
A Framework for Analyzing and Creating Self-assembling Systems

Navneet Bhalla and Christian Jacob
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

bhalla@cpsc.ucalgary.ca, jacob@cpsc.ucalgary.ca

Abstract - Self-assembly is an emergent property of

decentralized systems, which is seen throughout nature.

Understanding and applying this emergent property continues

to be an important subject in the natural sciences, as well as

engineering and computer science. However, only the specific

principles and mechanisms of self-assembly are considered

within the scope of their respective disciplines. A framework is

presented here, which abstracts self-assembly to components,

environment, energy, assembly protocol, spatial relationship,

localized communication, and rule set. By viewing self-

assembly in this manner, this framework facilitates melding the

various self-assembly principles and mechanisms studied across

disciplines. The benefit of this is that it aids in the pursuit of

designing synthetic systems mirroring the robustness of this

bottom-up construction process in nature. Several experiments

are presented that exhibit this robust construction process, and

demonstrate how this framework can be leveraged for analyzing

and creating self-assembling systems.

I. INTRODUCTION

The realization of synthetic entities mirroring the highly
adaptable and robust designs seen in nature would have
tremendous benefits in a wide variety of applications. Such
applications include, but are not limited to, robotics, material
science, medicine, and architecture. Understanding the
fundamental principles and mechanisms of self-assembly is
an essential first step in the creation of such systems.
From a computational perspective, entities in nature can be

viewed as the result of many interacting decentralized agents,
governed by simple rules. One of the emergent properties of
these systems is self-assembly. Here the term self-assembly
is refined to describe a process that can be controlled through

appropriately designed components and their environment,

and is reversible [1]. In this context, pre-existing

components interact in order to create emergent aggregate

forms.

In natural systems, self-assembly is primarily dictated by

the morphology of the components within an environment,

including their physical and chemical properties [2] [3].

Research into understanding the properties and mechanisms

of self-assembly have long been, and continue to be, an

important research subject in the natural sciences, as well as

engineering and computer science.

In this paper we use the self-assembly principles and
mechanisms from several examples to abstract a framework
for analyzing and creating self-assembling systems. This
framework is the basis to the design of a virtual system. Five
experiments are discussed to demonstrate how this
framework can be leveraged to analyze and create self-
assembling systems.

II. BACKGROUND

Natural self-assembly can be viewed as coming in four

different types: static, dynamic, templated, and biological [1].

Systems that do not dissipate energy are examples of static

self-assembly. In contrast, systems that dissipate energy are

examples of dynamic self-assembly. Templated and

biological self-assembly are both subsets of static and

dynamic self-assembly (depending on the context of the

system). In templated self-assembly, entities are created

based on interacting components and regular features in the

environment. The variety and complexity of biological

systems is the defining characteristic of biological self-

assembly [1].

One of the most successfully studied natural self-

assemblies is the creation of artificial snow crystals [4]. In

nature, the process of creating a snow crystal is initiated

through the use of a seed particle, typically a dust particle, to

which water molecules can attach. The morphology of a

snow crystal is dependent on how water molecules

selectively attach to the developing structure, based upon the

hexagonal symmetry of ice crystals. This process has been

leveraged to create predictable artificial snow crystals of

varying form, under controlled conditions. In this case, the

self-assembly process is initiated using the tip of an ice

needle to act as the seed particle. The ice needle is placed in

a chamber, where the supersaturation level of water vapour,

temperature, and background gas can be controlled. By

understanding the relationship between these three variables,

it has lead to the creation of predictable artificial snow crystal

morphologies [4].

The formation of snow crystals is one example of static

self-assembly in natural systems. To date, most research on

self-assembly in the natural sciences has focused on this type

[1]. However, in recent years, a new form of self-assembly

has emerged in the disciplines of engineering and computer

science. In 1957, L.S. Penrose and R. Penrose showed the

first mechanical analogue to self-assembly, in the form of

static templated self-assembly [5]. They created two

components, labelled A and B, with unique morphologies

that connected in either an AB or BA configuration.

Multiples of these A and B components were confined to a

track in a random ordering. When the track was shaken, it

allowed components to move horizontally in one-dimension

and interact with one another. When an AB or a BA seed

complex was placed on the track, it would cause

neighbouring A and B or B and A components to self-

assemble into AB and BA complexes respectively. In this

example, the morphology of the components was the key

factor in directing the self-assembly process.

281

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

The results of this experiment showed that the mechanisms

of self-assembly could be used in the creation of synthetic

self-assembling systems. It is the precursor to another form

of self-assembly classified as netted systems [1]. These

systems consist of sensors and controllers that interact and

self-assemble through data communication.

Templated self-assembly has been a popular form of self-

assembly in netted systems. The work of L.S. and R. Penrose

has been extended to netted systems [6]. In this case,

programmed electromechanical square shaped components

move around on a cushion of air in two-dimensions, and

interact by latching and unlatching to one another. By

placing a seed complex in the environment (five components

arranged as a rectangle), free components are able to self-

assemble and construct replicas of the seed complex. Since

the components in this system have the same square form and

their environment is static, data communication is required

between interacting components to direct the self-assembly

process.

The use of templated self-assembly has also been used in

creating virtual models and physical self-assembling systems

in three-dimensions [7]. In this example, programmed cubic

components move around in a liquid medium and interact by

attaching to one another through the use of electromagnetism.

The electromagnetic regions on the faces of the components

can be activated and deactivated as required. A seed

complex in the environment (a three by three square,

consisting of nine smaller square regions) allows for the

creation of a single aggregate structure, following a grid

formation. This system is capable of forming aggregate

cubic and rectangular structures.

Another form of self-assembly being adopted in netted

systems is biological self-assembly in the form of swarm

intelligence. Swarm-bot [8] is the collective name to the set

of programmed cubic robotic modules (s-bots), which are

able to physically link together. In the previous examples of

netted systems, energy was transferred to the components, in

order for them to be mobile in their respective environments.

In this case, each robotic module is self-powered and can

move around its environment. Swarm intelligence is used to

direct the robotic units in order to create aggregate structures,

mimicking the formations of social insects (e.g. the formation

of living bridges by Oecophylla longinoda worker ants) [8].

Therefore, s-bots can self-assemble into aggregate structures

to move across terrain, not possible by an individual s-bot.

Netted systems rely on data communication between

sensors and controllers to direct the self-assembly process.

The principles of natural self-assembly can be used to

simplify or enhance communication between components, as

a means of physically and/or chemically encoded information

[9]. Likewise, netted systems can be used to continue to

study natural phenomena.

III. FRAMEWORK

The mechanisms and constraints in natural self-assembly

and netted systems do not need to be viewed separately. For

the purposes of analyzing and creating self-assembling

systems, these mechanisms and constraints can be abstracted

to seven items:

• Components

• Environment

• Energy

• Assembly Protocol

• Spatial Relationship

• Localized Communication

• Rule Set

Components are defined by their properties. Such

properties include, but are not limited to, shape, mass, scale,

and material properties. Depending on the context of a

particular system, the relationship between components and

their environment can be encoded in the components’

properties and/or the other items in the framework.

The physical and chemical properties of the environment

will influence the manner in which components interact with

one another, as well as the way in which components self-

assemble. For example, the environment medium can

influence the motion of the components. The environment in

which components are subjected to can provide various

functionalities, such as a boundary to which components are

confined to. The state of the environment, whether it is static

or dynamic is an important factor in self-assembling systems.

Controlling the parameters of a dynamic environment can be

used to direct the self-assembly process of components that

have limited properties or constrained interactions.

In order for the components to self-assemble, the

components need to be mobile in their environment. This

requires the components to have energy. Energy could be

available internally (dynamic self-assembly) and/or

transferred to the components by the environment (static self-

assembly).

An assembly protocol defines the methods in which

components can self-assemble. These methods are highly

dependent on the scale of the system, as well as the physical

and chemical properties of the components and the

environment. For example, molecular attributes could be

used for systems at the micro-scale, whereas magnetism

could be used for systems at the macro-scale.

The spatial relationship between the components and/or

elements in their environment defines the underlying pattern

formations capable by a particular system. Pattern formation

has a great influence in the range of achievable self-

assembled forms by a system, and is seen at all scales. The

influence of a spatial relationship is seen in both natural

systems (e.g. the hexagonal symmetry of ice crystals) and

synthetic systems (e.g. the linking points of robotic units in

modular and swarm robotics).

Localized communication is an important consideration in

self-assembly. This is the key factor in viewing self-

assembly as an emergent property of decentralized systems.

This is seen throughout nature at all scales. Localized

communication dictates how components interact with one

another and their environment. It can be viewed as a physical

and/or chemical encoding [9], or achieved through data or

other communication means.

282

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

The rule set can also be viewed as a physical and/or

chemical encoding [9], or achieved through programmed

components and/or environment. The rule set can be basic

and still lead to a wide variety of self-assembled forms (e.g.

the various supersaturation, temperature, and background gas

settings lead to varying snow crystal morphologies). Or, the

rule set can be internalized in the components and lead to a

wide variation of self-assembled entities displaying many

forms and performing many functions (e.g. DNA within

cells).

This proposed framework facilitates the melding of the

various self-assembly principles and mechanisms across

disciplines. The benefit of this is that it aids in the pursuit of

creating synthetic systems mirroring the robustness of this

bottom-up construction process in nature.

IV. SYSTEM DESIGN

We created a software system based upon the framework

presented, as a proof of concept to analyze and create self-
assembling systems. The objective of the system was to
determine how spherical components could self-assemble

into two-dimensional and three-dimensional entities with

symmetric and/or asymmetric properties. To achieve this

objective, we incorporated self-assembly principles and

mechanisms described in the creation of artificial snow

crystals and netted systems.

Single components move around freely within the

environment. One of these components is selected at random

and placed in the environment, and set to remain stationary.

This component acts as the seed particle to initiate the self-

assembly process. When free components collide with

stationary components, they either repel or assemble with

them and become incorporated into the aggregate structure as

stationary components. Through communication between

neighbouring stationary components, it is determined where

new free components are allowed to attach. It is this feature

that was anticipated to allow the creation of specifically

designed aggregate structures, instead of the resulting

aggregate structure displaying fractal forms, as created in

diffusion-limited aggregation models [10]. The details of the

proposed system are as follows.

Spherical components in the system are all of unit radius

and unit mass. The components are considered as solid
entities and follow the principles of elastic collisions.
Components are confined to a spherical environment. The
surface of the environment is also treated as a solid structure
in order to serve as a boundary to confine the components.
The radius of the environment is specified at the beginning,
and then remains fixed for the duration of a simulation run.
Components are assigned random velocities within a user
specified range and move around in three-dimensions within
the environment. When free moving components collide and
attach to stationary components, their velocity is set to zero,
and they become stationary themselves.
For algorithmic reasons, the components’ and

environment’s shape was chosen to be spherical. Computing

collision detection and response between components and

with the environment is much simpler for spheres, in contrast

to other three-dimensional forms (e.g. polyhedra).

Component morphology can be used as a physical or

geometric means of encoding information to direct the self-

assembly process [9]. Since the components in this system

are all unit spheres, additional component attributes are

required. These additional attributes are described in terms

of the assembly protocol, spatial relationship, localized
communication method, and rule set.
The assembly protocol in this system is based on the

concept of stickiness. When two components collide, and

each is in a particular state, the two components stick

together to form an aggregate structure. One factor affecting
a component’s state is its location in the aggregate structure.
The location of a component in the aggregate structure is
determined by the spatial relationship between components
and a form of localized message passing.
The underlying pattern formation or spatial relationship

between components defines the set of resulting forms of a

self-assembling system. Locations on a component, referred

to as sticky sites, determine the patterns achievable by the
aggregate structure. The user defines these sticky sites, in
three-dimensions on the surface of the components. The
locations of the sticky sites are the same for every component
present in the system. Figure 1 shows two example
components with different sticky sites and their resulting
pattern formations.

Figure 1: 2D square grid pattern (left) and diamond grid pattern (right)

For computational reasons, sticky sites are defined in a

pairwise fashion. In Figure 1, the pairs of sticky sites are the

ones labelled (0, 1) and (2, 3). When a component collides

with a stationary component, it attaches to the closest

available sticky site on the stationary component. If no

sticky site is available, the colliding component reflects off

the stationary component. The manner in which two

components stick together is determined by the pairwise

relationship of their sticky sites. For example, if the available

sticky site on the stationary component is at position zero,

then the colliding component will attach via its sticky site at

position one. This eliminates the need to calculate the

orientation of each component. It is also used to allow for

two forms of localized communication.

Components are able to communicate with their local

neighbours. The user-defined spatial relationship determines

the neighbourhood relationship of the components. In the

context of this system, components can only communicate

with their immediate neighbours, i.e. the ones they are

directly connected to.

283

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Communication between components is used to update

two types of information. These two types of information are

encoded into every component present in the system. Both

types are used as a means for the components to infer

geometric information from their neighbours in regards to

their position in the aggregate structure.

This information is based on the axes that are created

through the pairwise relationship of the sticky sites. The

number of axes present determines the number of values used

to represent this information. One axis is created for each

sticky site pair. For a two-dimensional square grid and a

three-dimensional cubic grid this can be viewed as x-y and x-

y-z Cartesian coordinates, respectively.

The first type of information is referred to as global axes

information. Each component at the beginning of a

simulation run starts with their global axes information set to

(0, 0) for the two-dimensional square grid and to (0, 0, 0) for

the three-dimensional cubic grid examples. Each number

represents a component’s location in relation to the x-y or x-

y-z axis. Furthermore, the pairwise relationship of a sticky

site set can be interpreted as the resulting axis having a

positive and negative direction. The selection of which

sticky site within a pair is negative or positive is arbitrary; its

selection only needs to be consistently referred to in the

manner in which it is selected.

When a component attaches to another component that is

part of a self-assembled aggregate structure, it updates its

global axes information. It does this by first requesting the

global axes information from the component it has attached

to. The component then updates its own global axes

information by first incrementing or decrementing the value

corresponding to the axes through which it is attached.

Secondly, it either copies, increments, or decrements the rest

of the values appropriately. The increment or decrement

value is dependent on the type of spatial relationship used.

For example, an increment and decrement value of one is

used for two-dimensional square grid patterns, as shown in

Figure 2.

Figure 2: Global axes information for 2D square grid pattern, with

component (0, 0) positioned at the centre of the grid

The second type of information is referred to as axes count

information. Initially, all components start with their axes

count values set to (0, 0, 0, 0) for the two-dimensional and to

(0, 0, 0, 0, 0, 0) for the three-dimensional Cartesian

coordinates examples. In this case, two values are used to

represent a component’s location in relation to each axis.

Axes are used in a way to allow components to infer the

number of components that are located in both directions of

each axis present. For a specific component that is part of an

aggregate structure, this is the number of components to its

left and to its right, for example.

Again, when a component attaches to the aggregate

structure, the axes count information is updated. However, in

this case, since a newly attaching component can affect the

axes count information of other components in the self-

assembled aggregate structure, multiple components need to

update this information when a new component attaches.

Two cases arise for this type of information. The first case

is when a component attaches to the aggregate structure, and

it only has one neighbour. In this case, the axes count

information only needs to be updated for one axis in one

direction. Figure 3 shows an example of this case. The

second case is when a component attaches to the aggregate

structure, and it has more than one neighbour. In this case,

axes count information is updated for multiple axes and/or in

both directions of an axis. Figure 3 also shows an example of

this second case. For both cases, updated information and

communication is done locally as a propagation of

information. This maintains the decentralized characteristic

of natural self-assembling systems.

Figure 3: Axes count information (original configuration, left), with case one

indicated with the black-outlined white-filed component, and case two

indicated with the black-outlined grey-filled component

These two types of information were incorporated into a

rule set. By doing so, it was anticipated that the system

would result in being able to achieve the objective of

designing self-assembled structures with symmetric and/or

asymmetric properties.

The rule set, which is specified by the user, is the same for

all components that are present during a simulation run. A

number and a type is used to reference rules. Rule type one

is in reference to the global axes information, and rule type

two is in reference to the axes count information. When a

component attaches to the aggregate structure, it goes

through each rule in the set and executes each rule that

applies.

Each rule is defined as a state-action pair. The state

comprises of two parts. The first part depends on whether the

component is mobile or stationary. The second part is in

reference to either of the two types of information. If both

parts are satisfied, then an action is performed. The action in

this case is the activation or deactivation of sticky sites. By

doing so, it allows for the emergence of self-assembled

structures with defined boundaries.

284

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Both rule types allow for the emergence of symmetric

structures. However, the axes count information could

possibly be the same for multiple components in the

aggregate structure. This gives the potential for using one

rule that is applicable to more than one component in the

aggregate structure. Figure 4 (left) shows an example of this

condition. In contrast, only the global axes information

allows for the emergence of asymmetric structures. This is

achieved because components can be identified uniquely, and

thus a rule can be specified for a component in a unique state.

Figure 4 (right) also shows an example of this condition.

Figure 4: The two black-outlined components with the same axes count
information (left); and the same two with unique global axes information
(right)

Table 1 provides a summary of the system in the context of

the framework presented here. The objective of the system is

to determine how spherical components can self-assemble

into two-dimensional and three-dimensional entities, with

symmetric and/or asymmetric properties.

TABLE 1: SYSTEM SUMMARY
Framework System Design

Components spheres of unit radius and unit mass

Environment spherical boundary to contain components

Energy components are set to a random velocity

Assembly Protocol stickiness

Spatial Relationship pairwise relationship of sticky sites

Localized Communication global axes information and axes count

information

Rule Set state-action pair (state: mobile vs. stationary,

and global axes information vs. axes count

information; action: activation and/or

deactivation of sticky sites)

V. EXPERIMENTS

The software was written using BREVE [11], a software

package for visualizing decentralized multi-agent systems.

To test the conceptual foundation of the proposed system,

four entities were designed as the end target structures as the

result of self-assembly: a cube, the letters N and B, a chair,

and a mug, as shown in Figure 5.

These structures were chosen because the have symmetric

and/or asymmetric properties. The forms of these structures

cannot be created through pattern formation alone. They

require additional information, and therefore were excellent

candidates to test the system.

In order to create these structures, three spatial

relationships were needed. These three formations are a

three-dimensional cubic grid, two-dimensional hexagonal

grid, and a three-dimensional hexagonal grid (a layered

version of the two-dimensional hexagonal grid). All three are

shown in Figure 6.

Figure 5: Four desired entities: cube (top left), chair (top right), NB (bottom

left), and mug (bottom right)

Figure 6: 3D cubic grid (left), 2D hexagonal grid (centre), and 3D hexagonal
grid (right)

For the three-dimensional cubic grid, the update scheme

used for the global axes information was the one as described

in the previous section. An increment or decrement of one

was used depending on the positive or negative position of

the axis the new component was self-assembling on, and all

other values were copied.

Figure 7: Sticky site locations for 3D hexagonal grid, with positions 6 and 7
located at the centre-front and centre-back of the component indicated by the
black circle

The update scheme developed for hexagonal grids was

developed from the idea of fitting a hexagonal grid to a

square grid. With this idea, three cases arise for updating the

global axes information. Each case is described in reference

to the sticky sites positions shown in Figure 7. When a free

component attaches to a stationary component at either

position four or five, an increment or decrement of two is

used to update the vertical information. All other information

is copied. The second case arises when a free component

attaches to a stationary component in either the zero, one,

two, or three positions. This is a special case, and both the

(0, 1) and the (2, 3) axes are considered as horizontal

information. As a simplification of the resulting geometry,

285

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

for each component the values for these two axes are the

same. Hence, the vertical information corresponding to axis

(4, 5) is incremented or decremented by one, and the

horizontal information corresponding to (0, 1) and (2, 3) is

incremented or decremented by one, depending on the

resulting position of the free component in relation to the

quadrant on a Cartesian plane. In the three-dimensional case,

an update to the depth information corresponding to the (6, 7)

axis is incremented or decremented by one, and all other

information is copied. As a result, this update scheme for the

global axes information allows each component in the

aggregate structure to have a uniquely identified position.

Figure 8 gives an example of this idea for the two-

dimensional case.

The two-dimensional and three-dimensional hexagonal

grids were used to create the letters N and B, and the mug,

respectively. The three-dimensional cubic grid spatial

relationship was used to create the cube and the chair entities.

These spatial relationships were used in five experiments.

The first four experiments corresponded to the four desired

entities. For these experiment, rules utilizing the global axes

information were used. This was done because it was a

simplified approach to test the conceptual basis of the system,

since these experiments are a proof of concept. The

parameter settings corresponding to these four experiments

are summarized in Table 2. The number of rules for each

experiment equals the number of components needed to

create its respective desired entity. A fifth experiment was

conducted which utilizes rules based on both

Figure 8: Global axes information for a 2D hexagonal grid shown as a 2D
square grid (left), and the global axes information values (right)

the global axes information and the axes count information.

This was done as an attempt to reduce the number of rules

required by taking advantage of the symmetric properties of a

desired entity. This experiment was done to create the cube

entity. The parameter settings corresponding to this

experiment are also included in Table 2.

VI. RESULTS

Each of the five experiments was successful in having a

subset of the overall components self-assemble into their

respective desired entities. The robustness of the bottom-up

construction process of self-assembly was demonstrated in

each of these five experiments.

Figure 9 shows the results of the first four experiments,

where components were assigned random colours. Each time

a particular system was executed, the self-assembly process

was unique, but the final desired entity was always achieved.

For example, in one simulation run, the base of the mug self-

assembles, followed by the cylinder, and finally followed by

the handle. In another simulation run, each of the three main

features of the mug could be partially self-assembled at some

time point, and continue to self-assemble in parallel, as

shown in Figure 10. This was achieved because the actions

associated with the rules specified all the specific sticky

locations that should be activated or deactivated for each

component comprising the desired entity.

Another qualitative observation from running these four

experiments showed that even the mug (which consists of

approximately twice as many components as the other three

models) was able to self-assemble easily. This was due to the

fact that most of the components present in the mug are part

of the cylinder. As a result, there are a greater number of

locations and a much larger surface area (in comparison to

the other three models) where free components can self-

assemble to. For example, the legs of the chair were on

occasion difficult to self-assemble, because free components

would take a long time to collide with the stationary

components comprising the legs, due to the stochastic

behaviour of the system.

TABLE 2: EXPERIMENTS SUMMARY
Parameter Settings Desired Entity

Experiments Number of
Simulation
Components

Component
Velocity

Environment
Radius

Rule Type Number of
Rules

Number of
Components

Symmetric vs.
Asymmetric

Cube - 1 150 10 units/sec 30 units global axes
information

44 44 symmetric

Chair 150 10 units/sec 30 units global axes
information

40 40 symmetric and
asymmetric

NB 150 10 units/sec 30 units global axes
information

36 36 Asymmetric

Mug 300 10 units/sec 30 units global axes
information

87 87 symmetric and
asymmetric

Cube - 2 150 10 units/sec 30 units global axes
information
and axes count
information

35 44 symmetric

286

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Experiment Initial Intermediate Final

Cube - 1

Chair

NB

Mug

Cube - 2

Figure 9: Five experiment results

Figure 10: Four examples of different intermediate mug configurations, demonstrating the bottom-up parallel construction characteristic of self-assembly

287

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

The above observations were also present in the fifth

experiment. In this experiment, the use of rules utilizing the

axes count information reduced the number of rules needed

to create the cube entity. This is an important result, because

it shows that there is potential in creating systems that are

scalable, as the number of components comprising the

desired entity increases. Figure 9 also shows the results of

this experiment (Cube – 2). Components present in the

bottom and top two square elements change their respective

colours to red, as an indication of the execution of rules

associated with the global axes information. The components

present in the vertical structures change their respective

colours to black. This indicates the execution of rules

associated with the axes count rules. Only three rules were

needed to define the twelve components present in the

vertical elements of the cube entity.

Research on exploiting parallel features in desired entities,

as a method to reduce the number of rules required for

scalability purposes, is ongoing by the authors. Since the

planar surfaces present in each of the four desired entities is

either very small or essentially non-existent, the spatial

relationship between components could not be exploited as a

method to reduce the number of rules. For example, a system

utilizing a two-dimensional square grid spatial relationship in

order to create a large two-dimensional filled square only

needs rules to specify the outer perimeter or boundary of the

desired filled square. The components in the interior of the

square can self-assemble purely based on pattern formation.

Research into exploiting the spatial relationship of a system

is also being conducted by the authors, as another method to

reduce the number of rules required.

The combination of compact rule sets, exploiting the

spatial relationship of a system, and more advanced assembly

protocols (e.g. swarm intelligence) are also being explored to

create systems that can self-assemble in more predictable

time frames. The desired entities in the five experiments here

would each self-assemble approximately between forty and

three hundred seconds. The focus in these experiments was

not on construction time and instead on demonstrating that

the self-assembly of entities with specific desired forms was

feasible. However in the future, creating systems with

predictable time frames is important in realizing new self-

assembling technologies.

VII. CONCLUSIONS

It is important to note that in the system presented here,

once a component attaches to the self-assembled aggregate

structure, it is not capable of detaching. In other words, the

system is not reversible. This is important, because it

conflicts with the definition of self-assembly. However, such

capabilities could be added to the system. For example, if a

component collides with a component in the aggregate

structure with enough force, it could dislodge that

component. This is not incorporated into the current system

for computational reasons. By not including such

capabilities, it simplifies the number of calculations needed at

each stage of a simulation, and eliminates the need for such

algorithms. This system should be viewed as a proof of

concept. Therefore, by not including such capabilities, it is

felt that it does not compromise the results and the

knowledge gained from these experiments.

In the future, this framework could be used to analyze and

create both natural and synthetic self-assembling systems.

Exploiting dynamic environments and assembly protocols

could be used to create natural self-assembling systems using

components with limited properties at the nanoscale and

microscale. The framework could also be used to design new

configurations of natural materials to create components with

original properties, such as new DNA tile configurations for

DNA computing.

As well, the framework could be used to design

components inspired by various natural and artificial self-

assembling systems to create innovative technologies. Here,

the framework was leveraged to design a virtual system by

melding the concepts of a seed particle to initiate the self-

assembly process in artificial snow crystals, DNA serving as

a shared internalized rule set, and data communication

through specifically located communication channels

currently used in modular and swarm robotics.

As a result, this virtual system was capable of creating

self-assembled aggregate structures, displaying both

symmetric and asymmetric properties. Furthermore, the

experiments demonstrate the robustness of bottom-up parallel

construction, displayed in nature, and how it can be achieved

through self-assembly. As a corollary, the successful results

of these experiments demonstrate how this framework can be

leveraged to analyze and create self-assembling systems.

VIII. REFERENCES

[1] G.M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”,

Science, vol. 295, no. 5564, pp. 2418-2421, 2002.

[2] D. W. Thompson, On Growth and Form, Cambridge University Press,

1917.

[3] P. Ball, The Self-made Tapestry: Pattern Formation in nature, Oxford

University Press, 1999.

[4] K.G. Libbercht, “Morphogenesis on Ice: The Physics of Snow

Crystals”, Engineering and Science LXIV, 1, 2001.

[5] L.S. Penrose and R. Penrose, “A Self-reproducing Analogue”, Nature,

4571:1183, 1957.

[6] S. Grifth, D. Goldwater, and J. Jacobson, “Robotics: self-replication

from random parts”, nature, vol. 437, vol. 7059, pp. 636, 2005.

[7] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three Dimensional

Stochastic Reconfiguration of Modular Robots”, Proc. of Robotics

Science and Systems, 2005.

[8] R. Gross, M. Dorigo, and M. Yamakita, “Self-assembly of Mobile

Robots: From Swarm-bot to Super-mechano Colony”, In Proc. of the

9th Int. Conf. on Intelligent Autonomous Systesm (IAS-9), pp. 487-

496, 2006.

[9] N. Bhalla and P.J. Bentley, “Working Towards Self-assembling

Robots at All Scales”, In Proc. Of the 3rd Int. Conf. on Autonomous

Robots and Agents, pp. 617-622, 2006.

[10] T.A. Witten Jr. and L.M. Sander, “Diffusion-Limited Aggregation, a

Kinetic Critical Problem”, Phys. Rev. Lett. 47, 1400-1403, 1981.

[11] J. Klein, “BREVE: a 3D simulation environment for the simulation of

decentralized systems and artificial life”, In Artificial Life VIII, 8th Int.

Conf. on the Simulation and Synthesis of Living Systems, 2002.

288

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

