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Abstract - This paper presents the application of particle 
swarm optimization (PSO) based search algorithm for 
solving the single source shortest path problem (SPP) 
commonly encountered in graph theory. A new particle 
encoding/decoding scheme has been devised for representing 
the SPP parameters as a particle. In order to enhance the 
search capability of PSO, a selective local search mechanism 
and periodic velocity re-initialization of particles have been 
incorporated. Simulation results on several networks with 
random topologies are used to illustrate the efficiency of the 
proposed hybrid PSO algorithm for computation of shortest 
paths in networks.
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where is 1 if the edge connecting nodes i and j is in the 
path or 0 otherwise; s and t stand for source and terminal 
node, respectively. 
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I.INTRODUCTION 

Shortest path computation is one of the most fundamental 
problems in graph theory. The huge interest in the 
problem is mainly due to the wide spectrum of its 
applications, ranging from routing in communication 
networks to robot motion planning, scheduling, sequence 
alignment in molecular biology and length-limited 
Huffman coding, to name only a very few. Deo and Pang 
[1] have surveyed a large number of algorithms and 
applications of the shortest path problems. 

                                                     Fig .1: A network with 7 nodes and 10 edges 

Deterministic algorithms such as Dijkstra and Bellman-
Ford algorithms [2] are mostly used to solve the single 
source shortest path problem. With the developments of 
communication, computer science, transportation systems, 
and so on, more variants of shortest path based problems 
have appeared. Some of these problems include traveling 
salesman problem, K-shortest paths, constrained shortest 
path problems, multiple objective shortest path problem, 
and network flow problems etc. Most of these problems 
are NP-hard. Therefore, polynomial-time algorithms for 
these problems are impossible. Thus, the evolutionary and 
heuristics algorithms are the most attractive alternative 
ways to go for.  

The shortest path problem is defined as follows. An 
undirected graph G = (V, E) comprises a set of nodes 

 and a set of edges connecting nodes in 
V. Corresponding to each edge, there is a nonnegative 
number representing the cost (distance, transit times, 

etc) of the edge from node to node . A path from 

node to node
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klji v,,v,v,v  from E in which no node appears more 
than once. For example, in Fig. 1, a path from node 1 to 
node 7 is represented as (1, 4, 3, 7). The shortest path 
problem is to find a path between two given nodes having 
minimum total cost. Let 1 denote the initial (starting) node 
and n denote the end node of the path. The integer 
programming model of the shortest path problem (SPP) is 
formulated as follows: 

Among the notable heuristic algorithms for path finding 
optimization problems in network graphs, successful use 
of genetic algorithm (GA) and Tabu Search (TS) has been 
reported [3–7]. Recently, another powerful heuristic 
optimization algorithm, called particle swarm 
optimization [8], has been used for many optimization 
problems with high success. Some comparative studies of 
the performances of GA and PSO have also been reported 
[9 -12].  All these studies have firmly established the same 
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effectiveness of PSO compared to GA. In fact, for some 
problems, PSO performance is reported to be superior. It 
is also to be noted that GA and TS demand expensive 
computational cost. In contrast, PSO requires less 
computational bookkeeping and generally only a few lines 
of implementation code.  

To best knowledge of the authors, there is no such report 
published on the use of PSO for the shortest path problem. 
It is the purpose of this paper to investigate this. In this 
work, a PSO-based hybrid search algorithm has been 
designed for computation of single source shortest paths 
in networks. A new particle position representation and 
decoding scheme have been formulated for this specific 
problem. Further, in order to speed up the search process, 
a selective local search and periodic velocity re-
initialization strategy have been incorporated into the 
main PSO.  The effectiveness of the proposed hybrid PSO 
algorithm for finding shortest paths in networks is verified 
by computer simulation studies on different random 
network topologies.  

II. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization is a population based 
stochastic optimization technique inspired by the social 
behavior of bird flock (and fish school etc.), as developed 
by Kennedy and Eberhart in 1995 [8]. 

The algorithmic flow in PSO starts with a population of 
particles whose positions, that represent the potential 
solutions for the studied problem, and velocities are 
randomly initialized in the search space. The search for 
optimal position (solution) is performed by updating the 
particle velocities, hence positions, in each iteration 
according to the following two equations:  

)XB(r)XB(rPVPV id
n
ididididid 2211 ;

and                            (2) sN,,,i 21 D,,,d 21
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where and are positive constants, called 
acceleration coefficients, is the total number of 
particles in the swarm, D is the dimension of problem 
search space, i.e., number of parameters of the function 
being optimized, and are two independently 
generated random numbers in the range [0, 1] and “n”
represents the index of the best particle in the 
neighborhood of a particle. The other vectors are defined 
as:  Position of i-th particle; 

 Velocity of the i-th 
particle;  Best position of the i-

th particle (pBest
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position found by the neighborhood of the particle i 
(nBesti). The pseudo-codes for general algorithmic flow of 
PSO are listed in Fig. 2.  

 Initialize the position and velocity randomly. 
Calculate fitness value of each particle. 
Calculate pBest and nBest for each particle. 
While(iteration_count < max_iteration)  

For each particle, 
      Update particle velocity using Eq.  (2). 

       Update particle position using Eq.  (3). 
       Calculate fitness value of particle. 
       Update pBest if its current fitness value is better 

than its pBest.
       Update nBest, i.e., choose the position of the 

particle with the best fitness value among all its 
neighbors as the nBest for a specific neighborhood
topology. 

End while

Fig. 2: Pseudo-codes for general algorithmic flow of Particle Swarm 
Optimization 

Eq. (2) calculates a new velocity for each particle based 
on its previous velocity, the particle’s position at which 
the best possible fitness has been achieved so far, and the 
neighbors’ best position achieved. Eq. (3) updates each 
particle’s position in the solution hyperspace. and1

2 are two learning factors, which control the influence of 
pBest and nBest on the search process. In all initial studies 
of PSO, both and1 2 are taken to be 2.0. However, in 
most cases, the velocities quickly attain very large values, 
especially for particles far from their global best. As a 
result, particles have larger position updates with particles 
leaving boundary of the search space. To control the 
increase in velocity, velocity clamping is used in Eq. (2). 
Thus, if the right side of Eq. (2) exceeds a specified 
maximum value , then the velocity on that 

dimension is clamped to . Many improvements 
have been incorporated into this basic algorithm. In [13], 
Maurice proposed the use of a constriction factor

max
dPV

max
dPV

; the 
algorithm was named the constriction factor method 
(CFM) where Eq. (2) is modified as: 
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The objective behind the use of constriction factor is to 
prevent the velocity from growing out of bounds, thus the 
velocity clamping is not required. But, Eberhart and Shi 
[14] have reported that the best performance can be 
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achieved with constriction factor and velocity clamping. 
The PSO’s implementation is very simple. To pose a 
problem in PSO framework, the important step is to 
devise a coding scheme for particle representation, which 
is discussed next for the SPP. 

III. PSO-BASED ALGORITHM FOR SHORTEST 
PATH COMPUTATION

In this section, the proposed PSO-based hybrid algorithm 
using selective local search and periodic velocity re-
initialization is described. The basic module of PSO is as 
described in the previous section. The main components 
of the proposed algorithm are: particle representation, 
selective local search and periodic velocity re-
initialization; these are discussed in detail. 

A. Cost-Biased Particle Encoding/Decoding 

There is a limited literature for using PSO to solve 
combinatorial optimization problems [15-16]; 
furthermore, the research results on computing shortest 
path by use of PSO is not known till date. Therefore, 
research works using genetic algorithm (GA) are referred 
here. One crucial issue in using GA to solve combinatorial 
problems is chromosome representation of the problem as 
it is an important step for success of the algorithm. 
Chromosome encoding can be categorized into direct and 
indirect encoding. Direct encoding means that a 
chromosome of the GA contains a gene for each item of 
the problem represented by item ID (identification 
number). In this case, the chromosome length is variable. 
This type of encoding was used in [3]. Thus, for Fig. 1, a 
chromosome that represents a solution (path) from node 1 
to node 7 may have gene values (1, 4, 6, 7) or (1, 2, 3, 6, 
7) etc.

On the other hand, in indirect encoding, the chromosome 
encodes guiding information about the solution rather than 
the solution itself. One advantage of this encoding is that 
the chromosome size is fixed, but the method needs a 
decoding procedure to extract the real solution from the 
guiding information. Two variants of this indirect 
encoding exist in literature: Priority encoding and Weight
encoding. In [4], a priority encoding is proposed for a 
genetic SPP algorithm. In this encoding, the position of 
the gene in the chromosome represents the node ID, while 
the value of the gene is a number representing the priority

of the node. The path is constructed in a path growth
procedure by appending nodes starting from the source. At 
each step, the next node with the higher priority is chosen 
from those which have direct links with the current node. 
The procedure continues until the destination node is 
reached. The best chromosome at the end of a run of the 
algorithm is that one which contains priorities that lead the 
decoding procedure to select nodes forming the shortest 

path. One disadvantage of this encoding is that the 
chromosome is “indirectly” encoded; it does not include 
information about the graph or the network’s 
characteristics like its edges’ costs.  Another variant of 
indirect coding of the chromosome is called weighted 

encoding [5]. Similar to the priority encoding, the 
chromosome is a vector of values called weights. This 
vector is used to modify the problem parameters, for 
instance the cost of the edges. First, the original problem
is temporarily modified by biasing the problem parameters 
with the weights. Secondly, a problem-specific non-
evolutionary decoding heuristic is used to actually 
generate a solution for the modified problem. This 
solution is finally interpreted and evaluated for the 
original (unmodified) problem. 

Inspired by the above two encoding schemes, a 
representation scheme, referred to as Cost-Biased
encoding/decoding, is devised to suit the swarm particles 
for SPP. Note that direct encoding is not appropriate for 
the swarm particles, as the updating for the particles are 
based on arithmetic operations in Eqs. (3) and (4). The 
encoding of the particle is based on bias values of the 
nodes and the decoding of the particle is based on the path 
growth procedure which takes into account the bias values 
of the nodes as well as cost of the edges. The particle 
contains a vector of node bias values; hence length of the 
particle equals to the number of nodes. To construct a path 
from an arbitrary particle, starting from the initial node 
(node 1) to the final node (node n), edges are appended 
into the path consecutively. At each step, the next node 
(node j) is selected from the nodes having direct links with 
the current node such that the product of the (next) node 
bias (  ) and the edge cost is minimum, i. e.,  j

0101min .,.,Ej,i|Cj jjij

                                                     (6) 
The steps of this algorithm are summarized in Fig. 3. Note 
that the bias values can take negative or positive real 
numbers in the range [-1.0, 1.0]. It is seen that the problem 
parameters (link costs) are part of the encoding/decoding 
procedure. Unlike the priority encoding where a node is 
appended to the partial path based only on its priority. 
But, in the proposed procedure, a node is appended to the 
path based on the minimum of the product of the node 
(next node) bias and the link cost that connects the current 
node with the next one to be selected. Experimental 
results show superiority of this procedure over the priority 
encoding when it is implemented within PSO frame. The 
PSO-based search is performed for optimal set of node 
bias values that result in shortest path in a given network. 
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B. Local Search 

Evolutionary algorithms (EA) are robust and powerful 
global optimization techniques for solving large-scale 
problems that have many local optima. However, they 
require high CPU times and are mostly poor in terms of 
convergence performance. On the other hand, local search 
algorithms can converge in a few iterations but lack a 
global perspective. The combination of global and local 
search procedures should offer the advantages of both 
optimization methods while offsetting their disadvantages 
[17]. The hybridizing of evolutionary algorithms with 
local search operators that work within the EA loop has 
been termed “Memetic Algorithms”. Memetic   
Algorithms have been shown to be faster and more 
accurate than EAs on some problems. Greedy 
Randomized Adaptive Search Procedure (GRASP) [18] is 
a multi-start metaheuristic for combinatorial problems in 
which each iteration consists basically of two phases: 
construction and local search. The construction phase 
builds a feasible solution whose neighborhood is 
investigated until a local minimum is found during the 
local search phase. Therefore, incorporating a local search 
within the main algorithm proves to be beneficial in 
obtaining better results. 

A sort of local search is incorporated in the proposed 
PSO-based algorithm for the SPP. The local search is 
called in every iteration by each particle when that particle 
has a better solution than that obtained in the previous 
iteration. The local search is based on edge elimination 
and uses a binary activation matrix of size (N x N), where 
N is the number of nodes in the network. When the binary 
bit in the activation matrix at position (i, j) is set to zero, 
that edge will not be included in the decoding procedure. 
The edges of the considered path are chosen for 
elimination one at a time in sequence by setting the 
corresponding activation bit to zero and then the 
Particle_Decoding procedure is used construct a new path. 
If the new path constructed is shorter than the original 
path, it will be recorded and the fitness of the particle will 
be modified to the fitness of this new locally obtained path 
and all the relevant information for obtaining this new 
path (the bias vector and the edge that has been banned 
from consideration during local search path construction) 

are stored. The pseudocodes for local search process are 
given in Fig. 4. Particle_Decoding (Solution) 

Let i = 1, k =1, P(k) = {1} // P denotes the path 
While (i  n ) { Local_Search(Solution) 

  for k = 1,….., No_of_Nodes_in_path Do  
        Set edge (k, k+1) as non-active.  
        Construct a new path using the particle bias vector 

and Particle_Decoding procedure. 
        If the new path has better fitness 
              {Update the particle fitness with the fitness of 

new path; 
Store all relevant information (bias vector and   
banned edge);} 

        Set edge (k, k+1) active  
end for;

Fig. 4: Pseudocodes for local search procedure

     k = k + 1 
     j = the node has direct link with node i && has the 

minimum (C

C. Velocity Re-initialization  

One of the problems of the PSO is the premature 
convergence to a local minimum. It does not continue to 
improve on the quality of solutions after a certain number 
of iterations have passed [19]. As a result, the swarm 
becomes stagnated after a certain number of iterations and 
may end up with a solution far from optimality. 
Gregarious PSO [20] avoids premature convergence of the  
swarm; the particles are re-initialized with a random 
velocity when stuck at a local minimum. Dissipative PSO 
[21] reinitializes the particle positions at each iteration 
with a small probability (0.001).  In [22], this additional 
perturbation is carried out with different probabilities 

i,j ) value j

     i = j, {P(k), {i}}  P(k) } } 
end while 

Fig. 3: Pseudo-codes for cost-biased encoding/decoding procedure

Generate initial population of particles.  
Calculate fitness value of each particle. 
Calculate pBest and nBest for each particle. 
While(iteration_count < max_iteration)  

      Update velocity of each particle using Eq.  (4). 
      Update position of each particle using Eq.  (3). 
      Calculate fitness value of each particle. 

{Call Particle_Decoding(particle) 
   Calculate particle’s fitness. 
}

     Update pBest for each particle if its current fitness 
value is better than its pBest;

     if it is better, call Local_Search(particle)
    Update nBest for each particle, i.e., choose the

position of the particle with the best fitness value
among all its neighbors as the nBest for a specific
neighborhood topology. 
if (iteration_count mod 10)  0, then re-initialize

velocities of all particles.  
end while

Fig. 5: Pseudocodes of PSO algorithm combined with local search and 
velocity re-initialization 
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Next, the effect of number of particles is investigated. The 
number of particles is varied from 20 to 120 and for each 
case, the success rate and the average best iteration 
number for the network topology # 2 in (from Table 1) to 
get the shortest path are recorded. Here, two cases are 
compared to highlight the effect of proposed 
encoding/decoding scheme. They are: (1) priority 
encoding with velocity re-initialization and local search 
and (2) proposed cost-biased encoding/decoding with 
velocity re-initialization and local search. The superiority 
of proposed encoding/decoding with velocity re-
initialization and local search is clearly seen from the test 
results shown in Figs. 6 and 7. 

based on time-dependent strategy. In present study, the 
velocities of all the particles (in all the dimensions) are 
reinitialized randomly to the range 

max
d

max
d PV,PV periodically after a certain number of 

iterations (say, 10 iterations). Effects of changing the 
iteration number at which the velocity re-initialization is 
done and auto-tuning of this parameter are under study. 
The pseudocodes of the PSO combined with velocity re-
initialization and local search are listed in Fig. 5. The 
fitness of each particle is computed as: 
Fitness = (Length/cost of the path represented by the 
particle)-1 = (sum of the cost of all the edges in the path)-1

IV. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed hybrid PSO 
algorithm for SPP, different network topologies are 
generated using Waxman model [23] for random topology 
generator. For each network with certain number of nodes 
and edges, 20 random topologies are generated with 
different seed numbers. Edge costs are taken randomly 
from the range [1, 1000]. The other PSO parameters are 
chosen as: Number of Particles = 100; Neighborhood 
Topology = Ring; equals 2.0 and is chosen to be 
2.2; thus   = 4.2. From Eq. (5),  = 0.74; Maximum 
number of iterations = 500; maximum velocity = 1.0. 
The performance of the algorithm is assessed by success 
rate which is defined as the average number of times over 
20 runs the shortest path is found. The shortest path is also 
computed separately using Dijkstra algorithm for 
comparison purposes. Also, the average number of 
iterations to get the shortest path is recorded for each 
network topology as this offers a rough estimate of the 
CPU time required. The results are compared for four 
different cases of algorithm operation as follows: one case 
of traditional GA (reported for this problem in [4]) and 
three different implementations of PSO 

1 2

Case   1:   Priority-based encoding is used in GA [4]. 
Case 2: Priority-based encoding is used in standard PSO. 
Case 3:  Proposed cost-biased particle encoding/decoding 
is used in standard PSO. 
Case 4:  Proposed cost-biased particle encoding/decoding 
is used in standard PSO combined with selective local 
search and periodic velocity re-initialization.  

The results compared in Table 1 show the superiority of 
the proposed encoding/decoding scheme over the priority  
encoding whether implemented with PSO frame or GA 
frame, especially for dense topologies.  Combining it with 
velocity re-initialization and local search, a minimum 
success rate of 0.9 is achieved in almost all the cases. It is 
also noticed that local search and velocity re-initialization 
save many iterations of computation. 
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Fig. 7: Average iteration number to get the shortest path vs. number 
of particles for a network of 100 nodes and 256 edges 

Fig. 6: Success rate vs. number of particles for a network of 100 nodes 
and 256 edges 
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TABLE 1: SUCCESS RATES AND BEST ITERATIONS FOR DIFFERENT CASES OF PSO AND TRADITIONAL GA IMPLEMENTATIONS

V. CONCLUSIONS 

This paper presents a PSO-based search algorithm for 
solving the single source shortest path problem. The 
algorithm uses a new cost-biased encoding/decoding for 
representation of particles in PSO so as to include the 
network parameters in the representation itself. In 
addition, for further enhancement of the search capability 
of the algorithm, selective local search and periodic 
velocity re-initialization are incorporated into the main 
PSO. The simulation experiments on random network 
topologies show that these two modifications (along with 
the new particle encoding/decoding) improve the 
performance of the algorithm significantly by achieving a 
success rate of more than 0.9 in all the case studies 
reported. The future work will focus on using PSO to 
solve other shortest path problem like the Steiner tree 
problem. 
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