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Abstract— In this paper, we present a hybrid Ant Colony 
Optimization/Particle Swarm Optimization (ACO/PSO) control 
algorithm for distributed swarm robots, where each robot can 
only communicate with its neighbors within its communication 
range. A virtual pheromone mechanism is proposed as the 
message passing coordination scheme among the robots. This 
hybrid ACO/PSO architecture adopts the feedback mechanism 
from environment of ACO and the adaptive interplay among 
agents  of PSO to create a dynamic optimization system, and it 
is well-suited for a large scale distributed multi-agent system 
under dynamic environments.  Furthermore, a pheromone-
edge pair propagation funneling method is developed to reduce 
the communication overhead among robots.  The simulation 
results concretely demonstrate the robustness, scalability, and 
individual simplicity of the proposed control architecture in a 
swarm robot system with real-world constraints.         

I. INTRODUCTION 
    The main challenges for swarm robots are to create 
intelligent agents that adapt their behaviors based on 
interaction with the environment and other robots, to 
become more proficient in their tasks over time, and to adapt 
to new situations as they occur.  Such ability is crucial for 
developing robots in human environments. Swarm robots 
are often observed to display many of the attributes, such as 
robustness, adaptability, flexibility, and self-organization, 
which are typical in collective intelligent system in general.  
    Typical problem domains for the study of swarm-based 
robotic systems include foraging [1], box-pushing [2], 
aggregation and segregation [3], formation forming [4], 
cooperative mapping [5], soccer tournaments [6], site 
preparation [7], sorting [8], and collective construction [9].  
All of these systems consist of multiple robots or embodied 
simulated agents acting autonomously based on their own 
individual decisions. However, not all of these control 
architectures are scalable to a large number of robots. For 
instance, most approaches rely on extensive global 
communication for cooperation of swarm robots, which may 
yield stressing communication bottlenecks.  Furthermore, 
the global communication requires high-power onboard 
transceivers in a large scale environment. However, most 
swarm robots are only equipped very limited sensing and 
communication capability.   
     An alternative paradigm to tackle the scalability issue for 
swarm robots while maintaining robustness and individual 
simplicity is through Swarm Intelligence (SI), which is an 
innovative computational and behavioral metaphor for 

solving distributed problems by taking its inspiration from 
the behavior of social insects swarming, flocking, herding, 
and shoaling phenomena in vertebrates,  where social insect 
colonies are able to build sophisticated structures and 
regulate the activities of millions of individuals by endowing 
each individual with simple rules based on local perception.  
     The abilities of such natural systems appear to transcend 
the abilities of the constituent individual agents.  In most 
biological cases studies so far, robust and coordinated group 
behavior has been found to be mediated by nothing more 
than a small set of simple local interactions between 
individuals, and between individuals and the environment.  
The SI-based approaches emphasize self-organization, 
distributedness, parallelism, and exploitation of direct (peer-
to-peer) or indirect (via the environment) local 
communication mechanisms among relatively simple agents. 

 Reynold [10] built a computer simulation to model the 
motion of a flock of birds, called boids.   He believes the 
motion of the boids, as a whole, is the result of the actions of 
each individual member that follow some simple rules.  
Ward et al. [11] evolved e-boids, groups of artificial fish 
capable of displaying schooling behavior.  Spector et al. [12] 
used a genetic programming to evolve group behaviors for 
flying agents in a simulated environment.  The above 
mentioned works suggest that artificial evolution can be 
successfully applied to synthesize effective collective 
behaviors. And the swarm-bot [13] developed a new robotic 
system consisting of a swarm of s-bots, mobile robots with 
the ability to connect to and to disconnect from each other 
depends on different environments and applications.   

 Payton et al. [14] proposed pheromone robotics, which 
was modeled after the chemical insects, such as ants, use to 
communicate.  Instead of spreading a chemical landmark in 
the environment, they used a virtual pheromone to spread 
information and create gradients in the information space.  
By using these virtual pheromones, the robots can send and 
receive directional communications to each other.        
     The major contribution of this paper is that a SI-based 
coordination paradigm, i.e., a hybrid Ant Colony 
Optimization (ACO)/Particle Swarm Optimization (PSO), is 
proposed to achieve an optimal group behavior for large 
number of small-scale robots.  Each robot adjusts its 
movement behavior based on a target utility function, which 
is defined as the fitness value of moving to different areas 
using the onboard sensing inputs and shared information 
through local communication.  Similar to [14], inspired by 
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the pheromone drip trail of biological ants, a unique virtual 
agent-to-agent and agent-to-environment interaction 
mechanism, i.e. virtual pheromones, is proposed as the 
message passing coordination scheme for the swarm robots.  
Instead of using infrared signals for transceivers in [14], 
which requires line of sight to transmit and receive, we use 
wireless ad hoc network to transmit information and the 
virtual pheromone structure is designed to be more robust 
and efficient.      
    This new meta-heuristic draws on the strengths of two 
popular SI-based algorithms: ACO’s autocatalytic 
mechanism and PSO’s cognitive capabilities through 
interplay.  Basically, two coordination processes among the 
agents are established in the proposed architecture. One is a 
modified stigmergy-based ACO algorithm using the 
distributed virtual pheromones to guide the agents’ 
movements, where each agent has its own virtual pheromone 
matrix, which can be created, enhanced, evaporated over 
time, and propagated to its neighboring agents.  The other 
one is interaction-based algorithm, which aims to achieve an 
optimal global behavior through the interactions among the 
agents using the PSO-based algorithm. 

 The strength of the proposed hybrid ACO/PSO 
coordination architecture lies in the fact that it is truly 
distributed, self-organized, self-adaptive, and inherently 
scalable since global control or communication is not 
required.  Each agent makes decisions only based on its 
local view, and is designed to be simple and sometimes 
interchangeable, and may be dynamically added or removed 
without explicit reorganization, making the collective 
system highly flexible and fault tolerant.   

The paper is organized as follows:  Section II describes 
the problem statement. Section III presents the proposed 
hybrid ACO/PSO control architecture for distributed swarm 
robots.  Section IV describes a pheromone edge pair 
propagation funneling method to reduce the communication 
propagation.   Section V details the framework and structure 
of the hybrid algorithm. Section VI presents the simulation 
environment and simulation results. To conclude the paper, 
section VII outlines the research conclusion and the future 
work.  

II. PROBLEM STATEMENT 
 The objective of this study is to design a SI-based 

coordination algorithm for distributed swarm robots, which 
are supposed to work cooperatively to search for multiple 
targets in a dynamic unknown environment, and implement 
predefined tasks on the detected targets.  The targets can be 
defined as some predefined tasks need to be processed by 
the agents in real-world applications, for example, collective 
construction, resource/garbage detection and collection, 
people search and rescue, etc..  The goal is to find and 
process all of the targets as soon as possible.  Assume that 
the agents are simple, and homogeneous, and can be 
dynamically added or removed without explicit 
reorganization.  Each agent can only communicate with its 
neighbors.  Two agents are defined as neighbors if the 

distance between them is less than a pre-specified 
communication range.  The agent can only detect the targets 
within its local sensing range.  

Let A={ak} denote a set of swarm agents a, where 0 < k ≤ 
N, k is the swarm identification number, and N is the swarm 
population size.  Generally speaking, the ideal vision of the 
proposed schemes is to obtain the following capabilities and 
attributes for each agent in a swarm agent system.  

• Can interact with other agents, which is a subset of A, 
if such a subset agents are within the ak’s interaction 
range; 

• Can differentiate and identify swarm members from 
non-members or targets, and knows how to interact 
with environment; 

• Has a priori state behavior cache, experience archives, 
and learning structures; 

• Interacts only valid information of archives into swarm 
propagation, i.e. has noise reduction buffers and 
protocols; 

• Can perform simple computational and analysis 
processes; 

• Has infinite “desire” to accomplish a priori swarm 
wide objectives.   

III. A HYBRID ACO/PSO DISTRIBUTED CONTROL 
APPROACH  

A. Utility-Based ACO Approach 
     The ACO algorithm, proposed by Dorigo et al. [13], is 
essentially a system that simulates the natural behavior of 
ants, including mechanisms of cooperation and adaptation. 
The involved agents are steered toward local and global 
optimization through a mechanism of feedback of simulated 
pheromones and pheromone intensity processing.  It is based 
on the following ideas. First, each path followed by an ant is 
associated with a candidate solution for a given problem. 
Second, when an ant follows a path, the amount of 
pheromone deposit on that path is proportional to the quality 
of the corresponding candidate solution for the target 
problem.  Third, when an ant has to choose between two or 
more paths, the path(s) with a larger amount of pheromone 
are more attractive to the ant.  After some iterations, 
eventually, the ants will converge to a short path, which is 
expected to be the optimum or a near-optimum solution for 
the target problem.  
    In the classical ACO algorithm, the autocatalytic 
mechanism, i.e. pheromone dropped by agents, is designed 
as an environmental marker external to agents, which is an 
indirect agent-to-agent (a2a) interaction design in nature.  In 
the real world applications using swarm agents, a special 
pheromone and pheromone detectors need to be designed, 
and sometimes such physical pheromone is unreliable and 
easily to be modified under some hazardous environments, 
such as urban search and rescue.  A redefinition of this auto 
catalyst is necessary.   
     A Virtual Pheromone mechanism is proposed here as a 
message passing coordination scheme between the agents 
and the environment and amongst the agents.  An agent will 
build a virtual pheromone data structure whenever it detects 
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a target, and then broadcast this target information to its 
neighbors through a visual pheromone package.   
     Let )}({)( tptp k

ijak =  represents a set of pheromones 

received by agent k at time t, where (i, j) denotes the 2D 
global coordinate of the detected target.  Each pij

k has a 
cache of associated attributes updated per computational 
iteration.  
      Let )}({)( tt k

ijak ττ =  represents a set of agent intensities 

at time t respective to each pheromone in )(tp ka , where 

)(tk
ijτ denotes the agent intensity, which is an indication of 

the number of agents who will potentially process the 
corresponding target at location (i,j).  When we say 
“potentially”, we mean all of the agents who have received 
the same pheromone information may end up with the same 
target.  However, they may also go to other targets with 
stronger pheromone intensity based on their local decisions.  
To emulate the pheromone enhancement and elimination 
procedure in a natural world,  )(tk

ijτ  is updated by the 
following equation: 
 

)(**)1())((*)1( teTtt k
ij

k
ij

k
ij

k
ij τρτρτ −−+=+            (1)               

  
where 0<ρ<1 is the enhancement factor of pheromone 
intensity. k

ijT  is the pheromone interaction intensity received 
from the neighboring agents for a target at (i,j), which is 
defined as 
                               
                         if source pheromone 

otherwise 
 

ij
α, 

Τ  = 
β ,  

⎧
⎨
⎩

                      (2)  

 
where 0 ≤ β < α ≤ 1. If an agent discovers a target by itself 
instead of receiving the information from its neighbors, it is 
defined as the source agent. The source agent then 
propagates the source pheromone, to its neighbors.  A 
propagation agent is a non-source agent, and simply 
propagates pheromones it received to its neighbors.  
Basically, k

ijT  is used for pheromone enhancement. e 
represents the elimination factor. In the ants system, the 
pheromone will be eliminated over time if it is not being 
enhanced by the ants, and the elimination procedure usually 
is slower than the enhancement.  When the pheromone trail 
is totally eliminated, it means that no resource is available 
through this pheromone trail.  To slow down the elimination 
relative to enhancement, we set 1<e .                     
     Let )}({)( tt k

ijak ωω =  represents a set of potential target 

weights respective to each pheromone in )(tp ka , where 

)(tk
ijω denotes the target weight, which measures potential 

target resources available for agent k at time t.   
  Finally, Let )}({)( tt k

ijak µµ =  represents a set of target 

utilities at time t respective to each pheromone in )(tp ka , 

where µij
k(t) denotes the target utility of agent k , which is 

defined as follows:  
 

Rtktkt k
ij

k
ij

k
ij /))()(()( 21 τωµ −=                (3) 

  
where )(tk

ijω and )(tk
ijτ are target weight and agent intensity,  

respectively, and R is the local target redundancy, which is 
defined as the number of the local neighbors who have sent 
the pheromones referring to the same target at (i, j) to agent 
k.  21  and kk  are constant factors which are used to adjust 
the weights of target weight and agent intensity parameters.  
     Generally speaking, the higher the target utility is, the 
more attractive the corresponding target is to the agent.  
More specifically, when the target weight is greater than the 
agent intensity, it means that there are more tasks need to be 
processed (or there are more resources left) in this target. 
Therefore, the benefit of moving to this target would be 
higher in terms of the global optimization.  If the agent 
intensity is greater than the target weight, it means that there 
will be more potential agents (globally) moving to this 
target, which may lead to the less available tasks (or 
resources) left in the future.  Therefore, the benefit of 
moving to this target would be less in terms of the global 
optimization.  With the local redundancy, we are trying to 
prevent the scenarios that all of the agents within a local 
neighbor move to the same target instead of exploring new 
targets elsewhere.      
     The agents are randomly distributed in the searching 
environment initially, where multiple targets with different 
sizes and some static obstacles are randomly dispersed 
within the environment.  At each iteration, each agent 
adjusts its behavior based on the target utility.  This utility-
based ACO approach is greedy in terms of the agents’ 
behaviors, since the agents would rather move to the target 
with higher utility than explore new areas.  This greedy 
behavior of the agents may easily lead to local optima.    
 
B. A Hybrid ACO/PSO Approach 

 To prevent the local optima scenarios in utility-based 
ACO approach, we turned our attention to another collective 
intelligence - Particle Swarm Optimization (PSO) [15].  The 
PSO is a biologically-inspired algorithm motivated by a 
social analogy, such as flocking, herding, and schooling 
behavior in animal populations.  

The PSO algorithm is population-based: a set of potential 
solutions evolves to approach a convenient solution (or set 
of solutions) for a problem. The social metaphor that led to 
this algorithm can be summarized as follows: the individuals 
that are part of a society hold an opinion that is part of a 
"belief space" (the search space) shared by every possible 
individual. Individuals may modify this "opinion state" 
based on three factors: (1) The knowledge of the 
environment (explorative factor); (2) The individual's 
previous history of states (cognitive factor); (3) The 
previous history of states of the individual's neighborhood 
(social factor).  
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A direct PSO adoption to swarm agents would be 
difficult, because swarm agents may be blinded over in 
reference to global concerns without any feedback. 
However, the PSO algorithm is a decision processor for 
annealing premature convergence of particles in swarm 
situations. Thus, a new optimization technique specifically 
tailored to the application of swarm agents is proposed in 
this paper. This new meta-heuristics draws on the strengths 
of both systems: ACO’s autocatalytic mechanism through 
environment and PSO’s cognitive capabilities through 
interplay among agents.  In this hybrid method, the agents 
make their movement decisions not only based on the target 
utility defined in (3), but also on their movement inertia and 
their own past experiences, which would provide more 
opportunities to explore new areas.  

The PSO algorithm can be represented as in (4), which is 
derived from the classical PSO algorithm [15] with minor 
redefinitions of formula variables as follows: 
 

          vij = explorative + cognitive + social              (4)   
 
where vij  is the velocity of a agent.  To determine which 
behavior is adopted by agent k of the swarm, the velocity, 
vij

k(t) has to be decided first.  If the received pheromone 
intensity is high, the agent would increase the weight of 
social factor, and decrease the weight of cognitive factor. On 
the other hand, if the local visibility is of significant to the 
agent, then the velocity of the agent would prefer the 
cognitive factor to the social factor.  Furthermore, at any 
given time, the velocity of the agent would leave some 
spaces for the exploration of new areas no matter what. 
Therefore, the basic idea is to propel towards a probabilistic 
median, where explorative factor, cognitive factor (local 
agent respective views), and social factor (global swarm 
wide views) are considered simultaneously and try to merge 
these three factors into consistent behaviors for each agent.  
     Basically, the above mentioned utility-based ACO 
approach is the social activities among the agents, where the 
agents propagate the pheromone information to its 
neighbors, which would be a perfect match to estimate the 
social factor in the PSO algorithm.   
    In terms of cognitive factor in the PSO algorithm, it is 
based on the local view of each agent, which can be 
represented by the target visibility.  Let )}({)( tt k

ijak ηη =  
represents a set of visibilities at time t respective to each 
pheromone in )(tp ka , where )(tk

ijη  denotes the target 
visibility for agent k in terms of target at location (i, j), 
which is defined by the following equation:  
 

                        )(/)( tdrt k
ij

kk
ij =η                             (5) 

 
where kr  represents the local detection range of agent k, 
and the )(td k

ij represents the distance between the agent k 

and the target at location (i, j).  If 1>k
ijη , we set 1=k

ijη .  
When the target visibility is higher, it means the distance 

between the target and the agent is smaller, it would be more 
benefit to move to this target due to its less cost compared to 
moving to the far-away target under the same environmental 
condition.  
     The exploration factor can be easily emulated by random 
movement.  The detailed velocity is updated as follows: 
  

))((*) (*

))((*) (*)(*) (*)1(

txprand

txprandtvrandtv
k
ijsss

k
ijccc

k
ijee

k
ij

−+

−+=+

ψ

ψψ
 

(6) 
where, sce andψψψ ,, represent the propensity constraint 
factors for explorave, cognitive, and social behaviors, 
respectively, 0 ≤ randΘ() < 1 where Θ = e, c, or s, and )(txk

ij  
represents the position of agent k at time t.  

))(max( tp k
ijs µ=  represents the global best from the 

neighbors, and ))(max( tp k
ijc η=  represents the local 

cognitive best.  
 The position adopted by agent k at time t+1 is updated by 
 
                       xij

k(t+1) = xij
k(t) + vij

k(t+1)                        (7) 
 
C. Finite State Machine of the Swarm Agents      
      To summarize the overall behavior of each agent, the 
finite state machine of the agent is defined in Fig. 1. 
Basically, each agent has three states: search, process, and 
transport.  Initially, the agent randomly searches for the 
targets, which is at search state.  When the target is detected 
by the agent through its local observation, the agent changes 
its state to process state, where the agent works on the 
targets depending on what kind of tasks the target 
represents.  When the agent finishes the task on the target, it 
goes back to search state again for new targets.  If the agent 
receives the target information from its neighbors and the 
pheromone intensity is strong enough, the agent changes to 
transport state, in other words, the agent is moving to the 
target.  Once it arrives at the target, its state is changed to 
process.  Once one target is finished, all of the agents who 
have landed to this target would disperse again to search for 
new targets.  
    

 
Fig.1. The finite state machine of the swarming agent   

IV. A PROPAGATION FUNNELING METHOD OF AGENT-TO-
AGENT INTERACTION 

As the population of the swarm agents increases, the 
interaction and communication among the agents becomes 
expensive since the communication overhead may increase 
exponentially.  Without a structured noise reducing protocol, 
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the proposed hybrid meta-heuristic architecture may become 
infeasible in a large scale multi-agent system. To reduce the 
communication propagation, a pheromone-edge-pair (PEP) 
propagation funneling method is proposed here.   

First, let’s define  
 
                        )},,({)( knija eplistoftG k =   

where        NnNkGtG Na k ≤<≤<≤ 0,0,)(  ,       (8)  
                            

where )(tG ka represents a list of all pheromone-edge pairs 
obtained by agent k from its neighboring agent n ( 0 < n < N 
) at time t, where N is the swarm size.  pij denotes the 
pheromone at coordinate (i, j), and NG  represents the 
maximum number of agent-to-agent interaction connections 
allowed for the swarm of size N. In other words, NG  
represents the situation where all agents are within 
interaction rage of each another.  kne  represents the edge 
interaction of ak connecting to an , where k and n are swarm 
identification number, and k ≠ n (i.e. no self interactions). 

 On a Cartesian plane C, a maximal graph CG  of agent-
to-agent interactions over edges of pheromones is defined.  
Even for a CG  configuration of agents, the explosion of 
agent-to-agent interaction would unlikely happen 
considering random search behavior, given physical 
boundaries of agents, swarm population size, limited local 
range of interaction, and number of pheromones in 
propagation. This funneling method dictates an out-
propagation of distinct pheromones, pij, over the given 
edges, kne , from a target coordinate, which defines 
pheromone-edge pairs, { knij ep , }. This data structure 
dictates valid and invalid interaction states to be received by 
an agent as the following four cases: 

 
1) same pheromone—different edge (valid) 
2) different pheromone—same edge (valid) 
3) different pheromone—different edge(valid) 

     4 )  same pheromone—same edge (invalid)  
.   

     The reason we set case 1 as valid state is because we 
need to track the redundancy number in (3) of potential 
agents who may approach to the same target in the future.  
Case 4 may happen when the propagation agent receives the 
same pheromone from difference neighbors, and then it 
sends the pheromone to the same agent multiple times.  
     As agents send and receive virtual pheromones, the 
associated pheromone-edge pairs are archived in )(tG ka . For 
every future interaction, the interaction archive must be 
parsed and checked for valid states of interaction pairs.   If it 
is a valid state, the agent stores the received pheromones 
into )(tG ka . Otherwise, it would ignore the received 
pheromones.               
   The PEP propagation funneling method significantly 
reduce the communication overhead of the swarm system, 
especially when the swarm size is increased to a large scale.  

V. THE FRAMEWORK OF THE HYBRID METHOD 
The framework of the hybrid algorithm will be described 

in this section.  At time t=0, the agents, ak ( Nk ≤<0 ), are 
randomly distributed over the searching environment, the 
pheromone list for each agent is initialized as empty, and the 
associated pheromone attributes )0( and ),0(),0( k

ij
k
ij

k
ij µτη  are 

set to zero. k
ijη  represents the agent’s propensity to 

cognition or greedy localizing behavior. k
ijτ  represents the 

number of agents that  would potentially adopt a target of 
the associated pheromone, and µij represents an agent’s 
disposition to socialize and adopt a non-greedy global 
behavior.  

Over the iterations to optimization, swarm agents perform 
space transition from one position to another, which are 
related to transitions in behavior space. An agent continues 
performing randomized space transitions unless either an 
agent directly acquires a target (becoming the source agent 
of a pheromone), or indirectly acquires a target, i.e. receives 
a pheromone(s) from its neighbors (becoming the 
propagation agent). Under this situation, cognitive factor 
and social factor would not be considered.  When {pij

k} is 
not empty, it means that one or more targets has been 
detected either by the agent itself or other agents, the 
cognitive and social factors would be taken into 
considerations for optimal global behaviors.   

The hybrid ACO/PSO algorithm is summarized as 
follows: 

 
At t = 0, N agents are randomly distributed in a 2D 

searching plane, which is a subset of the Cartesian plane; 
For each agent, set the pheromone list as empty {pij

k} = 
{}; 
For k = 1 to N  
     Set ψc = ψs = 0; 

            Compute vij
k(t+1) using (6) 

   Compute xij
k(t+1) using (7)  

 Endfor 
                     
While (not all of the tasks on the targets have been finished 
|| the iteration number is less than a preset threshold) 

For k = 1 to N 
do 
 If (target is not found) and (pheromone(s) is not 

received) 
    Set ψe ≠ 0; 
       Set ψc = 0; 
       Set ψs = 0 ; 

           Compute vij
k(t+1) using (6); 

      Compute xij
k(t+1) using (7);  

  Else if (target is found by agent itself) 
   Set ψe = 0;  
    Set ψc ≠ 0; 

Set ψs = 0; 
            Compute vij

k(t+1) using (6); 
   Compute xij

k(t+1) using (7);  
 Else (pheromone(s) is received) 
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  Update {pij
k}, pheromone list is not empty;  

  For m = 1 to size of {pij
k} 

     Calculate ijT using (2);       
Calculate τij(t) using (1); 
Calculate ηij(t)using(5);  
      if ηij(t) > 1.0, then ηij(t) = 1.0; 
Calculate µij(t) using (3); 

        EndFor 
   Set ψe ≠ 0; 

  Set ψc ≠ 0; 
Set ψs ≠ 0; 

            Compute vij
k(t+1) using (6); 

   Compute xij
k(t+1) using (7);  

     Endfor 
Set t = t + 1            

VI. THE SIMULATION RESULTS 
  To evaluate the performance of the proposed utility-

based ACO and hybrid ACO/PSO algorithm in a distributed 
swarm agent system, we build a virtual simulation 
environment written in Java language.  The basic simulation 
infrarastructures are shown in Fig.2. The parameter 
constraints are defined as follows: the searching 
environment is a 2D area with 640 x 480 pixels.  The local 
communication radius of each agent is set up as 30 pixels, 
and the target visibility range is set up as 10 pixels.  The 
agents are represented by the black dots, where the aqua 
links connecting the dots indicate that the agents are within 
the local communication range, and they can exchange the 
pheromone information with their neighbors.  The targets 
are represented by the different size of red dots, and the 
static obstacles are represented by grey rectangles.   

 

 
Fig. 2. A screenshot of the simulation of swarming agents 

 
 The frequency, which indicates how long each 

computational iteration takes, and the swarm size are 
displayed on the top of the simulator, which can be easily 
reconfigured with this user-friendly interface.  For example, 
the simulation can be stopped, paused, and restarted at any 
time.  The number of agents and the frequency can be 
increased or decreased dynamically.  You have an option to 
show the local communication link or not. All these actions 

can be conducted by clicking the corresponding icons on the 
right side of the simulator.    
     This virtual simulation environment is set up as a highly 
dynamic system.  When the restart icon is clicked, all of the 
agents, targets, and obstacles are randomly distributed in the 
environment, and the agents start moving around to search 
for the targets.    Each agent adjusts its behavior based on 
the target utility value for utility-based ACO (UB-ACO) 
method, or three factors (exploration, cognitive, and social) 
together for hybrid ACO/PSO method.   
     Fig. 3 shows a set of sequential snapshots of the 
simulation using the hybrid method.  Initially, the agents are 
randomly searching for targets, as shown in Fig. 3(a).  Once 
the targets have been detected, the agents who detected the 
targets send virtual pheromone to their neighbors.  Each 
agent makes its own decision based on the proposed hybrid 
algorithm.  Once an agent arrives at a target, it starts 
processing the target, which leads to the target size become 
smaller, as shown in Fig. 3(b).  After a target is finished by 
agents, it would disappear and the associated agents would 
be dispersed and search for new unfinished targets, as 
shown in Fig. 3(c), and Fig. 3(d), until all of the targets have 
been finished, as shown in Fig. 3(e).   This simulation was 
run on an Apple Mac OSX 10.4 Tiger computer with a PPC 
at 1.0GHz and 768M RAM.  
 

 
(a) 

 

 
(b) 
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Fig.3. Sequential snapshots of a simulation with 100 agents, 10 targets and 
5 static obstacles using hybrid ACO/PSO approach.   
      
    As we know, global path planning is very time 
consuming, especially for swarm robots where each agent 
may have to replan its global path very frequently due to the 
constant agent-to-agent collision. Dynamic mobile agent 
avoidance is another challenging task, which is not our 
focus in this paper. Therefore, to speed up the searching 
procedure in simulation, a simple path planning method is 
conducted.  Once an agent makes its decision according to 
the proposed algorithms, it will set the selected target as its 
destination point, and move toward the target.  Since there 
may have static obstacles and mobile obstacles (i.e. other 
agents) on its way to the destination, an obstacle avoidance 
algorithm is necessary.  Whenever an agent detects a static 
obstacle within a predefined distance, it would turn right at 
45 degree and move forward until the obstacle is beyond the 

predefined distance, then the agent move toward its original 
destination. If another mobile agent is detected within a 
predefined distance, the agent stops until other agents move 
away beyond a predefined distance, then it continues its 
movement.           
      To obtain the statistic performance of both UB-ACO and 
hybrid ACO/PSO methods, we implemented the following 
experiments.  10 targets are distributed in the environment 
with fixed positions for all the simulations, as well as the 
obstacles.  Then, we start running the simulations with the 
swarm size of 50 using both methods, each method runs 35 
times to obtain the mean and variance values.  The same 
process is repeated for the swarm size of 60, 70, 80, 90, and 
100.  Since the running speeds of simulations may differ 
from one computer to another, the performance 
measurement is defined as the number of iterations.  One 
iteration represents the time that all of the agents need to 
make their movement decisions once sequentially. The 
experimental results are shown in Fig. 4 and Fig.5, where 
the processing time means the iteration numbers need for 
each simulation.   
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Fig. 4.  The average target processing time of hybrid and utility-based ACO 
methods in terms of different swarm sizes from 50 to 100. Unit of time is 
iteration. 
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Fig. 5.  The variance of target processing time of hybrid and utility-based 
ACO methods in terms of different swarm sizes from 50 to 100. Unit of 
time is iteration.    
 
     It is observed from Fig. 4 that when the swarm size is 50, 
there is very small difference in the average targets 
processing time between the utility-based ACO method and 
hybrid method.   

 When the swarm size is increased, it can be seen that the 
hybrid method outperform the utility-based ACO method in 
a significant way, especially in the case of 100 agents.  The 
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reason behind this observation is because the agents using 
UB-ACO are extremely greedy and would always try to 
achieve the best utility.  Therefore, they would rather move 
to detected targets with highest utilities than exploring new 
areas for new targets.  On the other hand, the hybrid method 
not only considers the target utility,  but also consider the 
exploration (i.e. inertia factor), and its own past experiences. 
This exploration tendency would lead the agents using the 
hybrid method to be more dispersed for different targets, 
which may result in efficient searching results. When the 
agent receives the pheromone information of multiple 
targets, it would make decision whether to pick the target or 
explore to a new area, or if multiple targets are available, 
which one to pick so that the global optimization 
performance can be achieved. Furthermore, it can be seen 
from Fig. 5 that the hybrid method is more stable and 
consistent than the UB-ACO method.   

VII. CONCLUSION AND FUTURE WORK 
  A hybrid ACO/PSO control schemes are proposed for 

the distributed swarm agents.  The main characteristics of 
the proposed Swarm Intelligence (SI) based approaches are 
the use of natural metaphors, inherent parallelism, stochastic 
nature, adaptivitiy, and the use of positive feedback.  These 
SI-based architecture are truly distributed, self-organized, 
self-adaptive, and inherently scalable since there is no global 
control or communication, and be able to address the 
complex problems under dynamic environments.     
     While the proposed SI-based approaches have the 
advantages in system robustness, scalability, and individual 
simplicity, however, the communication overhead is still a 
critical issue, which needs to be improved, especially for a 
large scale swarm agent system.  Furthermore, it is difficult 
to predict the swarm performance according to a particular 
metric or analyze further possible optimization margins and 
intrinsic limitations of these approaches from an engineering 
point of view.   Our future work will tackle these issues and 
mainly focus on developing a dynamic swarm model to 
allow the swarm agents to achieve the target global goal and 
expected performance.  
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