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Abstract – This paper introduces a new dynamic neighbor-
hood network for particle swarm optimization. In the proposed 
Clubs-based Particle Swarm Optimization (C-PSO) algorithm, 
each particle initially joins a default number of what we call 
‘clubs’. Each particle is affected by its own experience and the 
experience of the best performing member of the clubs it is a 
member of. Clubs membership is dynamic, where the worst 
performing particles socialize more by joining more clubs to 
learn from other particles and the best performing particles are 
made to socialize less by leaving clubs to reduce their strong 
influence on other members. Particles return gradually to de-
fault membership level when they stop showing extreme per-
formance. Inertia weights of swarm members are made random 
within a predefined range. This proposed dynamic neighbor-
hood algorithm is compared with other two algorithms having 
static neighborhood topologies on a set of classic benchmark 
problems. The results showed superior performance for C-PSO 
regarding escaping local optima and convergence speed. 

I.  INTRODUCTION 

The relatively recent invention of computers with its in-
creasing computational power allowed researchers to imple-
ment myriads of paradigms and algorithms and verify their 
efficiency. Researchers developed many algorithms inspired 
from natural phenomena such as the annealing in metallurgy 
[1], biological processes such as in genetics [2] and the im-
mune system [3], animals and insects behaviors such as ants 
[4] and birds [5] and even cultures [6]. 

Particle Swarm Optimization (PSO) [5] is among these na-
ture inspired algorithms. It is inspired by the ability of birds 
flocking to find food that they have no previous knowledge 
of its location. Every member of the swarm is affected by its 
own experience and its neighbors’ experiences. Although the 
idea behind PSO is simple and can be implemented by two 
lines of programming code, the emergent behavior is com-
plex and hard to completely understand [7].  

In this paper we propose and study a new dynamic social 
network for PSO, where the social networks of the best per-
forming particles shrink to reduce their influence on other 
particles, while the social networks of the worst performing 
particles expand to allow them to learn from more particles. 

The organization of this paper is as follows; in part II we 
present the basic version of PSO and some of its variants and 
related work, followed by an explanation of the proposed 
Clubs-based PSO (C-PSO) algorithm in section III, while 
section IV presents the experiments to be conducted. The 

experiments’ results are presented in section V, then a con-
clusion follows in section VI. 

II.  PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization was inspired by the ability of 
a flock of birds or a school of fish to capitalize on their col-
lective knowledge in finding food or avoiding predators. 
Each swarm member or particle has a small memory that 
enables it to remember the best position it found so far and its 
goodness. Particles are affected by their own experience (best 
found position) and their neighbors’ experiences (best found 
position by the neighbors). The behavior of particles is de-
scribed by (1) and (2). 
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In (1), vid is the speed of particle i in dimension d. The first 
right hand side term corresponds to the inertia force that 
pushes the particle in its old direction, where w is the weight 
value that controls this inertia force. The second term corre-
sponds to the cognitive or personal experience component. It 
attracts the particle from its current position xid to its best 
found position so far in that dimension pid affected by a learn-
ing weight lrn1 and a uniformly distributed random variable 
rand1 in the range (0, 1). The third term corresponds to the 
social influence of the neighbors on the particle. It affects the 
particle by attracting it from its current position xid to the best 
position found by its neighbors pgd and this influence is con-
trolled by a learning weight lrn2 and another independent 
random variable rand2 uniformly distributed in the range  
(0, 1). For each time step, as described by (2), each particle 
moves by a step of value vid in the d th dimension. 

The PSO algorithm itself has evolved. The weight parame-
ter w was not included in the basic algorithm. It was added 
later and researchers examined the effect of varying its value 
[8]. A speed limit for the particles was introduced to prevent 
the explosion of speed values. 

PSO operates in three spaces, the social network space, the 
parameter space of problem variables and the evaluative 
space [7] where estimates for the goodness of solutions are 
defined. Various social networks have been proposed and 
investigated by researchers [9]. In the original PSO  
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algorithm, the social network connects every particle to all 
other particles and it is only influenced by the one that has 
the best experience compared to all particles. We will refer to 
this algorithm as PSO-g where ‘g’ stands for global. Though 
this algorithm converges rapidly, it could get easily trapped 
in local minima. After the particles are initialized, the first 
best found position by all particles attracts them all and as 
long as the particles experience improving performance in 
their new positions while heading for this first found mini-
mum, they get more strongly attracted towards this local 
minimum. 

A variant of the simple PSO has a ring social network. In 
this algorithm the particles are arranged in an imaginary ring 
and every particle is connected to its immediately preceding 
and succeeding particles in this ring. We will refer to this 
algorithm as PSO-l where ‘l’ stands for local. This algorithm 
converges slower than PSO-g but it is less susceptible to local 
minima and enjoys a higher degree of particles diversity. The 
influence of each particle in the swarm is limited to its two 
immediate neighbors. This influence limitation helps the par-
ticles to explore the search space with different points of at-
traction instead of a single best found point in the PSO-g al-
gorithm. On the other hand, it may lead to excessive wander-
ing for the particles leading to slow convergence even in easy 
problems having single optimum. 

Related Work: 

Both PSO-g and PSO-l are based on a static neighborhood 
network. Because the first stages of the search for the global 
best position require exploration of possible solutions, which 
PSO-l can do better. While later stages require exploitation of 
the best found candidate solutions by early stages of the 
search, which PSO-g is clever at. Researchers suggested us-
ing a dynamic neighborhood. 

In [10], the neighborhood of each swarm member expands 
from an initial network that connects each particle to itself at 
early stages of the search, to a network that fully connects it 
to all other particles. This algorithm transforms gradually 
from acting like PSO-l in early stages of the search, to behave 
more like PSO-g at late stages. Two network expanding pro-
cedures have been introduced. Both of them depend on the 
current position of the particle to search for nearby particles 
to add to its neighborhood list. 

In [11], a Fitness-Distance-Ratio based PSO (FDR-PSO)  
algorithm is introduced. In this algorithm, each particle is 
affected by three components; the cognitive, social and the 
FDR components. The third component corresponds to the 
influence of the particle that maximizes the FDR. The higher 
the fitness of the neighbor and the closer its distance to the 
original particle, the more likely it will influence this particle. 
A new learning factor is introduced for the FDR component. 

In [12], a randomly generated directed graphs are used to 
define neighborhood where graph links are unidirectional, so 
a link from a to b means that a considers b as a neighbor, but 
not vice versa. Two methods for modifying the neighborhood 
structure are tested. The ‘random edge migration’ method 
disconnects one side of an edge and connects it to another 

neighbor, while the ‘neighborhood re-structuring’ method 
totally re-initializes the structure after it is kept fixed for a 
period of time. 

In [13], a Hierarchical PSO (H-PSO) version is introduced. 
In this algorithm, particles are arranged in a hierarchy struc-
ture and the best performing particles ascend the tree to influ-
ence more particles, replacing relatively worse performing 
particles which descend the tree. A variant of this algorithm 
where the structure of the tree itself is made dynamic is pre-
sented and tested. 

III.  CLUBS-BASED PSO 

PSO first models were confined to perceive the swarm as a 
flock of birds that fly in the search space. The picture of fly-
ing birds has limited the imagination of researchers somehow 
for sometime. Recently, a more broad perception of the 
swarm as a group of particles, whether birds, humans, or any 
socializing group of particles began to emerge. 

In our proposed C-PSO algorithm, we create ‘clubs’ for 
particles analogous to our clubs where we meet and socialize. 
In our model, every particle can join more than one club, and 
each club can accommodate any number of particles. Vacant 
clubs are allowed. 

After randomly initializing the particles position and speed 
in the initialization range, each particle joins a predefined 
number of clubs, which is known as its ‘default membership 
level’, and the choice of these clubs is made random. Then, 
current values of particles are evaluated and the best local 
position for each particle is updated accordingly. While up-
dating the particles’ speeds, each particle is influenced by its 
best found position and the best found position by all its 
neighbors, where its neighborhood is the set of all clubs it is a 
member of. After speed and position update, the particles’ 
new positions are evaluated and the cycle is repeated. 

While searching for the global optima, if a particle shows 
superior performance compared to other particles in its 
neighborhood, the spread of the strong influence by this par-
ticle is reduced by reducing its membership level and forcing 
it to leave one club at random to avoid premature conver-
gence of the swarm. On the other hand, if a particle shows 
poor performance, that it was the worst performing particle in 
its neighborhood, it joins one more club selected at random to 
widen its social network and increase the chance of learning 
from better particles.  

The cycle of joining and leaving clubs is repeated every 
time step, so if a particle continues to show the worst per-
formance in its neighborhood, it will join more clubs one 
after the other until it reaches the maximum allowed mem-
bership level. While the one that continues to show superior 
performance in every club it is a member of will shrink its 
membership level and leave clubs one by one till it reaches 
the minimum allowed membership level. 

During this cycle of joining and leaving clubs, particles 
which no longer show extreme performance in its neighbor-
hood, either by being the best or the worst, go back gradually 
to default membership level. The speed of going back to de-
fault membership level is made slower than that of diverting 
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from it due to extreme performance. The slower speed of 
regaining default membership level allows the particle to 
linger, and adds some stability and smoothness to the per-
formance of the algorithm. A check is made every rr (reten-
tion ration) iterations to find the particles that have member-
ship levels above or below the default level, and take them 
back one step towards the default membership level if they 
do not show extreme performance. 

We replace the static inertia weight which controls the 
momentum of the particle by a uniformly distributed random 
number in the range (0, w). A pseudo code explaining the 
algorithm is shown below. 

begin

Initialize particles and clubs 

while (termination condition = false) 

do

evaluate particles fitness: f(x)

  update P

for (i = 1 to number of particles)

   gi = best of neighborsi

   for d = 1 to number of dimensions 

vid = w×rand1×vid + lrn1×rand2×(pid – xid)

+ lrn2×rand3×(gid -xid)

xid = xid + vid

   next d

next i

update neighbors 

  for j = 1 to number of particles

   if (xj is best of neighborsj) and 

(|membershipj| > min_membership) 

leave random club 

   end if 

   if (xj is worst of neighborsj) and 

   (|membershipj| < max_membership) 

    join random club 

   end if 

   if (|membershipj|  default_membership) 

   and (remainder(iteration/rr) = 0)

    update membershipj

   end if 

  next j 

end do 

iteration = iteration + 1 

 evaluate termination condition 

end while 

Where P is local best position, neighborsi is the set of 
particle i neighbors, membershipi, |membershipi|
are the set of clubs that particle i is a member of and the size 
of this set respectively. rand1,2,3 are three independent uni-
formly distributed random numbers in the range (0, 1). 

Fig. 1 shows a snapshot of the clubs during an execution of 
the C-PSO algorithm. In this example, the swarm consists of 
8 particles, and there are 6 clubs available for them to join. 
Given the previous pseudo code, and that the minimum, de-
fault and maximum membership levels are 2, 3 and 5 respec-
tively, the following changes in membership will happen to 
particles in Fig. 1 for the next iteration which is a multiple of 
rr:
1. Particle3 will leave club1, 2 or 3 because it is the best 

particle in its neighborhood. 
2. Particle5 will join club1, 2 or 4 because it is the worst 

particle in its neighborhood. 
3. Particle2 will leave club1, 2, 3 or 4, while particle4 will 

join club2, 3, 4, or 6 to go one step towards default 
membership level because they do not show extreme per-
formance in their neighborhood. 

Flow of influence: 

The flow of influence or how the effect of the best per-
forming particles spreads and affects other particles in the 
swarm is critical to the performance of all PSO algorithms. If 
the influence spreads quickly through the swarm, they get 
strongly attracted to the first optimum they find, which is a 
local optimum in most cases. On the other hand, if the influ-
ence spreads slowly, the particles will go wandering in the 
search space and will converge very slowly to the global or a 
local optimum. 

In order to study the effect of different default membership 
levels on the flow of influence we do the following experi-
ment. We create a swarm of 20 particles. Clubs membership 
is assigned randomly but every particle joins exactly m of 
total 100 clubs. The membership level m is kept fixed for 
every single run, so best and worst performing particles do 
not leave or join clubs.  All the particles are initialized to 
random initial positions in the range [1000 2000]n except for 
one particle which is initialized to [0]n. The value of each 
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Fig. 1.  A snapshot of clubs during a simulation of  
the C-PSO algorithm 
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particle which we want to minimize is simply the sum of its 
coordinate position values. 

The flow of influence for some default membership levels 
is shown in Fig. 2. The average value of all particles is shown 
against search progress. The average value of particles de-
creases because they are influenced by the best performing 
particle which has a value of ‘0’. So, rapid decrease of the 
average value indicates faster flow of influence speed. It is 
clear that the flow of influence speed monotonically de-
creases with decreasing default membership levels. 

IV.  EXPERIMENTS 

The purpose of this paper is to test and analyze the effect 
of the dynamic social network employed in the proposed  
C-PSO algorithm on its performance and compare it with the 
performance of other PSO algorithms which have static so-
cial networks. We use five well known benchmark problems 
presented in TABLE I. The first two functions are simple 
unimodal functions. They test the ability of the optimizers to 
deal with smooth landscapes. The next three functions are 
multimodal functions containing a considerable number of 
local minima where the algorithm may fall into, so these 
functions test the ability of the algorithm to escape these 
traps. 

We compare the performance of the different optimizers 
using two criteria which were used in [13]. The first one is 
the ability to escape local minima, and is measured by the 
degree of closeness to the global optimum the optimizer 
achieves after a long number of iterations. The second one is 
the convergence speed, which is measured by the required 
number of iterations to achieve a certain degree of closeness 
to the global optimum in the evaluation space. 

Using these metrics on the five benchmark functions, we 
compare three versions of the C-PSO with different default 
membership levels of 10, 15 and 20 from a total number of 
100 clubs, along with PSO-g and PSO-l. 

The three default membership levels are chosen based on 
initial empirical results. It was found that lower membership 
levels decrease the speed of flow of influence, as shown in 
the previous section, which was reflected on slow conver-

gence. While higher membership levels cause premature 
convergence.  

For all simulation runs we use lrn1 = 1.494, lrn2 = 1.494, 
which were used in [13] and suggested by [14]. For PSO-g 
and PSO-l we use w = 0.729 as in [13] and [14], while the 
value of w for C-PSO which reflects the range of the random 
inertia weight is presented in TABLE II for each problem. 

The minimum and maximum allowed membership levels 
we use are 5 and 33 respectively, while rr = 2. We use a 
swarm of 20 particles for all simulation runs. 

The particles position and speed are randomly initialized in 
the ranges shown in TABLE II depending on the benchmark 
problem used. The absolute speed values for particles are 
kept within the Vmax limit for all dimensions during simula-
tion. On the other hand, particles movements are not re-
stricted by boundaries, so particles may go beyond the ini-
tialization range and take any value. 
 Every simulation run was allowed to go for 10000 itera-
tions, and each simulation has been repeated 50 times. All 
simulation runs were executed using MATLAB® R2006a. 

V.  RESULTS 

Each graph presented in this section represents the average 
of the 50 independent simulation runs for all optimizers 
unless otherwise stated. 
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TABLE II 
PARAMETERS FOR BENCHMARK FUNCTIONS 

Function Dim. Init. range Vmax 
w

C-PSO

Sphere 30 [-100; 100]n 100 1.2

Rosenbrock 30 [-30; 30]n 30 1.2 

Rastrigin 30 [-5.12; 5.12]n 5.12 1.4 

Schaffer’s f6 2 [-100; 100]n 100 1.65 

Achley 30 [-32; 32]n 32 1.36 
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A.  Escaping Local Minima: 

We begin with the first criterion which is the ability of the 
algorithm to escape local minima. The Sphere and Rosen-
brock problems have the lowest number of local minima. 

Their unique minimum makes them the easiest of the five 
benchmark problems in finding the global minimum. 

For the Sphere problem as shown in Fig. 3, all C-PSO ver-
sions managed to finish closer to the unique minimum than 
PSO-g and PSO-l, and the lower the membership level the 
faster the algorithm converges. The PSO-l algorithm was the 
worst performer followed by PSO-g. 

For the Rosenbrock problem presented in Fig. 4, C-PSO 
(10, 20) and PSO-g show very close performance, though 
PSO-g is little behind them. C-PSO (15) follows them by a 
short distance, while PSO-l is the worst of all, lagging behind 
by a relatively long distance. 

As shown in Fig. 5 and Fig. 6, we can see that all C-PSO 
versions perform better than both PSO-g and PSO-l for the 
Rastrigin and Schaffer’s f6 test problems respectively. In 
both of them, PSO-g gives the worst performance and con-
verges prematurely in the Rastrigin problem, followed by 
PSO-l as the second worst. All C-PSO versions give similar 
performance for the Rastrigin problem as we can hardly dis-
tinguish them. 

As shown in Fig. 7 for the Ackley problem. C-PSO (10) 
outperforms all the other algorithms followed by PSO-l,  
C-PSO (20, 15) respectively, while PSO-g suffers premature 
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convergence again and falls by a long distance behind. The 
distances to global optima after 10000 iterations of the opti-
mizers are shown in TABLE III. 

As expected, the performance of PSO-g and PSO-l depend 
on the problem they optimize. For the first two problems 
which have a single optimum, PSO-g performs better than 
PSO-l, as all the particles get strongly attracted to the unique 
optimum due to the fully connected social network in PSO-g. 
On the other hand, PSO-l goes wandering and converges 
slowly.

 For the last three problems, which have many local op-
tima, PSO-l outperforms PSO-g. The partially connected so-
cial network of PSO-l creates many points of attraction for 
the particles in the swarm that help them escape some local 
optima compared to PSO-g.  

Unlike PSO-g and PSO-l, C-PSO performance is much 
less problem dependent. C-PSO (10) outperformed both 
PSO-g and PSO-l for all problems. The results obtained for 
the Sphere problem were unexpected. The unique minimum 
and the non-deceptive landscape of the problem make a per-
fect match with PSO-g. The fully connected social network 
should do a better job in attracting the particles to the unique 
global minimum than any other social network. 

These results necessitated further investigation into the be-
havior of the optimizers and specially the flow of influence 
through the swarm in unimodal and multimodal problems. So 
we do the following experiment. 

B.  Further Investigation of Optimizers’ Behaviors: 

We run three optimizers, C-PSO (10), PSO-l and PSO-g on 
the unimodal Rosenbrock test problem and the multimodal 
Rastrigin problem. During the simulation run we record the 
index of the best performing particle in the swarm for each 
iteration. We use the same parameters used previously for the 
first criterion.  

Fig. 8 and Fig. 9 show the best performing particles in  
C-PSO (10) (top), PSO-l and PSO-g (bottom) for the Rosen-
brock and Rastrigin problems respectively. For each plot, the 
index of particles (20 particles) is drawn against the number 
of iterations elapsed. A dot at (13, 5000) indicates that  
‘particle 13’ has the global best value in the swarm during 
‘iteration number 5000’. 

First, considering Rosenbrock problem shown in Fig. 8. 
The status of being the best performing particle in the case of 
C-PSO is almost uniformly distributed over all particles, once 
a particle finds a good solution, another particle finds a better 
one. 

A reason for this behavior is that once a particle finds the 
good solution it becomes the best particle in the swarm, mak-
ing it the best in its neighborhood as well. The particle 
shrinks its membership level one by one and reduces its in-
fluence on other particles accordingly. Neighbors of this su-
perior particle will carry its influence to other clubs they are 
member of, so other particles are still indirectly guided by it, 
but are more free to find a steeper way down the hill to the 
global optimum. Once a particle finds it, it becomes the new 
best particle and continues or starts shrinking its membership 
level (because it may become the best in its neighborhood 
before becoming the global best). The particles which are no 
longer the best in their neighborhood regain their default 
membership level to increase their chance in learning from 
better particles to become the new global best, and the cycle 
continues. 

On the other hand, the best particle status in PSO-l goes 
bouncing between two particles on the ring (note that particle 
1 is connected to particle 20) as shown in Fig. 8 (middle). 
The particles outside this arc search totally inefficient regions 

TABLE III 
DISTANCES TO GLOBAL OPTIMA AFTER 10000 ITERATIONS

Algorithm Sphere Rosen. Rastrigin Schaffer Ackley

PSO-l 7.4e-77 21.08 60.37 0.00077 0.06 

PSO-g 4.2e-93 6.88 75.32 0.00466 4.45 

C-PSO (20) 1.3e-107 5.92 35.10 0 0.10 

C-PSO (15) 5.4e-137 9.11 34.34 0 0.20 

C-PSO (10) 1.1e-152 6.07 34.30 0.00019 0.03 
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of the search space. This is clear from the fact that none of 
them shows up even once as the best particle in the swarm for 
the last 7500 iterations. This clustering mechanism may help 
the algorithm to overcome local optima in multimodal prob-
lems, but in unimodal problems it has detrimental effect. 

The reason that PSO-g algorithm came second to C-PSO in 
both unimodal problems is clear in Fig. 8 (bottom). After 
around 2600 iterations, 12 particles acted as guides for the 
other 8 particles and literally dragged them behind. None of 
the 8 particles showed superior performance till the end of 
the 10000 iterations.  

Second, we consider Rastrigin problem presented in Fig. 9. 
This multimodal problem requires diversity in the swarm and 
a clever social network to overcome local optima. The prop-
erty of fully connected social network in PSO-g provokes all 
the particles to jump to the best found position by all particles 
in the swarm. 

This makes the first 1500 iterations for PSO-g look almost 
the same for both unimodal and multimodal problems. But 
after these 1500 iterations the algorithm prematurely con-
verges in the case of the multimodal Rastrigin problem as 
shown in Fig. 9 (bottom). 

On the other hand, PSO-l algorithm presented in Fig. 9 
(middle) maintains its diversity for a longer period than  
PSO-g does. Along with its clustering property explained 
earlier, it manages to escape local optima to some extent and 
get closer to global optimum than PSO-g can get. 

Finally for the C-PSO optimizer as shown in Fig. 9 (top), 
the algorithm maintains diversity longer than PSO-g and 
PSO-l do. Moreover, the best performing particle status is 
distributed over the particles, unlike PSO-l, and the particles 
do not jump over the best particle once it emerges. This can 
be seen as the particles create more clusters than in the case 
of PSO-l and PSO-g. These clusters represent local optima 
found by the particles. The most interesting result found is 
the ability of the C-PSO to explore new regions after a period 
of stagnation. We can see how C-PSO finds better regions at 
around iteration 5200 after it has stagnated for nearly 2000 
iterations.  

An explanation for this behavior is that the best performing 
particles in their neighborhood create different points of at-
traction for the particles. The particles are grouped according 
to their clubs’ membership and search the space around these 
points of attraction. At the same time, the worst particles on 
their neighborhood expand their membership and bridge the 
influence between different groups of searching particles. If a 
searching group finds a better solution, its influence is trans-
mitted over the bridge acting particles to other groups and 
diverts them from searching inefficient regions indefinitely. 
They start searching for other optima which could be better 
than the best one found and create different points of attrac-
tion, and the cycle goes on. 

C.  Convergence Speed: 

The second criterion to be considered is the convergence 
speed of the algorithms. As explained earlier, it is being 
measured by the number of iterations the algorithm takes to 
reach a certain degree of closeness to the global optimum. 

This number of iterations should be small enough to reflect 
the ability of the algorithm to converge rapidly, and not its 
ability to escape local optima and achieve better values at 
later stages of the run. On the other hand, the closeness value 
chosen should lie close enough to the global optimum to be 
efficient in practical applications. We choose closeness val-
ues for the five benchmark problems that are satisfied by 
most algorithms around the range of [500, 1000] iterations. 
These closeness values are shown in TABLE IV next to prob-
lem names. 

The figures presented in TABLE IV are compiled from the 
same results data set collected for the first criterion. They 
represent the Average, Median, Maximum, Minimum and 
Success rate of 50 independent simulation runs for the five 

TABLE IV. NUMBER OF ITERATIONS NEEDED TO REACH A 

CERTAIN DEGREE OF CLOSENESS TO GLOBAL OPTIMUM FOR 

THE FIVE OPTIMIZERS. (BEST VALUES ARE BOLD FACED) 

Algorithm Avg. Med. Max. Min. Suc.%

Sphere – (Closeness = 0.0001)

PSO-l 1030.8 1036 1103 965 100

PSO-g 684.88 672 1012 489 100

C-PSO (20) 611.68 571 1057 421 100

C-PSO (15) 528.18 506.5 711 417 100 

C-PSO (10) 518.14 513.5 652 443 100

 Rosenbrock – (Closeness = 100) 

PSO-l 1429.6 907 7465 604 98 

PSO-g 874.3 425 6749 251 100

C-PSO (20) 697.3 424 4537 240 100

C-PSO (15) 569 473 1605 218 98

C-PSO (10) 725.8 376 6016 226 98 

 Rastrigin – (Closeness = 50) 

PSO-l 1695.7 1068 8015 500 26 

PSO-ga 250 221 313 216 6 

C-PSO (20) 813.9 702 3396 254 88

C-PSO (15) 695.4 597.5 1829 262 88 

C-PSO (10) 753.3 667 1932 299 96

 Schaffer’s f6 – (Closeness = 0.001)

PSO-l 1076.2 422 7021 84 92 

PSO-g 791.1 279.5 4276 60 52 

C-PSO (20) 1138.3 524 8462 80 100

C-PSO (15) 1120.1 432 4966 88 100

C-PSO (10) 945.6 401 9668 48 98

 Ackley – (Closeness = 0.01)

PSO-l 968.2 954.5 1531 827 96 

PSO-ga 499 499 499 499 2 

C-PSO (20) 831.1 806 1148 610 92 

C-PSO (15) 800.6 793.5 1141 570 84

C-PSO (10) 863.7 841 1151 672 98
a Not considered in comparison due to its very low success rate
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optimizers. Only data of successful runs were used to evalu-
ate these values, so the sample number is not the same for all 
figures. 

We can see from TABLE IV that C-PSO (15) achieves the 
overall best results. For the Sphere problem, all the algo-
rithms achieve the desired closeness in every single run, 
though C-PSO (10, 15) come ahead of them. The situation is 
similar in the second unimodal Rosenbrock problem, how-
ever the success rate is lower for PSO-l and C-PSO (10, 15). 

Moving to multimodal problems, we notice how PSO-g 
shows poor performance in reaching the closeness values. 
For Rastrigin and Ackley problems, it only succeeds in six 
and two percent of the runs respectively, compared to much 
higher success rates in all C-PSO versions. 

C-PSO (15) outperform all the other algorithms for 
Rastrigin and Ackley problems, except for the Rastrigin 
problem where it comes second to C-PSO (20) regarding the 
minimum number of iterations in the 50 samples. We do not 
consider PSO-g in our comparison for Rastrigin and Ackley 
problems due to its very low success rate. 

Finally for Shaffer’s f6 problem, PSO-g achieved the best 
results for the mean, median and maximum number of itera-
tions. It should be noted however that it has a low success 
rate of 52% which is almost half the success rate for all  
C-PSO versions. This low success rate makes it unreliable in 
practical applications. 

VI.  CONCLUSION 

Particle swarm optimizers are very sensitive to the shape 
of their social network. Both PSO-g and PSO-l lack the abil-
ity of adapting their social network to the landscape of the 
problem they optimize. 

The proposed C-PSO algorithm overcomes this problem. 
The dynamic social network of the optimizer shrinks the 
membership level of superior particles to reduce their influ-
ence on other particles, while expanding the membership 
level for the worst particles to increase their chance in learn-
ing from better particles. 

C-PSO versions achieved better results than PSO-l and 
PSO-g either in escaping local optima or in convergence 
speed to global optima for almost all benchmark problems we 
considered.  

Further investigations have shown that the dynamic social 
network allowed particles to be guided indirectly by the supe-
rior particles, while searching for better solutions more freely 
than the case of PSO-g. It was shown using empirical results 
that C-PSO is able to explore and find better regions in the 
search space during periods of stagnation, making it attrac-
tive for use in multimodal problems. 
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