9)

where αOMb
($/kWh/year) is the yearly OM cost per

kilowatthour.

4) The annual cost for purchasing power from the
utility grid can be calculated as follows:

Cg =
T∑

t=1

Pg,t ∗ ϕ (III.10)

where Pg,t(kW ) is the power purchased from the utility
at hour t; ϕ($/kWh) is the grid power price; and T (8760
hours) is the operational duration under consideration.

• Objective 2: Reliability
Reliability is used to assess the quality of load supply.
Here Energy Index of Reliability (EIR) is used to measure
the reliability of each candidate hybrid system design [4,
5, 14, 15]. EIR can be calculated from Expected Energy
Not Served (EENS) as follows:

EIR = 1 −
EENS

E
(III.11)

The EENS(kWh/year) for the duration under consid-
eration T (8760hours) can be calculated as follows:

EENS =

T∑
t=1

(Pbmin
− Pbsoc

(t) − Psup(t)) ∗ U(t)

(III.12)
where U(t) is a step function, which is zero when the
supply exceeds or equals to the demand, and equals to
one if there is insufficient power in period t; Pd(t) is the
load demand during hour t, Psup(t) = Ptotal(t) − Pd(t)
is the surplus power in hour t, Ptotal(t) is the total power
from WTGs, PVs, and FFGs during hour t:

Ptotal(t) = Pw(t) + Ps(t) + Pg(t) (III.13)

Pbsoc
(t) is the battery charge level during hour t, and

Pbmin
is the minimum permitted storage level, the term

Pbsoc
(t) − Pbmin

indicates the available power supply
from batteries during hour t; and provided that there is
insufficient power in hour t,

Pg(t) = κ ∗ (Pd(t) − Pw(t) − Ps(t) − Pb(t)) (III.14)

where κ ∈ [0, 1] indicates the portion of purchased power
with respect to the hourly insufficient power; or else,
Pg(t) = 0. Note that no generator failures and unexpected
load deviations are considered in calculating the EENS,
which in this study is all contributed by the fluctuations
of renewable power generation.

• Objective 3: Pollutant emissions
With the increasing concerns on environment protection,
there are stricter regulations on pollutant emissions. The
most important emissions considered in the power gen-
eration industry due to their highly damaging effects on
the ecological environment are sulfur dioxide (SO2) and
nitrogen oxides (NOx). These emissions can be modeled
through functions that associate emissions with power
production for generating units. They are dependent on
fuel consumption and take the quadratic form:

PE = α + β ∗

T∑
t=1

Pg,t + γ ∗ (

T∑
t=1

Pg,t)
2 (III.15)
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where α, β, and γ are the coefficients approximating the
generator emission characteristics.

B. Design constraints

Due to the physical or operational limits of the target
system, there is a set of constraints that should be satisfied
throughout system operations for any feasible solution [4, 5,
14, 15].

• Constraint 1: Power balance constraint
For any period t, the total power supply from the hybrid
generation system must supply the total demand Pd

with a certain reliability criterion. This relation can be
represented by

Pw(t) + Ps(t) + Pb(t) + Pg(t) ≥ (1−R)Pd(t) (III.16)

Pw(t) + Ps(t) + Pb(t) + Pg(t) − Pdump(t) ≤ Pd(t)
(III.17)

where Pw, Ps, Pb, Pg , Pdump(t), and Pd are the wind
power, solar power, charged/discharged battery power,
power bought from grid, dumped power, and total load
demand, respectively; R is the ratio of the maximum
permissible unmet power with respect to the total load
demand in each time instant. The transmission loss is
not considered in this investigation.
The output PWTG (kW/m2) from WTGs for wind speed
V can be calculated as

PWTG =

⎧⎪⎪⎨
⎪⎪⎩

0, V < Vci

a ∗ V 3 − b ∗ Pr, Vci ≤ V < Vr

Pr, Vr ≤ V ≤ Vco

0 V > Vco

(III.18)
where a = Pr

V 3
r −V 3

ci

, b =
V 3

ci

V 3
r −V 3

ci

, Pr is the rated power,
Vci, Vr, and Vco are the cut-in, rated, and cut-out wind
speed, respectively. The real electric power from WTGs
can be calculated as follows:

Pw = PWTG ∗ Aw ∗ ηw (III.19)

where Aw is the total swept area of WTGs and ηw is the
efficiency of WTGs.
The output power Ps(kW ) from PV panels can be
calculated as follows:

Ps = H ∗ As ∗ ηs (III.20)

where H(kW/m2) is the horizontal irradiance, As is the
PV area, and ηs is the efficiency of PV panels.

• Constraint 2: Bounds of design variables
The swept area of WGTs should be within a certain range:

Awmin
≤ Aw ≤ Awmax

(III.21)

Likewise, the area of PV arrays also has its upper and
lower bounds:

Asmin
≤ As ≤ Asmax

(III.22)

The state of charge (SOC) of storage batteries Pbsoc

should not exceed the capacity of storage batteries Pbcap

and should be larger than the minimum permissible
storage level Pbmin

; the total SB capacity should not
exceed the allowed storage capacity Pbcapmax; and the
hourly charge or discharge power Pb should not exceed
the hourly inverter capacity Pbmax

. As a result,

Pbmin
≤ Pbsoc

≤ Pbcap
(III.23)

0 ≤ Pbcap
≤ Pbcapmax (III.24)

Pb ≤ Pbmax
(III.25)

The amount of power bought from utility grid annually
should be within a certain range:

Pgmin
≤

T∑
t=1

Pg,t ≤ Pgmax
(III.26)

where Pgmin
and Pgmax

are the minimum and maximum
annual power allowed to be bought from the utility grid,
respectively.
The coefficient κ indicates the portion of purchased
power from utility grid with respect to the insufficient
power:

0 ≤ κ ≤ 1 (III.27)

C. Problem statement

In summary, the objective of optimum design for renew-
able hybrid generation system is to simultaneously minimize
COST (Aw, Sw, Pbcap

, κ) and PE(Aw, Sw, Pbcap
, κ), as well

as maximize EIR(Aw, Sw, Pbcap
, κ), subject to the constraints

(III.16)–(III.27). The design parameters that should be derived
include WTG swept area Aw(m2), PV area As(m

2), total
battery capacity Pbcap

(kWh), and the portion of the power
purchased from grid with respect to the insufficient power κ.

IV. OPERATION STRATEGY

The power outputs from WTGs and PVs have the highest
priorities to feed the load. Only if the total power from wind
and solar systems is insufficient to satisfy the load demand,
the storage batteries can be discharged a certain amount of
energy to supply the load. If there is still no enough power to
supply the load, a certain amount of power will be purchased
from the utility grid. That is, the grid power has the lowest
priority to feed the load. Furthermore, if there is any excess
power from WTGs and PVs, the batteries will be charged to
store a certain permissible amount of energy for future use.

V. MECHANISM OF PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population-based
stochastic optimization procedure inspired by certain social
behaviors in bird groups and fish schools [16, 18]. First a popu-
lation of particles is randomly generated with initial speeds and
positions. By utilizing the best positions encountered by itself
and its neighbors, each particle updates its position according
to its own flight experience and that of its companions.

Assume x and v denote a particle position and its speed in
the search space. Therefore, the i-th particle can be represented
as xi = [xi1 , xi2 , . . . , xid

, . . . , xiM
] in the M -dimensional
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space. Each particle continuously records the best solution
it has achieved thus far during its flight. This fitness value
of the solution is called pbest. The best previous position of
the i-th particle is memorized and represented as pbesti =
[pbesti1 , pbesti2 , . . . , pbestid

, . . . , pbestiM
]. The global best

gbest is also tracked by the optimizer, which is the best
value achieved so far by any particle in the swarm. The
best particle of all the particles in the swarm is denoted by
gbestd. The velocity for particle i is represented as vi =
(vi1 , vi2 , . . . , vid

, . . . , viM
). The velocity and position of each

particle can be continuously adjusted based on the current
velocity and the distance from pbestid

to gbestd:

v
(t+1)
id

= χ ∗ (w ∗ v
(t)
id

+ c1 ∗ rand() ∗ (pbestid
− x

(t)
id

)

+ c2 ∗ Rand() ∗ (gbestd − x
(t)
id

)), (V.28)

x
(t+1)
id

= x
(t)
id

+ v
(t+1)
id

, i = 1, 2, . . . , N, d = 1, 2, . . . ,M.
(V.29)

where N is the number of particles in a swarm, M is
the number of members in a particle, t is the counter of
generations, χ ∈ [0, 1] is the constriction factor which controls
the velocity magnitude, w is the inertia weight factor, c1 and
c2 are acceleration constants, rand() and Rand() are uniform
random values in a range [0, 1], v

(t)
i is the velocity of particle

i in generation t, and x
(t)
i is the current position of particle i

in generation t.

VI. THE PROPOSED APPROACH

In this study, a Constrained Mixed-Integer Multi-Objective
PSO (CMIMOPSO) is developed to derive a set of non-
dominated solutions by appropriately combining different
sources of energy subject to certain constraints.

A. CMIMOPSO

• Mixed-integer PSO: Since the target problem involves
the optimization of system configuration, integer numbers
are used to indicate the unit sizing. The standard PSO
is in fact a real-coded algorithm, thus some revisions
are needed to enable it to deal with the binary-coded
optimization problem. In the discrete binary PSO [17], the
relevant variables are interpreted in terms of changes of
probabilities. A particle flies in a search space restricted
to zero and one in each direction and each vid

represents
the probability of member xid

taking value 1. The update
rule governing the particle flight speed can be modified
accordingly by introducing a logistic sigmoid transforma-
tion function:

S(vid
) =

1

1 − e−vid

(VI.30)

The velocity can be updated according to this rule: If
rand() < S(vid

), then xid
= 1; or else xid

= 0. The
maximum allowable velocity Vmax is desired to limit
the probability that member xid

will take a one or zero
value. The smaller the Vmax is, the higher the chance of
mutation is for the new individual.

• Multi-objective PSO: In this study, since a multi-
objective optimization problem is concerned, the stan-
dard PSO algorithm is also modified accordingly to
facilitate a multi-objective optimization approach, i.e.,
multi-objective particle swarm optimization (MOPSO).
The Pareto-dominance concept is used to appraise the
fitness of each particle and thus determine which particles
should be chosen as the non-dominated solutions [7,
11, 20]. For this purpose, the archiving mechanism is
used to store the non-dominated solutions throughout
the optimization process. The best historical solutions
found by the optimizer are absorbed continuously into the
archive as the non-dominated solutions generated in the
past. Furthermore, to enhance the solution diversity, some
diversity preserving measures such as fuzzified global
best selection, niching and fitness sharing, and turbulence
are taken [26]. For instance, a fuzzification mechanism is
adopted for the selection of global best position gbest.
Here initially gbest is not interpreted as a point but as an
area, and each point in the area has different possibilities
of being chosen as the gbest. The fuzzification formula
used for this purpose is N(gbest, std2), which represents
a set of normally distributed particles with gbest as their
mean value and std as standard deviation.

• Constrained PSO: In the proposed method, a natural
constraint checking procedure called rejecting strategy is
adopted to deal with the imposed constraints. When an
individual is evaluated, the constraints are first checked
to determine if it is a feasible candidate solution. If
it satisfies all of the constraints, it is then compared
with the non-dominated solutions in the archive. The
concept of Pareto dominance is applied to determine if
it is eligible to be chosen to store in the archive of
non-dominated solutions. As long as any constraint is
violated, the candidate solution is deemed infeasible. This
procedure is simple to implement but it turned out to be
quite effective in ensuring solution feasibility while not
significantly slowing down the search.

B. Representation of candidate solutions

The design variables including WTG swept area, PV area,
portion of power purchased from the grid, and total SB capac-
ity are encoded as the position value in each dimension of a
particle. Several member positions indicate the coordinate of
the particle in a multi-dimensional search space. Each particle
is considered as a potential solution to the optimal design
problem, since each of them represents a specific configuration
of the hybrid generation system. Excluding Pbcap

, all the
remaining positions are real-coded. The i-th particle (i.e.,
candidate design) Di can be represented as follows:

Di = [Pw,i, Ps,i, κi, Pbcap,i], i = 1, 2, . . . , N (VI.31)

where the total SB capacity Pbcap
is encoded using three binary

bits.

C. Data flow of the optimization procedure

The computational procedure of the proposed method is as
follows:
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• Step 1: Specify the lower and upper bounds of WTG
swept area, area of PV panels, number of batteries, and
other pre-determined parameters.

• Step 2: Randomly generate a population of particles.
• Step 3: Evaluate each particle Di in the population based

on the concept of Pareto-dominance.
• Step 4: Store the non-dominated solutions found so far

in the archive.
• Step 5: Initialize the memory of each particle where

a single personal best pbest is stored. The memory is
contained in another archive.

• Step 6: Increase the iteration number by one.
• Step 7: Choose the personal best position pbest for

each particle based on the memory record; Choose the
global best gbest from the fuzzified region using binary
tournament selection [26]. The niching and fitness sharing
mechanism is also applied in order to enhance solution
diversity.

• Step 8: Update the member velocity v of each individual
Di. For the real-encoded design variables,

v
(t+1)
id

= χ ∗ (w ∗ v
(t)
i + c1 ∗ rand() ∗ (pbestid

− P
(t)
Gid

)

+ c2 ∗ Rand() ∗ (gbestd − P
(t)
Gid

)),

i = 1, . . . , N ; d = 1, 2. (VI.32)

• Step 9: Update the member position of each particle Di

based on (V.29). For real-coded variables,

D
(t+1)
id

= D
(t)
id

+ v
(t+1)
id

(VI.33)

For the binary-encoded design variable, update the mem-
ber position based on the updating rule for discrete
variables discussed in Subsection A.
Following this, add the turbulence factor into the current
position. For the real-coded positions,

D
(t+1)
id

= D
(t+1)
id

+ RT D
(t+1)
id

(VI.34)

where RT is the turbulence factor, which is used to
enhance the solution diversity by refraining the search
from undesired premature convergence.

• Step 10: Update the archive which stores non-dominated
solutions. A candidate solution can be chosen to store in
the archive only if it satisfies one of the following four
selection criteria [26]:

– The archive is empty;
– The archive is not full and the candidate solution is

not dominated by or equal to any solution currently
stored in the archive;

– The candidate solution dominates any existing solu-
tion in the archive;

– The archive is full but the candidate solution is non-
dominated and is in a less crowded region than at
least one solution. Euclidean distance is defined to
measure the similarity between any two potential
solutions.

• Step 11: If the current individual is dominated by the
pbest in the memory, then keep the pbest in the memory;
Otherwise, replace the pbest in the memory with the
current individual.

TABLE I

THE DATA USED IN THE SIMULATION PROGRAM.

System parameters Values
Efficiency of WTG (ηw) 50%
Efficiency of PV (ηs) 16%
Efficiency of SB (ηb) 82%
Inflation rate (β) 9%
Interest rate (γ) 12%
Escalation rate (ν) 12%
Life span of project (Np) 20 years
Life span of WTG (Nw) 20 years
Life span of PV (Ns) 22 years
Life span of SB (Nb) 10 years
PV panel price (αs) 450$/m2

WTG price (αw) 100$/m2

SB price (αb) 100$/KWh
PV panel salvage value (Ss) 45$/m2

WTG salvage value (Sw) 10$/m2

OM costs of WTG (αOMw
) 2.5$/m2/year

OM costs of PV panel (αOMs
) 4.3$/m2/year

OM costs of SB (αOMb
) 10$/KWh

Cut-in wind speed (Vci) 2.5 m/s
Rated wind speed (Vr) 12.5 m/s
Cut-out wind speed (Vco) 20.0 m/s
Rated WTG power (Pr) 4.0 kW
Period under observation (T ) 8760 hours
Maximum swept area of WTGs (Awmax ) 10, 000m2

Minimum swept area of WTGs (Awmin
) 400m2

Maximum area of PV panels (Asmax ) 200m2

Minimum area of PV panels (Asmin
) 8, 000m2

Maximum conversion capacity (Pbmax
) 3 kWh

Minimum storage level (Pbmin
) 3 kWh

Rated battery capacity (Pbr
) 8 kWh

Maximum total SB capacity (Pbmax
) 40 kWh

Price of utility grid power (ϕ) 0.12$/kWh

• Step 12: If the maximum number of iterations is reached,
then go to Step 13; Otherwise, go to Step 6.

• Step 13: Print out a set of Pareto-optimal solutions from
the archive as the final possible system configurations.

VII. SIMULATION AND EVALUATION OF THE PROPOSED

APPROACH

In this section, the tradeoff solutions are derived by the
developed optimization procedure.

A. System parameters

The data used in the simulation program are listed in Table
I [5]. The hourly wind speed patterns, the hourly insolation
conditions, and the hourly load profile are shown in Figure 2.
These time-series data will be used to calculate the available
wind power, solar power, and the insufficient or surplus power
at each time instant.

B. PSO parameters

In the simulations, both the population size and archive size
are set to 100, and the maximum number of iterations is set
to 500. The acceleration constants c1 and c2 are chosen as 1.
Both turbulence factor and niche radius are set to 0.02. The
inertia weight factor w decreases with the increasing iterations:

w = wmax −
wmax − wmin

itermax

× iter (VII.35)
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Fig. 2. Hourly average wind speed, insolation, and load profiles.

where itermax is the maximum number of iterations and iter
is the current number of iterations. The simulation program
is coded using C++ and executed in a 2.20 GHz Pentium-4
processor.

C. Simulation results

The Pareto-optimal fronts for different optimization scenar-
ios evolved using the proposed approach are shown in Figure
3 and Figure 4.
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Fig. 3. Pareto front reflecting the tradeoff between cost and reliability.

From the tradeoff surfaces obtained, we can find that the
non-dominated solutions are smoothly and evenly distributed
on the surface, and the Pareto fronts are sufficiently wide
for providing a set of representative decision-making options.
The decision-maker may choose a specific solution based
on system design requirements and his/her preference or
experiences. Two illustrative non-dominated solutions for tri-
objective optimization are listed in Table II.

Fig. 4. Pareto front reflecting the tradeoff between reliability, cost, and
emissions.

TABLE II

TWO ILLUSTRATIVE NON-DOMINATED SOLUTIONS FOR TRI-OBJECTIVE

OPTIMIZATION.

Variables/objectives Design 1 Design 2
Aw(m2) 420 640
As(m2) 50 40
Pbcap

(kWh) 16 16
κ 0.20 0.58
Cost ($/year) 5323 6802
EIR 0.9394 0.9505
Emissions (ton/year) 12.4609 65.3812

VIII. CONCLUDING REMARKS

The utilization of renewable sources of energy such as wind
and solar power has experienced remarkably rapid growth in
the last decade and most of them are pollution-free sources of
abundant power. They may also eliminate the need of running
new high-voltage transmission lines which may cost a signifi-
cant investment [24]. In this paper, a grid-linked hybrid power
generation system is designed using a modified particle swarm
optimization algorithm. Three design objectives are consid-
ered, which include cost, reliability, and emissions. These
design objectives are conflicted with one another and thus a set
of tradeoff solutions is derived to support decision-making for
different system requirements. Although distributed generation
using renewable resources accounts for a small portion of the
world’s existing power supply, it is anticipated that renewables
will contribute more significantly in the coming years. In
the future work of this study, uncertainty factors such as
generator failures and renewable power availability will also
be taken into account in calculating system reliability indices
with penetration of time-dependent sources.
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