
PARTICLE SWARM OPTIMIZATION COMBINED WITH LOCAL SEARCH
AND VELOCITY RE-INITIALIZATION FOR SHORTEST PATH

COMPUTATION IN NETWORKS

Ammar W. Mohemmed Nirod Chandra Sahoo
Faculty of Engineering and Technology

Multimedia University, 75450 Melaka, Malaysia
E-mail: ammar.wmohemmed@mmu.edu.my ; nirodchandra.sahoo@mmu.edu.my

Abstract - This paper presents the application of particle
swarm optimization (PSO) based search algorithm for
solving the single source shortest path problem (SPP)
commonly encountered in graph theory. A new particle
encoding/decoding scheme has been devised for representing
the SPP parameters as a particle. In order to enhance the
search capability of PSO, a selective local search mechanism
and periodic velocity re-initialization of particles have been
incorporated. Simulation results on several networks with
random topologies are used to illustrate the efficiency of the
proposed hybrid PSO algorithm for computation of shortest
paths in networks.

such that

tsi

ti

si

xx
Eijj

ji
Ejij

ij

,,0
,1

,1

),(:),(:

 (1)
where is 1 if the edge connecting nodes i and j is in the
path or 0 otherwise; s and t stand for source and terminal
node, respectively.

ijx

I.INTRODUCTION

Shortest path computation is one of the most fundamental
problems in graph theory. The huge interest in the
problem is mainly due to the wide spectrum of its
applications, ranging from routing in communication
networks to robot motion planning, scheduling, sequence
alignment in molecular biology and length-limited
Huffman coding, to name only a very few. Deo and Pang
[1] have surveyed a large number of algorithms and
applications of the shortest path problems.

 Fig .1: A network with 7 nodes and 10 edges

Deterministic algorithms such as Dijkstra and Bellman-
Ford algorithms [2] are mostly used to solve the single
source shortest path problem. With the developments of
communication, computer science, transportation systems,
and so on, more variants of shortest path based problems
have appeared. Some of these problems include traveling
salesman problem, K-shortest paths, constrained shortest
path problems, multiple objective shortest path problem,
and network flow problems etc. Most of these problems
are NP-hard. Therefore, polynomial-time algorithms for
these problems are impossible. Thus, the evolutionary and
heuristics algorithms are the most attractive alternative
ways to go for.

The shortest path problem is defined as follows. An
undirected graph G = (V, E) comprises a set of nodes

 and a set of edges connecting nodes in
V. Corresponding to each edge, there is a nonnegative
number representing the cost (distance, transit times,

etc) of the edge from node to node . A path from

node to node

ivV VVE

ijC

iv jv

iv kv is a sequence of nodes

klji v,,v,v,v from E in which no node appears more
than once. For example, in Fig. 1, a path from node 1 to
node 7 is represented as (1, 4, 3, 7). The shortest path
problem is to find a path between two given nodes having
minimum total cost. Let 1 denote the initial (starting) node
and n denote the end node of the path. The integer
programming model of the shortest path problem (SPP) is
formulated as follows:

Among the notable heuristic algorithms for path finding
optimization problems in network graphs, successful use
of genetic algorithm (GA) and Tabu Search (TS) has been
reported [3–7]. Recently, another powerful heuristic
optimization algorithm, called particle swarm
optimization [8], has been used for many optimization
problems with high success. Some comparative studies of
the performances of GA and PSO have also been reported
[9 -12]. All these studies have firmly established the same

ij
Ej,i

ij xC
)(

min

266

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

effectiveness of PSO compared to GA. In fact, for some
problems, PSO performance is reported to be superior. It
is also to be noted that GA and TS demand expensive
computational cost. In contrast, PSO requires less
computational bookkeeping and generally only a few lines
of implementation code.

To best knowledge of the authors, there is no such report
published on the use of PSO for the shortest path problem.
It is the purpose of this paper to investigate this. In this
work, a PSO-based hybrid search algorithm has been
designed for computation of single source shortest paths
in networks. A new particle position representation and
decoding scheme have been formulated for this specific
problem. Further, in order to speed up the search process,
a selective local search and periodic velocity re-
initialization strategy have been incorporated into the
main PSO. The effectiveness of the proposed hybrid PSO
algorithm for finding shortest paths in networks is verified
by computer simulation studies on different random
network topologies.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is a population based
stochastic optimization technique inspired by the social
behavior of bird flock (and fish school etc.), as developed
by Kennedy and Eberhart in 1995 [8].

The algorithmic flow in PSO starts with a population of
particles whose positions, that represent the potential
solutions for the studied problem, and velocities are
randomly initialized in the search space. The search for
optimal position (solution) is performed by updating the
particle velocities, hence positions, in each iteration
according to the following two equations:

)XB(r)XB(rPVPV id
n
ididididid 2211 ;

and (2) sN,,,i 21 D,,,d 21

ididid PVXX (3)

where and are positive constants, called
acceleration coefficients, is the total number of
particles in the swarm, D is the dimension of problem
search space, i.e., number of parameters of the function
being optimized, and are two independently
generated random numbers in the range [0, 1] and “n”
represents the index of the best particle in the
neighborhood of a particle. The other vectors are defined
as: Position of i-th particle;

 Velocity of the i-th
particle; Best position of the i-

th particle (pBest

1 2

sN

1r 2r

iDiii X,,X,X 21X

iDiii PV,,PV,PV 21PV

iDiii B,,B,B 21B

i), and n
iD

n
i

n
i

n
i B,,B,B 21B Best

position found by the neighborhood of the particle i
(nBesti). The pseudo-codes for general algorithmic flow of
PSO are listed in Fig. 2.

 Initialize the position and velocity randomly.
Calculate fitness value of each particle.
Calculate pBest and nBest for each particle.
While(iteration_count < max_iteration)

For each particle,
 Update particle velocity using Eq. (2).

 Update particle position using Eq. (3).
 Calculate fitness value of particle.
 Update pBest if its current fitness value is better

than its pBest.
 Update nBest, i.e., choose the position of the

particle with the best fitness value among all its
neighbors as the nBest for a specific neighborhood
topology.

End while

Fig. 2: Pseudo-codes for general algorithmic flow of Particle Swarm
Optimization

Eq. (2) calculates a new velocity for each particle based
on its previous velocity, the particle’s position at which
the best possible fitness has been achieved so far, and the
neighbors’ best position achieved. Eq. (3) updates each
particle’s position in the solution hyperspace. and1

2 are two learning factors, which control the influence of
pBest and nBest on the search process. In all initial studies
of PSO, both and1 2 are taken to be 2.0. However, in
most cases, the velocities quickly attain very large values,
especially for particles far from their global best. As a
result, particles have larger position updates with particles
leaving boundary of the search space. To control the
increase in velocity, velocity clamping is used in Eq. (2).
Thus, if the right side of Eq. (2) exceeds a specified
maximum value , then the velocity on that

dimension is clamped to . Many improvements
have been incorporated into this basic algorithm. In [13],
Maurice proposed the use of a constriction factor

max
dPV

max
dPV

; the
algorithm was named the constriction factor method
(CFM) where Eq. (2) is modified as:

)]()([2211 id
n
ididididid XBrXBrPVPV

 (4)
1

2 422 ifwhere 421

 (5)

The objective behind the use of constriction factor is to
prevent the velocity from growing out of bounds, thus the
velocity clamping is not required. But, Eberhart and Shi
[14] have reported that the best performance can be

267

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

achieved with constriction factor and velocity clamping.
The PSO’s implementation is very simple. To pose a
problem in PSO framework, the important step is to
devise a coding scheme for particle representation, which
is discussed next for the SPP.

III. PSO-BASED ALGORITHM FOR SHORTEST
PATH COMPUTATION

In this section, the proposed PSO-based hybrid algorithm
using selective local search and periodic velocity re-
initialization is described. The basic module of PSO is as
described in the previous section. The main components
of the proposed algorithm are: particle representation,
selective local search and periodic velocity re-
initialization; these are discussed in detail.

A. Cost-Biased Particle Encoding/Decoding

There is a limited literature for using PSO to solve
combinatorial optimization problems [15-16];
furthermore, the research results on computing shortest
path by use of PSO is not known till date. Therefore,
research works using genetic algorithm (GA) are referred
here. One crucial issue in using GA to solve combinatorial
problems is chromosome representation of the problem as
it is an important step for success of the algorithm.
Chromosome encoding can be categorized into direct and
indirect encoding. Direct encoding means that a
chromosome of the GA contains a gene for each item of
the problem represented by item ID (identification
number). In this case, the chromosome length is variable.
This type of encoding was used in [3]. Thus, for Fig. 1, a
chromosome that represents a solution (path) from node 1
to node 7 may have gene values (1, 4, 6, 7) or (1, 2, 3, 6,
7) etc.

On the other hand, in indirect encoding, the chromosome
encodes guiding information about the solution rather than
the solution itself. One advantage of this encoding is that
the chromosome size is fixed, but the method needs a
decoding procedure to extract the real solution from the
guiding information. Two variants of this indirect
encoding exist in literature: Priority encoding and Weight
encoding. In [4], a priority encoding is proposed for a
genetic SPP algorithm. In this encoding, the position of
the gene in the chromosome represents the node ID, while
the value of the gene is a number representing the priority

of the node. The path is constructed in a path growth
procedure by appending nodes starting from the source. At
each step, the next node with the higher priority is chosen
from those which have direct links with the current node.
The procedure continues until the destination node is
reached. The best chromosome at the end of a run of the
algorithm is that one which contains priorities that lead the
decoding procedure to select nodes forming the shortest

path. One disadvantage of this encoding is that the
chromosome is “indirectly” encoded; it does not include
information about the graph or the network’s
characteristics like its edges’ costs. Another variant of
indirect coding of the chromosome is called weighted

encoding [5]. Similar to the priority encoding, the
chromosome is a vector of values called weights. This
vector is used to modify the problem parameters, for
instance the cost of the edges. First, the original problem
is temporarily modified by biasing the problem parameters
with the weights. Secondly, a problem-specific non-
evolutionary decoding heuristic is used to actually
generate a solution for the modified problem. This
solution is finally interpreted and evaluated for the
original (unmodified) problem.

Inspired by the above two encoding schemes, a
representation scheme, referred to as Cost-Biased
encoding/decoding, is devised to suit the swarm particles
for SPP. Note that direct encoding is not appropriate for
the swarm particles, as the updating for the particles are
based on arithmetic operations in Eqs. (3) and (4). The
encoding of the particle is based on bias values of the
nodes and the decoding of the particle is based on the path
growth procedure which takes into account the bias values
of the nodes as well as cost of the edges. The particle
contains a vector of node bias values; hence length of the
particle equals to the number of nodes. To construct a path
from an arbitrary particle, starting from the initial node
(node 1) to the final node (node n), edges are appended
into the path consecutively. At each step, the next node
(node j) is selected from the nodes having direct links with
the current node such that the product of the (next) node
bias () and the edge cost is minimum, i. e., j

0101min .,.,Ej,i|Cj jjij

 (6)
The steps of this algorithm are summarized in Fig. 3. Note
that the bias values can take negative or positive real
numbers in the range [-1.0, 1.0]. It is seen that the problem
parameters (link costs) are part of the encoding/decoding
procedure. Unlike the priority encoding where a node is
appended to the partial path based only on its priority.
But, in the proposed procedure, a node is appended to the
path based on the minimum of the product of the node
(next node) bias and the link cost that connects the current
node with the next one to be selected. Experimental
results show superiority of this procedure over the priority
encoding when it is implemented within PSO frame. The
PSO-based search is performed for optimal set of node
bias values that result in shortest path in a given network.

268

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

B. Local Search

Evolutionary algorithms (EA) are robust and powerful
global optimization techniques for solving large-scale
problems that have many local optima. However, they
require high CPU times and are mostly poor in terms of
convergence performance. On the other hand, local search
algorithms can converge in a few iterations but lack a
global perspective. The combination of global and local
search procedures should offer the advantages of both
optimization methods while offsetting their disadvantages
[17]. The hybridizing of evolutionary algorithms with
local search operators that work within the EA loop has
been termed “Memetic Algorithms”. Memetic
Algorithms have been shown to be faster and more
accurate than EAs on some problems. Greedy
Randomized Adaptive Search Procedure (GRASP) [18] is
a multi-start metaheuristic for combinatorial problems in
which each iteration consists basically of two phases:
construction and local search. The construction phase
builds a feasible solution whose neighborhood is
investigated until a local minimum is found during the
local search phase. Therefore, incorporating a local search
within the main algorithm proves to be beneficial in
obtaining better results.

A sort of local search is incorporated in the proposed
PSO-based algorithm for the SPP. The local search is
called in every iteration by each particle when that particle
has a better solution than that obtained in the previous
iteration. The local search is based on edge elimination
and uses a binary activation matrix of size (N x N), where
N is the number of nodes in the network. When the binary
bit in the activation matrix at position (i, j) is set to zero,
that edge will not be included in the decoding procedure.
The edges of the considered path are chosen for
elimination one at a time in sequence by setting the
corresponding activation bit to zero and then the
Particle_Decoding procedure is used construct a new path.
If the new path constructed is shorter than the original
path, it will be recorded and the fitness of the particle will
be modified to the fitness of this new locally obtained path
and all the relevant information for obtaining this new
path (the bias vector and the edge that has been banned
from consideration during local search path construction)

are stored. The pseudocodes for local search process are
given in Fig. 4. Particle_Decoding (Solution)

Let i = 1, k =1, P(k) = {1} // P denotes the path
While (i n) { Local_Search(Solution)

 for k = 1,….., No_of_Nodes_in_path Do
 Set edge (k, k+1) as non-active.
 Construct a new path using the particle bias vector

and Particle_Decoding procedure.
 If the new path has better fitness
 {Update the particle fitness with the fitness of

new path;
Store all relevant information (bias vector and
banned edge);}

 Set edge (k, k+1) active
end for;

Fig. 4: Pseudocodes for local search procedure

 k = k + 1
 j = the node has direct link with node i && has the

minimum (C

C. Velocity Re-initialization

One of the problems of the PSO is the premature
convergence to a local minimum. It does not continue to
improve on the quality of solutions after a certain number
of iterations have passed [19]. As a result, the swarm
becomes stagnated after a certain number of iterations and
may end up with a solution far from optimality.
Gregarious PSO [20] avoids premature convergence of the
swarm; the particles are re-initialized with a random
velocity when stuck at a local minimum. Dissipative PSO
[21] reinitializes the particle positions at each iteration
with a small probability (0.001). In [22], this additional
perturbation is carried out with different probabilities

i,j) value j

 i = j, {P(k), {i}} P(k) } }
end while

Fig. 3: Pseudo-codes for cost-biased encoding/decoding procedure

Generate initial population of particles.
Calculate fitness value of each particle.
Calculate pBest and nBest for each particle.
While(iteration_count < max_iteration)

 Update velocity of each particle using Eq. (4).
 Update position of each particle using Eq. (3).
 Calculate fitness value of each particle.

{Call Particle_Decoding(particle)
 Calculate particle’s fitness.
}

 Update pBest for each particle if its current fitness
value is better than its pBest;

 if it is better, call Local_Search(particle)
 Update nBest for each particle, i.e., choose the

position of the particle with the best fitness value
among all its neighbors as the nBest for a specific
neighborhood topology.
if (iteration_count mod 10) 0, then re-initialize

velocities of all particles.
end while

Fig. 5: Pseudocodes of PSO algorithm combined with local search and
velocity re-initialization

269

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Next, the effect of number of particles is investigated. The
number of particles is varied from 20 to 120 and for each
case, the success rate and the average best iteration
number for the network topology # 2 in (from Table 1) to
get the shortest path are recorded. Here, two cases are
compared to highlight the effect of proposed
encoding/decoding scheme. They are: (1) priority
encoding with velocity re-initialization and local search
and (2) proposed cost-biased encoding/decoding with
velocity re-initialization and local search. The superiority
of proposed encoding/decoding with velocity re-
initialization and local search is clearly seen from the test
results shown in Figs. 6 and 7.

based on time-dependent strategy. In present study, the
velocities of all the particles (in all the dimensions) are
reinitialized randomly to the range

max
d

max
d PV,PV periodically after a certain number of

iterations (say, 10 iterations). Effects of changing the
iteration number at which the velocity re-initialization is
done and auto-tuning of this parameter are under study.
The pseudocodes of the PSO combined with velocity re-
initialization and local search are listed in Fig. 5. The
fitness of each particle is computed as:
Fitness = (Length/cost of the path represented by the
particle)-1 = (sum of the cost of all the edges in the path)-1

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed hybrid PSO
algorithm for SPP, different network topologies are
generated using Waxman model [23] for random topology
generator. For each network with certain number of nodes
and edges, 20 random topologies are generated with
different seed numbers. Edge costs are taken randomly
from the range [1, 1000]. The other PSO parameters are
chosen as: Number of Particles = 100; Neighborhood
Topology = Ring; equals 2.0 and is chosen to be
2.2; thus = 4.2. From Eq. (5), = 0.74; Maximum
number of iterations = 500; maximum velocity = 1.0.
The performance of the algorithm is assessed by success
rate which is defined as the average number of times over
20 runs the shortest path is found. The shortest path is also
computed separately using Dijkstra algorithm for
comparison purposes. Also, the average number of
iterations to get the shortest path is recorded for each
network topology as this offers a rough estimate of the
CPU time required. The results are compared for four
different cases of algorithm operation as follows: one case
of traditional GA (reported for this problem in [4]) and
three different implementations of PSO

1 2

Case 1: Priority-based encoding is used in GA [4].
Case 2: Priority-based encoding is used in standard PSO.
Case 3: Proposed cost-biased particle encoding/decoding
is used in standard PSO.
Case 4: Proposed cost-biased particle encoding/decoding
is used in standard PSO combined with selective local
search and periodic velocity re-initialization.

The results compared in Table 1 show the superiority of
the proposed encoding/decoding scheme over the priority
encoding whether implemented with PSO frame or GA
frame, especially for dense topologies. Combining it with
velocity re-initialization and local search, a minimum
success rate of 0.9 is achieved in almost all the cases. It is
also noticed that local search and velocity re-initialization
save many iterations of computation.

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 110
No. of Particles

S
u

c
c

e
s

s
 R

a
te

Priority Encoding

Proposed Encoding

0

100

200

300

400

500

20 40 60 80 100 110

No. of Particles

B
e

s
t

It
e

ra
ti

o
n

 N
o

.

Priority Encoding

Proposed Encoding

Fig. 7: Average iteration number to get the shortest path vs. number
of particles for a network of 100 nodes and 256 edges

Fig. 6: Success rate vs. number of particles for a network of 100 nodes
and 256 edges

270

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE 1: SUCCESS RATES AND BEST ITERATIONS FOR DIFFERENT CASES OF PSO AND TRADITIONAL GA IMPLEMENTATIONS

V. CONCLUSIONS

This paper presents a PSO-based search algorithm for
solving the single source shortest path problem. The
algorithm uses a new cost-biased encoding/decoding for
representation of particles in PSO so as to include the
network parameters in the representation itself. In
addition, for further enhancement of the search capability
of the algorithm, selective local search and periodic
velocity re-initialization are incorporated into the main
PSO. The simulation experiments on random network
topologies show that these two modifications (along with
the new particle encoding/decoding) improve the
performance of the algorithm significantly by achieving a
success rate of more than 0.9 in all the case studies
reported. The future work will focus on using PSO to
solve other shortest path problem like the Steiner tree
problem.

References:

 [1] N. Deo, and C. Pang, ‘’Shortest-Path Algorithms: Taxonomy and
Annotation,’’ Networks, vol. 14, pp. 275-323, 1984.

[2] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
New York; Holt, Rinehart and Winston, pp. 59 – 108, 1976.

[3] A. Chang Wook and R. S. Ramakrishna, “A genetic algorithm for
shortest path routing problem and the sizing of populations,” IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 6, pp. 566-
579, Dec. 2002.

[4] G. Mitsue, C. Runwei and D. Wang, “Genetic Algorithms for solving
shortest path problems,” Proceedings of the IEEE International
Conference on Evolutionary Computation, pp. 401 – 406, April 1997.

[5] G. Raidl, “A weighted coding in a genetic algorithm for the degree-
constrained minimum spanning tree problem,” Proc. SAC (1),
pp.440–445, 2000.

[6] Z. Fu, A. Kurnia, A. Lim and B. Rodigrues, “Shortest path problem
with cache dependent path lengths,” Proceedings of 2003 Congress on
Evolutionary Computation, pp. 2756 – 2761, 2003.

[7] J. Kuri, N. Puech, M. Gagnaire and E. Dotaro, “Routing foreseeable
lightpath demands using a tabu search meta- heuristic,” proceedings
of 2003 Congress on Evolutionary Computation, pp. 2903 – 2807,
2003.

[8] J. Kennedy and R. C. Eberhart., “Particle swarm optimization.,”
Proceedings of the IEEE Int. Conf. on Neural Networks, Perth,
Australia, pp. 1942-1948, 1995.

[9] Eberhart, R. C. and Shi, Y. Comparison between genetic algorithms
and particle swarm optimization. Evolutionary programming vii:
proc. 7th ann. conf. on evolutionary conf., Springer-Verlag, Berlin,
San Diego, CA., 1998.

[10] C. R. Mouser and S. A. Dunn, “Comparing genetic algorithms and
particle swarm optimization for an inverse problem exercise,”
ANZIAM Journal, 46(E), pp.C89-C101, 2005.

[11] D. W. Boeringer and D. H. Werner, “Particle swarm optimization
versus genetic algorithms for phased array synthesis,” Vol. 52, No.
3, pp. 771 – 779, 2004.

[12] Hassan R., Cohanim B., de Weck O.L., Venter G., “A Comparison
of Particle Swarm Optimization and the Genetic Algorithm”,
AIAA-2005-1897, 1 st AIAA Multidisciplinary Design

Priority Encoding
in GA

Priority Encoding
 in PSO

Proposed Cost-
biased

encoding/decoding
in PSO

Proposed Cost-
biased

encoding/decoding
in PSO with local

search and velocity
re-initialization

Number
of nodes

Number
of edges

Network
Topology
Number

Success Average
iteration

No.

Success Average
iteration

No.

Success Average
iteration

No.

Success Average
iteration

No.
rate rate rate rate

1 100 290 0.3 260 0.4 289 0.7 241 0.9 180
2 100 256 0.45 272 0.65 258 0.8 243 0.95 206
3 90 253 0.3 263 0.35 265 0.7 223 1 149
4 90 233 0.45 233 0.6 218 0.85 175 1 132
5 80 230 0.6 147 0.6 228 0.9 209 1 131
6 80 186 0.65 158 0.5 176 0.9 162 1 125
7 70 320 0.3 157 0.4 213 0.65 212 0.9 149
8 70 202 0.6 152 0.7 274 0.9 151 0.9 127
9 60 233 0.55 181 0.45 235 0.8 225 0.95 102

10 50 158 0.75 156 0.8 137 1 94 1 60

271

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Optimization Specialist Conference , Austin , Texas , April 18-21,
2005.

[13] C. Maurice, “The swarm and queen: Towards a deterministic and
adaptive particle swarm optimization,” Proceedings of the IEEE
Congress on Evolutionary Computation. pp. 1951 – 1957, 1999.

[14] R. C. Eberhart and Y. Shi, “Comparing inertia weight and
constriction factors in particle swarm optimization,” Proceedings of
the IEEE Congress on Evolutionary Computation., pp. 84-88, 2000.

[15] K. P. Wang, L. Huang, C. G. Zhou and W. Pang, “Particle swarm
optimization for traveling salesman problem,” Proceedings of
International Conference on Machine Learning and Cybernetics, pp.
1583-1585, 2003.

[16] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm
optimization for task assignment problem,” Microprocessors and
Microsystems, vol. 26, no. 8, pp. 363-371, 2002.

[17] V. Kelner, F. Capitanescu, O. Léonard and L. Wehenkel, “An
Hybrid Optimization Technique Coupling Evolutionary and Local
Search Algorithms,” Proceedings. of the 3rd International
Conference on Advanced Computational Methods in Engineering
(ACOMEN'2005), Ghent, Belgium,May--June 2005.

[18] T.A. Feo and M.G.C. Resende, “Greedy randomized adaptive
search procedures,” J. of Global Optimization, vol. 6, pp. 109-133,
1995.

[19] P. J. Angeline, “Evolutionary optimization versus particle swarm
optimization: philosophy and performance difference,” Proc. 7th
Annual Conf. on Evolutionary Programming, pp. 601-610, 1998.

[20] P. Srinivas and Roberto Battiti, “The Gregarious Particle Swarm
Optimizer (G-PSO),” Proceedings of ACM Genetic and
Evolutionary Computation Conference (GECCO) 2006, Seattle,
Washington, USA, 2006 .

[21] X, Xie, W, Zang and Z Yang., “A dissipative swarm optimization,”
Proceedings of the IEEE Congress on Evolutionary Computing
(CEC 2002), Honolulu, Hawaii USA,May 2002.

[22] M. Iqbal, A. A. Freitas and C. G. Johnson, “Varying the topology
and probability of re-initialization in particle swarm optimization.,”
In Artificielle 2005,Edited by E.-G. Talbi, Evolution. University of
Lille, October 2005.

[23] B. Waxman, “Routing of multipoint connections,” IEEE J. of
Selected Areas in Communications, Vol. 6, No. 9, pp. 1622–1671,
1988.

272

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

