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The concept of ‘Neutral Networks’ in Fitness Landscapes - 
where amongst any rugged terrain there may also be connected 
regions or pathways over which solution fitness does not change 
- has been recently shown to be of significance to the use of 
Evolutionary Algorithms. To our knowledge this important 
aspect of the fitness landscape has not previously been examined 
in the context of Particle Swarm Optimisation (PSO). The 
standard PSO algorithm is here shown to be inadequate for 
optimisation tasks where such neutrality exists; we investigate 
modifications of a standard PSO and compare their 
performances on various novel fitness landscapes that contain 
neutrality. One simple modification to the standard PSO 
algorithm is shown to enable significantly improved 
functionality upon neutral landscapes, with no compromise to 
operation upon non-neutral terrains. 

1. INTRODUCTION 
Particle Swarm Optimisation (hereafter PSO) and the Genetic 
Algorithm (GA) represent population based optimisation 
heuristics for searching in high-dimensional spaces. 
Populations of potential solutions are intended to move 
collectively through a problem search space, under their 
respective algorithmic strategies, towards ‘fitter’ regions 
(represented by better solutions) and ideally to a solution 
representing the global optimum. For a merely two-
dimensional search space, visualised as a map or the surface 
of a country area, a third dimension of ‘elevation’ can 
represent fitness; this leads to the metaphor of a ‘Fitness 
Landscape’ (FL) where the population is searching for higher 
peaks representing the best global fitness. The smooth or 
rugged nature of this landscape depends entirely upon the 
specific nature of the problem. This metaphor can be 
extended towards higher dimensional search spaces; although 
here ones’ intuitions based on familiar three-dimensional 
landscapes may prove misleading. 

In the field of Evolutionary Algorithms (and particularly the 
GA), it has been recognised that some search problems may 
correspond to FLs that contain significant ‘neutral’ or flat 
(zero-gradient) regions, as well as slopes of varying positive 
or negative gradients (Fig 1). In a 2-D search space this 
would correspond to ridges or ‘neutral paths’ in the FL, 
possibly connecting two hills across what otherwise would be 
a valley. In higher dimensional search spaces and their 
associated FLs, the extra dimensions create additional scope 
for such neutral pathways that can form interconnected 
‘neutral networks’ traversing the space [1,2]. In the context 
of evolutionary search algorithms, it has been shown [1,2] 
that where such neutral networks exist, the corresponding 
search dynamics are transformed; the problem of avoiding 
stagnation upon local optima may no longer exist, as local 
regions of high fitness may be connected to fitter regions via 
neutral networks. Instead the issue becomes one of how best 

to traverse these neutral networks, such that better solutions 
can be found. Under certain conditions, optimal evolutionary 
search strategies can be derived (e.g. [3]). It is thus advisable 
to adapt a search strategy accordingly whenever it is believed 
that a fitness landscape may contain significant amounts of 
neutrality. 

We are not aware of any previous discussion of neutrality in 
the context of PSO, and the purpose of this paper is to draw 
this issue, that we believe important, to the attention of the 
PSO community. We demonstrate that the current ‘standard’ 
PSO algorithm [4] is not optimised for complex domains 
wherein a certain degree of neutrality exists, by developing 
and competitively testing modified versions of the standard 
PSO upon novel terrains containing tuneable degrees of 
neutrality. It is shown that one trivial modification to the 
standard algorithm not only significantly improves the 
operation of PSO upon terrains that include neutrality, but 
also does not impair performance upon terrains of the classic, 
non-neutral form. 

This paper is organised as follows: Section 2 provides a 
commentary on the specific significance of neutrality to the 
evolutionary algorithm. Section 3 then introduces PSO, and 
provides an analysis of why the standard methodology is not 
optimised for neutral terrains. Section 4 proposes two 
separate modifications to the standard version enabling the 
exploitation of neutral landscape features, and introduces a 
novel landscape for testing the performance of these new 
heuristics. Section 5 concludes the paper in discussing a 
competitive experimental analysis of the performance of 
these new heuristics and the standard PSO. 

Fig 1: A 2-d fitness landscape with neutrality 
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2. NEUTRAL NETWORKS 
The concept of the Fitness Landscape is derived originally 
from evolutionary theory (particularly Sewall Wright’s 
‘adaptive landscape’ [5] and John Maynard Smith’s ‘Protein 
Space’ [6]), but can be extended naturally to the search 
spaces of PSO or the GA, where the dynamics of Darwinian 
selection upon a population can be visualised as traversing a 
FL ‘uphill’ toward peaks of highest local fitness. 

Consider an artificial population within a continuous 
sequence space, for the moment devoid of neutrality, in 
which every conceivable sequence gives rise to a near unique
fitness score; there are ‘hills’ and ‘valleys’ within a ‘rugged’ 
fitness landscape. Premature convergence might be expected 
upon ‘local optima’ within this environment - locally isolated 
sub-optimal solutions that may be very difficult to escape. 
Consider alterations to the evolutionary dynamic that might 
enable escape in such an event of local stagnation: Figure 2A 
(below) illustrates a population of one-dimensional 
‘sequences’ converging upon the leftmost (sub-optimal) peak 
A. One method of escape from this ‘metastable’ optimum 
would require a temporary but selective reduction in 
individual fitness (B); but how could it be algorithmically 
determined that such a recursive step would actually result in 
a fitness increase, without an additional and possibly lengthy 
sequence in processing? Alternatively, macro-mutation might 
instead create the possibility of individuals ‘leaping’ between 
fitness peaks (Figure 2B). Under these circumstances the 
respective evolutionary dynamics would appear closer to 
those of a random search in sequence space however, and 
this is not likely to serve as a suitable dynamic in rapidly and 
efficiently seeking global optima. 

Now imagine a population occupying an optimisation domain 
wherein there is some redundancy in the genotype to 
phenotype mapping; many different genotypes generate the 
same fitness score, thus there are more sequences than 
structures [1,2]. Series of genotypes each interconnected (by 
point mutations in the relevant dimension) to one or more 
same-fitness neighbours [1,2,7,8], form ‘ridges and bridges’ 
in the fitness domain. The presence of selective neutrality 
then creates the situation that landscape features may provide 
an escape from local optima; indeed, local optima may not 
even exist [9] (figure 3). The landscape view (as determined 
by the specific fitness function) has changed in such a way as 
to create the opportunity for continued exploration, avoiding 
premature convergence, if the algorithm is adequately tuned 
to exploit it. 

For the purposes of illustration these examples are of low 
dimensionality. In higher dimensions however, the effects of 
neutrality are expected to be even more profound [1]. In 
some ‘real-world’ systems of high dimensionality (typically 
3-d and above), neutral networks are suggested to permeate 
sequence space [1,2,10]. Such networks are the hyper-
dimensional correlate of the previously described ‘ridges and 
bridges’, and are expected to connect any given sequence 
with, for practical purposes, untold others.  

When this is so, a population may feasibly ‘explore’ 
sequence space over multiple generations via the explicit 
traversal of neutral networks [8]. This creates the possibility 
of innovative, higher fitness genotypes adjacent to the neutral 
network being discovered at each generational step [11]. 
Selective neutrality introduces the possibility of ‘free’ 
exploration in sequence space via stochastic neutral drift, if 
such behaviour is enabled by the evolutionary dynamic (i.e. 
respectively enabled within the present optimisation 
heuristic). Premature convergence is then unlikely, and local 
optima are potentially escapable, given time [3,9].  

It is necessary to note that evolutionary neutrality is not 
solely a theoretical concept, but is observable in nature. 
Many original studies regarding the theme come from models 
of RNA ‘secondary structure’ formation.  

Fig 3. Local optima negligible – ‘neutral’ fitness mutations 
bridge peaks 

Fig 2A. Local optima escaped by a temporary 
reduction in individual fitness 

Fig 2B. Local optima escaped by macro-mutational leap 
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A transfer RNA molecule, consisting of a sequence of 
nitrogenous bases of a limited character set, ‘folds’ under 
natural conditions into a three-dimensional macromolecule 
[10]. Sequence space maps into ‘shape’ space, which can 
subsequently be evaluated in terms of a scalar fitness score 
[1]. There exists redundancy in this mapping schema, as 
various sequences can be expected to fold into the same 
secondary structure [1,10]. Work in modelling this 
phenomenon by Schuster et al [1,2,10] includes the 
postulation of four properties of the natural RNA sequence to 
shape-space mapping scheme: 

i) There are more sequences than structures – many 
individually unique sequences fold into the same 
secondary structure 

ii) There exist few ‘common’, and many ‘rare’ structures: 
Most of the possible sequences form into just a few 
discrete structures. Consequently, there are a relatively 
small number of sequences that produce the remaining 
diverse variety of secondary structures.

iii) The distribution of sequences mapping into the same 
structure appears random in sequence space 

iv) There exist interconnected neutral networks – ‘shape’ 
space is neutrally connected to such a degree that 
networks described as ‘percolating’ span the entire 
domain. All regions of the search space are attainable by 
the process of random neutral drift

Each postulate can be used to describe the characteristics of 
neutrality in generic sequence spaces, and can be referred to 
in investigating the existence of neutrality within both 
artificial and natural search spaces. Of particular note is the 
fourth postulate; sufficiently interconnected neutral networks 
may generate the possibility of an evolving population 
reaching the neighbourhood of any possible structure – a 
property termed ‘constant innovation’ [8]; the population 
never gets stuck on local optima.  

In many ‘test functions’ designed to investigate the quality of 
optimisation heuristics (for example De Jong’s widely used 
‘test suite’ [12]), the fitness landscape is often implicitly one 
of rugged hills and local peaks, leading to the legitimate 
expectation of premature convergence upon sub-optima. 
Furthermore, methodologies for the avoidance of early loss in 
sequence diversity are quite common in current literature, 
suggesting that this view is widely accepted within the field 
of evolutionary computation. However, the concept of 
neutrality presents a markedly different view of the 
optimisation landscape, and one that is evidently not yet 
widely considered or acknowledged, through lack of 
literature on the topic and persistence of ‘new models’ for the 
escape of premature convergence. Indeed, there is the 
possibility that neutrality may be quite common in decidedly 
real-world problems, such as evolutionary circuit [13] and 
artificial neural robotic controller design [14,15].  

Recently, the significance of evolutionary neutrality to the 
GA was explored at length by Barnett [3,9] who performed 
an analysis of the dynamics of artificial evolution upon a 
binary landscape containing neutrality. A view of neutral 
networks as ‘tangled webs’ emerged, in reference to the 
percolation property and potential for constant innovation 
thereupon. A modified heuristic called the ‘Netcrawler’ [3] 
was subsequently proposed, which consists of a ‘population 
of one’ allowed to traverse neutral networks by generational 
mutation alone. The Netcrawler model was later deployed 
upon an investigation into real-world circuit evolution 
(Thompson and Harvey [13,16]), with some success. 

Barnett [17] also proposed a modification to Kauffman’s 
rugged NK landscape [18] test function, suggesting a new 
parameter for the incorporation of a user specified level of 
neutrality to the landscapes generated (the NKp landscape). 
This forms one of only a few test functions specifically 
designed to incorporate dynamical testing with neutral 
networks (see also Newman and Engelhardt’s model [19]). 

More recently still, Izquierdo-Torres [14] explored the 
significance of evolutionary neutrality within a GA deployed 
upon continuous landscapes, specifically with regards to the 
evolution of artificial neural robotic controllers, wherein 
‘nearly neutral’ mutations were common: mutations that 
affect the resultant fitness so slightly as to be insignificant, 
and could to some level be disregarded. What significance 
does evolutionary neutrality have when deploying another 
real-numbered optimisation methodology, namely that of 
Particle Swarm Optimisation? Literature concerning PSO 
coupled with theory on neutrality appears so hard to come by, 
that it is assumed that the question has simply not yet been 
formally asked. 

3. PARTICLE SWARM OPTIMISATION 
James Kennedy and Russell Eberhart first proposed Particle 
Swarm Optimisation in the mid 1990s as a new tool for 
computational optimisation, inspired by the simulation of 
collective ‘swarming’ and ‘flocking’ of sociable animals 
[20]. Following a decade of growing research interest in the 
algorithm, an online ‘standard’ PSO was introduced, in a 
necessary effort to create a common yardstick for PSO 
development [4]. Based upon an improved version of the 
1995 ‘first proposed’ model [20,21], this standard is 
(according to the source) validated by PSO co-creator James 
Kennedy, and researcher/PSO writer Maurice Clerc, and 
comes with suggested (though not universally optimal) 
parametric settings.  

The Particle Swarm Optimisation methodology operates by 
placing a ‘swarm’ of individual agents or ‘particles’ into a 
continuous sequence space, wherein each particle is 
described by an N-dimensional vector location and a fitness 
score. The heuristic thus represents a population-based
methodology for computational optimisation that is, in its 
basic form, limited to the application of real-numbered
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problems. Each particle possesses a physical, N-dimensional 
velocity within this virtual hyperspace, the specific 
mathematical rule of which defines the ‘evolutionary’ 
dynamics of the swarm and generates the capacity for 
optimisation; iteratively applied physical dynamics guide the 
swarm to regions of higher fitness in solution space, by 
weighting individual acceleration towards the currently 
standing ‘global best’ or fittest yet ‘sampled’ location in 
solution space. Fitness is assessed upon the current location 
vector for each particle, and the population best updated 
whenever a fitter location is discovered. Stochastic factors 
render the methodology non-deterministic, and additional 
weighting towards an individual, tuneable ‘personal best’ 
factor maintains swarm diversity. The 2006 standard velocity 
update and location update rules are those given in equations 
(1) and (2) respectively.  

Velocity update / location update rules:  
1998 version incorporating w parameter [4,21] 
(1): Vi = wVi(t-1) + c1r1(pBesti-pLoci) + c2r2(gBesti-pLoci)
(2): pLoci = pLoci(t-1) + Vi

Nomenclature: 
w: Inertial weight constant 
V: N-d Velocity vector 
i: Current particle index  
t: Current iteration 
c1, c2: Weighting constants 
r1, r2: Stochastic variables [0 < rx < 1], drawn from a uniform 
distribution 
gBest: N-d Global ‘population’ best solution vector 
pBest: N-d Particle ‘personal’ best location vector 
pLoc: N-d Particle current location

In years following its introduction, PSO gained popularity 
within academic circles as it was shown to perform as well 
as, and in some cases better than, the current favourite 
optimisation tool: the GA [22]. In most cases, PSO is held to 
be able to converge more rapidly than the GA (a consequence 
of the variable step size in the dynamic ‘mutation’ operator, 
the particle velocity) but suffers from premature convergence 
upon sub-optimal locations. In the past decade there has been 
a veritable explosion of new methodologies designed to avoid 
premature convergence upon local fitness peaks - a 
consequence of testing upon rugged ‘toy’ landscapes. In light 
of studies into evolutionary neutrality however, this might 
not remain an accurate view of the FLs inherent in real world 
problems. 

Consider the operation of the standard PSO algorithm 
discussed above, upon an imagined sequence space 
containing evolutionary neutrality. In the standard PSO 
model, the current global best is updated according to the 
following logic: 

If current particle’s location is of fitness greater than the 
current global best, make this location the new global best. 

Such behaviour would lead to the anchorage of the gBest
attraction point upon the first sample point assessed upon the 

current fittest neutral level (fig 4). Neutral levels of higher 
fitness might be found through basic exploration of space 
around the global best (motivated by the attraction towards 
personal best locations), but unless this is successful, the 
beacon attraction point gBest remains attached at the point of 
initial discovery; neutral drift would be hindered and the 
swarm diversity can be expected to stagnate.  

Projecting this simple picture into a more realistic 
dimensionality (wherein neutral networks exist) it would 
appear that without drift, the potential for permanent 
innovation through traversal of the neutral network is 
foregone. From this it can be stated that the current standard 
PSO algorithm is not optimised for landscapes containing a 
certain degree of neutrality, as will be demonstrated below. 

It transpires that a very simple change to the logic of the 
gBest update rule can allow for the traversal of neutral 
networks. A simple but successful methodology drawn from 
GA research also proves to be suitably transferable into the 
PSO heuristic.  

4.1 NEUTRAL PSO (nPSO) 
The development of a new heuristic for terrains containing 
neutrality begins with a consideration of the most basic
change that would be required of the standard PSO model, in 
order to allow the algorithm to exploit the existence of 
neutral networks within sequence space. It transpires that this 
change consists of just a single extra character in the program 
code, affecting the logic of the global best update rule. The 
current standard gBest update logic (given above) can be 

Fig. 4: In the standard PSO model, the global best is likely to act 
as a point of anchorage in sequence space where a certain level 
of neutrality exists, stemming the exploration of neutral 
networks, if they exist 
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trivially modified to allow the algorithm a very basic 
explorative capacity of neutral terrains: 

If current particle’s location is of fitness greater than or 
equal to the current global best location, make this location 
the new global best. 

In this basic form, the most recent particle to be updated, if 
sharing the current global best in a given iteration, then 
becomes the new gBest. The nPSO methodology is expected 
to remove the standard methodology’s perceived issue of the 
gBest ‘point of anchorage’ (figure 4), by freeing the 
population attractor to move with the swarm on neutral zones.

4.2 EXTREMA SELECTION PSO (esPSO) 
For further comparison we consider also ‘Extrema Selection 
PSO’ (esPSO) inspired by Terry Stewart [23], in which a 
modification to the basic GA was developed in order to 
enable accelerated evolution upon neutral networks. 
Stewart’s original ‘Extrema Selection’ model works by 
defining an average population centre (the ‘centroid’), and 
subsequently selecting members for replication based upon 
their Euclidean distance from this vector, whenever fitness 
levels are shared within the population. In such cases 
individuals further from the centroid are more likely to be 
selected, leading to the rapid motion of the population cluster 
upon neutral regions of sequence space. 

This methodology can be directly transferred into the PSO 
heuristic: when multiple swarm members share the same 
fitness, the gBest location is simply decided by relative 
distance from the population centroid calculated in each 
iteration. Again this detaches the ‘anchorage’ of gBest upon 
neutral zones, enabling the swarm to non-deterministically 
drift. The subsequent stochastic dynamics already present 
within the standard model are believed to then motivate the 
swarm into non-deterministic exploration upon neutral zones; 
the swarm experiences neutral drift.

4.3 CONSTRUCTING A NEUTRAL TEST BED 
Given time constraints, the investigation of a ‘real’ problem 
containing a high degree of neutrality (e.g. Harvey and 
Thompson’s circuit evolution [13,16]) was not possible, 
leading to the preference for testing the proposed new 
heuristics upon artificial ‘toy’ landscapes. Such neutral test 
landscapes exist (e.g. Barnett’s NKp landscape [17]), but 
having been built with the GA in mind, these are binary and 
thus unsuitable for the continuous methodology of PSO. For 
this reason it becomes necessary to create an artificial test 
bed of real-numbered toy neutral FLs.  

‘Quantised’ classic functions: De Jong’s test suite [12] 
represents a group of typical, continuous problem landscapes 
upon which new PSO heuristics are often tested. These take 
the form of a mathematical formula, which maps a real-
numbered N-d vector (a location in sequence space) into a 
one-dimensional scalar fitness value. A classic example is the 

‘Sphere’ function, which calculates fitness by simply 
summing the square of all sequence components (equation 3): 

(3)
Nomenclature: 

f1: Function 1 - Sphere 
dx: Sequence vector components 
i: Component index  
n: Sequence vector dimensionality

The resultant landscape then appears as a ‘U’ shaped curve in 
one dimension, with fitness increasing as each component 
moves further from zero. 

Neutrality can be artificially incorporated into this and 
similar functions, by ‘filtering’ the fitness output into a user 
specified quantum. This has the effect of levelling gradients 
into stepped plateaus: neutral regions of same-fitness space 
(fig 5).  

‘Quantising’ the output of any function is as simple as 
dividing the ‘raw’ fitness score by a user-specified quantum
size, and deducting the remainder from the raw value to give 
a ‘filtered’ fitness score. Where the current programming tool 
offers the ‘Mod’ functionality, this is deployed as follows: 

fitness output = raw fitness - mod(raw fitness, Q) 

Where Q is a user specified ‘quantum size’ that defines how 
much neutrality is attached to any given vector in sequence 
space. This filter functionality can be deployed on any 
continuous landscape to create tuneable neutrality, however, 
it does not guarantee that neutral networks with the property 
of constant innovation will arise; these functions represent 
mathematical patterns, and it cannot be assured that a given 
pattern gives rise to ‘realistic’ neutral networks as might be 
found in ‘patternless’ real-world optimisation problems. 

‘Stacking plates’: Imagine a sequence of real numbers that 
can be deconstructed into pairs of adjacent values, wherein 
each pair represents the centre placement of a fixed radius 
circle in 2-d space (figure 6, overleaf). An optimisation 
scheme can be built from this model, whereby sequences 

Fig 5: A ‘quantised’ one-dimensional sphere 
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Fig. 6: Adjacent paired components map into circle 
constructs in 2-d space 

describing multiple circles are to ‘stack’ these constructs so 
that they overlap – fitness points are awarded in binary 
fashion for simply overlapping the radii of different circles.  

This optimisation scheme introduces great scope for 
neutrality: imagine a sequence of six numbers defining three 
2-d circles, each circle is close to, but not touching any other 
circle. A mutation in the sequence brings two circles into 
overlap, and the sequence increases in fitness by one. Further 
mutations move the remaining untouched circle about in 
space but fail to bring it into overlap, whilst the two touching 
circles remain in contact. Each change in sequence that did 
not affect fitness is a neutral change, and though the former 
circle remains untouched, its position has drifted to a location 
distant from its origin. 

Neutrality is tuneable with three parameters: the size of circle 
radius, the number of circles (the problem dimensionality 
halved) or the range of initial distribution in 2-d space. For 
example, with a large number of ‘big’ circles initialised 
within a small 2-d volume, some overlaps can be expected at 
the start with only short distances between new overlaps – 
there is a little neutrality. With few small circles in a large 
initial volume, few starting overlaps are expected, with large 
distances between individual circles – there is a lot of 
neutrality. 

With a marked amount of neutrality, the landscape is 
expected to be very ‘smooth’, but note that the landscape 
dynamically changes with the motion of individual circles. 
This then represents an unpredictable model that might be 
more representative of problems in the real world. 

5.1 COMPETITIVE TESTING OF HEURISTICS 
The two discussed modifications to the standard PSO 
heuristic are here tested in competition with an unmodified 
standard PSO. It was decided for the purposes of testing the 
new heuristics to use 2 FLs: (A) an inverted, quantised N-d
Sphere and (B) the plate stacking function discussed in 
section 4. The Sphere function follows equation 3, with 
inversion (multiplying the resultant fitness score by -1) 
giving a maximum attainable fitness score of zero. Parameter 

settings for each PSO methodology follows the standard 
values given in [4] where parameters are shared, with the 
only variable under test being the explicit methodological 
alterations discussed in section 4. 

5.2 RESULTS 
Results are presented here both graphically and in tabular 
format, given two types of data; the first is of the average 
fitness of gBest per iteration, and allows discrimination 
between the average performances of heuristics. The second 
is the diffusion coefficient [9], which is a measurement of the 
distance moved by the centroid per iteration and roughly 
equates to the speed of the swarm’s motion in sequence 
space. For each display of diffusion coefficient data 
presented here (graphs 2,4,6), plotted values represent an 
average encompassing 50 preceding iterations, in order to 
smooth the graphical illustration. 

Graph 1: Average fitness of gBest per 500 iterations for 
three PSO heuristics optimising a six-dimensional inverted 
sphere. Quantisation of fitness values to the nearest 1000 
provides discrete levels of artificial neutrality within a 
hypercube of initial range 10000 in each dimension. The 
average consists of 100 individual runs. 

Average fitness of gBest at final iteration (i = 500) 
PSO -1800 
nPSO -10 
esPSO -130 
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Graph 2: Average (Natural Log) Diffusion Coefficient 
accompanying graph 1. 

Graph 3: Average fitness of gBest per 125 iterations for 
three PSO heuristics optimising the Plate Stacking problem. 
25 plates were allowed in a hypercube of initial range 250 in 
each dimension. The average consists of 100 individual runs. 

Average fitness of gBest at final iteration (i = 125) 
PSO 29.48 
nPSO 45.72 
esPSO 36.6 

Graph 4: Average (Natural Log) Diffusion Coefficient 
accompanying graph 3. 

Graph 5: Average fitness of gBest per 500 iterations for 
three PSO heuristics optimising a six dimensional inverted 
sphere function with no quantisation. Initial range in each 
dimension is equal to 10000. Graph presents an average of 
100 individual runs. 

Average gBest at final iteration (i = 500) 
PSO -543.84 
nPSO -543.12 
esPSO -538.67 

Graph 6: Average (Natural Log) Diffusion Coefficient 
accompanying graph 5.

5.3 CONCLUSIONS 
Analysis of fitness data (graphs 1,3) acquired in this study 
suggests that the nPSO algorithm consistently outperforms 
both esPSO and PSO. In all cases, nPSO also appears to 
maintain the fastest diffusion rate at the final iteration out of 
all heuristics (graphs 2,4). If it is accepted that neutral 
networks create the possibility for permanent innovation, 
wherein the neighbourhood of every possible structure can 
potentially be accessed through neutral drift, then the speed
of network traversal becomes crucial in finding better optima. 
The nPSO algorithm’s ‘better’ performance upon the three 
test functions might seem to validate this proposition.  

Further study is certainly needed to explain the difference in 
initial performance for the plate stacking function however 
(graph 4), as the similar initial diffusion rate between 
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heuristics does not appear to be able to explain the observed 
differences in rate of discovery of better fitness solutions 
(graph 3). Additional investigation is considered desirable in 
order to identify the true cause of these performance 
differences.  

This draws attention now to the esPSO algorithm, which was 
theoretically implied to have the fastest exploration rate 
(indeed this was the purpose of Stewarts’ original Extrema 
Selection model for the GA [23]). Apparently this was not so 
during experimentation, with the esPSO diffusion data 
suggesting that this algorithm was not significantly better 
than nPSO (graph 4) and perhaps actually worse (graph 2) 
than nPSO in terms of the rapidity of spatial exploration.  
The simpler heuristic proves better in optimising the neutral 
test bed introduced herein; a solid explanation as to why
certainly requires more detailed analysis of swarm dynamics 
during optimisation performance. 

Graphs 5 and 6 serve to demonstrate that even on non-neutral 
terrains, both modified heuristics introduced herein 
certifiably do not impair optimisation performance upon 
standard, explicitly non-neutral or rugged terrains. 
Considering the temporal requirements in processing multiple 
program instructions, the nPSO algorithm is however 
considered better than esPSO, due to its simpler methodology 
containing fewer program instructions; over a lengthy run, 
nPSO is likely to prove the faster of the modified algorithms 
in terms of process time.  

This study then suggests that for terrains suspected or 
confirmed to contain some degree of neutrality, the nPSO 
algorithm currently offers a simple modification to the 
standard that a) does not detrimentally affect optimisation of 
non-neutral landscapes and b) offers improved performance 
upon terrains that include neutrality.
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