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 Abstract – In this paper, a new approach based on hybrid 
Particle Swarm-Based-Simulated Annealing Optimization 
(PSO-B-SA) for solving thermal unit commitment (UC) 
problems is proposed. The PSO-B-SA presented in this paper 
solves the two sub-problems simultaneously and independently; 
unit-scheduled problem that determines on/off status of units 
and the economic dispatch problem for production amount of 
generating units.  Problem formulation of UC is defined as 
minimization of total objective function while satisfying all the 
associated constraints such as minimum up and down time, 
production limits and the required demand and spinning 
reserve. Simulation results show that the proposed approach 
can outperform the other solutions. 

I. INTRODUCTION

Unit commitment (UC) is the problem of scheduling of 
generating units over a given time period so that the total 
operational cost is minimized and all operational constraints 
are satisfied [1]. UC involves two decision processes; First, 
the “unit scheduling” that determines on/off status of 
generating units in each hour of planning horizon subject to 
system capacity requirements, including the spinning reserve 
and the constrained on start-up and shut-down of units. 
Second, the “economic dispatch” decision involves the 
allocation of the system demand and reserve capacity among 
the operating units in each specified hour. 

Mathematically, UC is a nonconvex, nonlinear, large-
scale, mixed-integer optimization problem with a great 
number of 0–1 scheduling variables, continuous and discrete 
control variables, and a series of prevailing equality and 
inequality constraints [1]. The global optimal solution can be 
obtained by complete enumeration, which is not applicable 
to large power systems due to its excessive computational 
time requirements. Therefore, research interest, have been 
focused on efficient, near optimal solutions. Up to now 
many methods have been developed for solving UC 
problems such as priority list  methods [2], [3], integer 
programming [4], [5], dynamic programming [6]-[11], 
mixed-integer programming [12], branch-and-bound 
methods [13], and Lagrangian relaxation (LR) methods [14], 
[15]. Priority list method is simple and very fast, but gives 
schedules with relatively high operation cost. Dynamic 
programming methods are flexible but are computationally 
expensive. Branch-and-bound method uses a linear function 
to represent the fuel consumption and time-dependent start 
cost and obtains the required lower and upper bounds. 
However this method has the danger of a deficiency of 
storage capacity and increasing the calculation time 

enormously as being a large scale problem. The integer and 
mixed-integer methods adopt linear programming techniques 
to solve and check for an integer solution. These methods 
have only been applied to small UC problems and have 
required major assumptions that limit the solution space. The 
LR method concentrates on finding an appropriate 
coordination technique for generating feasible primal 
solutions, while minimizing the duality gap. The main 
problem with the LR methods is the difficulty encountered 
in obtaining feasible solutions. 

 In this paper, we combined the two optimization methods 
for solving the UC problems; Particle Swarm Optimization 
and Simulated Annealing. In [16] it is shown that in solving 
the optimization problem, the PSO might have deficiency in 
finding the global solution and get trapped in local minima. 
So the idea was to combine the PSO with SA in order to 
enhance the performance of algorithm for finding the 
optimal solution [16]. 

  The paper is organized as follows; A brief description of 
the proposed method is presented in Section II. The UC 
formulation is given in Section III. Section IV presents a 
detailed explanation of PSO-B-SA approach for UC 
problem. Numerical results for ten unit system are presented 
in Section V. Finally, Section VI concludes the paper. 

II. PARTICLE SWARM-BASED-SIMULATED ANNEALING

A. Particle Swarm Optimization 

Assuming that the search space is D-dimensional, the i-th 
particle of the swarm is represented by the D-dimensional 
vector 1 2X x x x=i i i , id( , ..., ) and the best particle in the 

swarm, i.e. the particle with the smallest function value, is 
denoted by the index g ( gp ). The best previous position of 

the i-th particle is recorded and represented as 

1 2=i i i idP ( p , p ,...p ) , while the position change (velocity) of the 

i-th particle is represented as 1 2V v v v=i i i id( , ,..., ) , which is 

clamped to a maximum velocity 1 2V v v v=max max , max max d( ,..., )

specified by the user. Following this notation, the particles 
are manipulated according to the following equations 
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where w  can be expressed by the inertia weights approach, 
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1c  and 2c  are the acceleration constants which influence 

the convergence speed of each particle, and rand(.) is a 
random number in the range of [0,1]. For equation (1), the 
first part represents the inertia of the previous velocity, the 
second part is the “cognition” part which represents the 
private thinking by itself, and the third part is the “social” 
part which represents the cooperation among the particles. If 
the summation in (1) would cause the velocity vid on that 

dimension to exceed vmaxd , then vid is limited to vmaxd . 

Vmax  determines the resolution with which regions between 

the present position and the target position are searched. If 
Vmax is too large, the particles might fly the past good 

solutions. If Vmax is too small, the particles may not explore 

sufficiently beyond local solutions. In many experiences 
with PSO, Vmax is often set to maximum dynamic range of 

the variables on each dimension. The constants 1c  and 2c
represent the weighting of the stochastic acceleration terms 
that pull each particle toward ip  and gp  positions. Low 

values allow particles to roam far from the target regions 
before being tugged back. On the other hand, high values 
result in abrupt movement toward, or past, the target regions. 

Hence, the acceleration constants 1c  and 2c  are often set to 

be 2.0 according to the past experiences. Suitable selection 
of inertia weight w  provides a balance between global and 
local explorations, thus requiring less iterations on average 
to find a sufficiently optimal solution. As originally 
developed, w often decreases linearly from about 0.9 to 0.4 
during a run. In general, the inertia weight w  is set 
according to the following equation 

max min
max

max

.
w w

w w iter
iter

−
= − (3)

where maxiter represents the maximum number of iterations, 

and iter  is the current number of iterations or generations. 

Moreover, maxw and minw are the maximum and minimum 

weight values, respectively. From the above discussion, it is 
obvious that PSO resembles, to some extent, the “mutation” 
operator of Genetic Algorithms through the position update 
equations (1) and (2). However, it should be noted that in 
PSO, the “mutation” operator is guided by the particle’s own 
“flying” experience and benefits from the swarm’s “flying” 
experience. In other words, PSO is considered as performing 
mutation with a “conscience” as pointed out by Eberhart and 
Shi [17]. 

B. Binary Particle Swarm Optimization (BPSO)[18] 

In binary particle swarm, Xi  and Pi  can only take on 

values of 0 or 1. The velocity Vi  will determine a probability 

threshold. If Vi  is higher, the individual is more likely to 

choose 1, but lower values favor the 0 choice. Such a 
threshold needs to stay in the range [0.0,1.0]. One 
straightforward function for accomplishing this is common 

in neural networks. The function is called the sigmoid 
function and is defined as follows 

1
( )

1 exp( )
s Vi Vi

=
+ − (4)

The function squashes its input into the requisite range and 
has properties that make it agreeable to be used as a 
probability threshold. A random number (drawn from a 
uniform distribution between 0.0 and 1.0) is then generated, 
whereby Xi  is set to 1, if the random number is less than 

the value from the sigmoid function, as is illustrated below 

(.) ( ), 1, 0.If rand s V Then U Else Ui i i< = = (5)

In the UC problems, Ui  represents the on or off state of 

generator i. In order to ensure that there is always some 
chance of a bit flipping (on and off of generators), a constant 

maxV  can be set at the start of a trial to limit the range of Vi . 

A large maxV  value results in a low frequency of changing 

state of generator, whereas a small value increases the 
frequency of on/off of generator. In practice, maxV  is often 

set to 4.0± , so that there is always at least a good chance 
that a bit will change the state. This is to limit Vi  so that 

( )s Vi  does not approach too close to 0.0 or 1.0. In this 

binary model, maxV  functions are similar to the mutation 

rates of GAs. 

C. The PSO-B-SA 

The PSO-B-SA is an optimization algorithm which 
combines the PSO with the SA. In fact by combining PSO 
with SA, the strong points of SA can be used in PSO. This is 
the basic idea of the PSO-B-SA. The PSO-B-SA algorithm’s 
searching process is started from initializing a group of 
random particles. In this paper, only gp  which is the leader 

of the swarm is based on SA, independently from other 
particles. This algorithm is named as the PSO-B-SA1 [16]. 
This process evolves through time until the terminating 
condition is satisfied. 

In the process of simulated annealing, the new individuals 
are generated randomly around the original individuals. 

1 (.)= +present present r rand (6)

In the above equation, the 1 (.)r rand  is a random 

number between 0 and 1. Now, to find the global minimum 
of the following optimizing problem 

1 2min (x , x , , x )

. . x [ , ] ; 1,2, ,
n

i i i

f

s t a b i n∈ =

…
…

(7)

the steps taken in the particle swarm-based-simulated 
annealing optimization is as follows 

(1) Initialize a group of particles (the scale is m),
including random position and velocity.

(2) Evaluate each particle’s fitness. 
(3) gp  is based on SA independently and a new 
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global best position ( gp ) is obtained.  

(4) For each particle, compare its fitness and its 
personal best position ( ip ). If its fitness is better, 

replace ip with its fitness. 

(5) For each particle, compare its fitness and the 
global best position ( gp ). If its fitness is better, 

then replace gp  with its fitness. 

(6) Transform each particle’s velocity and its position 
according to the expressions (1) and (2). 

(7) This process evolves through time until the
terminating condition is satisfied. 

III. PROBLEM FORMULATION OF UC

The problem formulation of a UC problem can be 
organized as follows: 

1. Objective function: the total cost over the entire 
scheduling period is the sum of fuel cost and start-up cost for 
all units. Accordingly total production cost for N units over 
H number of operating hours is 

( 1)
1 1

[ ( ) (1 ]
H N

i ih i i h ih
h n

TPC F P ST U U−
= =

= + −∑∑ (8)

Generally, the fuel cost ( )i ihF P is a function of the generator 

power output. Usually it is expressed as a quadratic 
polynomial as follows 

2( )i ih i ih i ih iF P P P= α + β + γ (9)

The generator start up cost depends on the time that the 
unit has been off prior to start up 

⎪⎩

⎪
⎨
⎧

−−+>−

−−+≤≤−
=

hourscMDXtc

hourscMDXMDth
SC

i
off
i

i
off
ii

i
:cos

:cos (10)

2. Constraints: UC problem has some constraints 
representing system constraints and generating unit 
constraints. The overall objective is minimizing TPC
subject to a number of constraints: 

A. System Power Balance 
In each hour, the total power generated must supply the 

load demand 

∑
=

=
N

i
hihih DUP

1

(11)

B. System Reserve Requirements 
The hourly spinning reserve requirements , hR , must be 

met 

∑
=

+≥
N

i
hhihi RDUP

1
(max) (12)

C. Generation Limits 
The unit rated minimum and maximum capacity must not 

be violated 

(max)(min) iihi PPP ≤≤ (13)

D. Unit Minimum Up/Down Time 
The unit up/down time must satisfy the following 

conditions 

( )

( )

on
i i

off
i i

X t MU

X t MD

≥

≥
(14)

where the notification used are 

TPC    total production cost; 
N   number of generators; 

H   number of hours; 

ihP   generation output of the i th unit at the  

                           h th  hour; 

iST   start-up cost of the i th unit; 

ihU   on/off status of the i th unit at the h th 

  hour. 0=ihU  when off, 1=ihU  when 

  on; 
th cos− i th unit hot start cost; 
tc cos− i th unit cold start cost; 
hoursc −−  cold start time of unit i ; 

hD   load demand at the h th hour; 

hR   spinning reserve at the h th hour (set to 

  10% of hD  ); 

(min)iP   minimum generation limit of the i th unit; 

(max)iP   maximum generation limit of the i th unit; 

iMU   minimum up-time of the i th unit; 

iMD   minimum down-time of the i th unit; 

)(tX on
i  duration during which the i th unit is 

  continuously on; 

)(tX off
i  duration during which the i th unit is 

  continuously off; 

IV.  PSO-B-SA1 APPROACH TO UC

In [19] the concept of hybrid particle swarm optimization 
was introduced, so that the economic dispatch and the UC 
problem are solved independently and simultaneously. 
Economic dispatch and UC is solved by real valued PSO and 
binary PSO, respectively. In our approach, we have used the 
PSO-B-SA1 algorithm [16] for our optimization problem. 

The aforementioned steps in subsection C, are applied to 
this problem. The termination condition is considered as 
reaching to a specific number of iterations. The generation 
combination and the associated power output of each online 
unit , at last iteration , will be announced as an optimal 
solution. 
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A. Representation of Individual Particles 

Before using the PSO-B-SA1 algorithm to solve the 
problem, representation of a particle must be defined. Hence, 
we define the generators status (ON('l')/OFF('0')) and 
correspond the power outputs as a sub-particle. There are 24
sub-particles in one day comprising a particle. A particle 
would display the generators commitment schedule in one 
day. For example, if there are ten generating units to supply 
the power to meet the demand in a system, the dimension of 
an individual is 24×20. When the size of the population is 
ps, then the dimension of the population is equal to 
ps×24×20. 

B. Constraints Satisfaction 

The demand and reserve constraints are satisfied by 
penalty functions. In each hour, if committed generation and 
sum of the power output of each online unit can not meet the 
reserve and the demand, respectively, we add a penalty 
function, corresponding to the violated constraints, to the 
objective function. Consequently the formulation of the 
objective function (O.F.) can be written as 

2
1

1 1

2
2 (max)

1

. . [ [ ( )
2

( ) ]]

H N

h ih ih
h n

N

h h i ih
i

s
O F TPC c D P U

c D R P U

= =

=

= + −

+ + −

∑ ∑

∑
(15)

where s  is a penalty factor that is considered as 

0 log( 1)s s t= + + . Also t is the number of generation. The 

value of 0s  must be determined so that the speed and the 

convergence of solution will be guaranteed. From the 

experiment a value of 50 for 0s  is selected. In (15), 1c  is 

set to 1 if a violation to constraint (11) occurs and 2c  = 0 

whenever (11) is not violated. Likewise, 2c  is also set to 1 

whenever a violation of (12) is detected, and it remains 0 
otherwise. 

For satisfying the generation limit constraints, the initial 
power output is generated randomly within the power limits 
of a generator. After each iteration, if the power output of a 
generator violates its power limit, we set the power output at 
the boundary, which is violated. 

For satisfying min-up and min-down time, we enforce 
these constraints to each particle. After updating the position 
of particles, these constraints are checked. The state of a 

generator is changed whenever either iMU  or iMD  is 

violated. For example if a generator is committed at hour h

and )(tX off
i  is lower than iMD , the generator will be kept 

off-line. It is possible that after this action generation 
schedule of a particle cannot satisfy the demand. Therefore 
for evaluating fitness function, penalty functions must added 
to objective function. Furthermore, this particle might be 
gbest, so gbest must be revaluated during fitness function 
calculations. 

 To increase the speed of algorithm for finding the optimal 
solution, a set of initial conditions based on priority list is 
generated so that all constraints will be met. For this 

purpose, full average production cost of units is calculated, 
then based on this index units are committed sequentially, 
until the demand and required spinning reserve of associated 
hour is satisfied. It should be noted that during this 
commitment the minimum up/down time of units must be 
considered. It means that this initial generation satisfies all 
conditions of the problem, but it is not the optimal solution 
necessarily. 

V. NUMERICAL RESULTS

The PSO program was developed in MATLAB M-file and 
the simulation was carried out on a ten generating systems; 
the data for this is given in Table I and II. According to the 
experience, the following PSO and SA parameters are used: 
Population size: 30; 
Maximum iterations: 1000; 
Dimension: 24×20; 
Maximum Velocity (for discrete variables): 4; 
Maximum Velocity (for continuous variables): (max) (min)i iP P− ; 

The acceleration constants: 1 2 2c c= = ; 

Inertia weight: 1w = ; 
Annealing schedule: r = 0.9 ; 

Initial temperature: inT = 1 ; 

Stopping temperature: stopT = 0.0001

Table III shows the best solution found by our proposed 
method after 100 runs. As shown in Table III, the best cost is 
563938. Table IV gives a comparison between PSO-B-SA1 
and  the  several   other  techniques.  In  this  Table  the  best  

TABLE I 
DATA FOR THE SYSTEM OF 10 UNITS 

average and worst cost for several methods are given. 
Deterministic methods such as DP and LR have the same 
values for different runs, so these methods do not have 
average and worst cost. The average cost for GA was not 

300

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



available. As shown in Table IV, the average cost of PSO-B-
SA1 is 564115 and the worst cost is 564985. It should be 
noted that in this case the best result of HPSO [19] and PSO-
B-SA1 do not differ significantly. However, the average and 
the worst cost of PSO-B-SA1 is much better than the PSO, 
which implies that the solutions are generally closer to the 
global optima. From the simulation results, it can be seen 
that the proposed method has better results than the other 
techniques in term of total cost. Since the simulations were 
carried out by different computers, the simulation time is not 
compared here. 

VI. CONCLUSION

This paper presents a new methodology for solving the 
UC problems. The proposed algorithm is the combination of 
particle swarm optimization and simulated annealing 
methods. A test system consisted of ten units is simulated to 
demonstrate the effectiveness of the proposed method 
compared with other approaches. From the numerical 
results, it can be concluded that the proposed method 

provides a cheaper cost than those obtained from other 
methods. 

TABLE II 
LOAD DEMAND FOR 24 HOURS

TABLE III 
THE BEST SOLUTION OFTHE PSO-B-SA1 

Unit Number 
Hour Load 

(MW) 1 2 3 4 5 6 7 8 9 10 
Total 
Cost 

Start-
up Cost 

1 700 455 245 0 0 0 0 0 0 0 0 13683.1 0 
2 750 455 295 0 0 0 0 0 0 0 0 14554.5 0 
3 850 455 370 0 0 25 0 0 0 0 0 17709.5 900 
4 950 455 455 0 0 40 0 0 0 0 0 18597.7 0 
5 1000 455 390 0 130 25 0 0 0 0 0 20580 560 
6 1100 455 360 130 130 25 0 0 0 0 0 23487 1100 
7 1150 455 410 130 130 25 0 0 0 0 0 23262 0 
8 1200 455 455 130 130 30 0 0 0 0 0 24150.3 0 
9 1300 455 455 130 130 85 20 25 0 0 0 28111.1 860 

10 1400 455 455 130 130 162 33 25 10 0 0 30117.6 60
11 1450 455 455 130 130 162 73 25 10 10 0 31976.1 60 
12 1500 455 455 130 130 162 80 25 43 10 10 33950.2 60 
13 1400 455 455 130 130 162 33 25 10 0 0 30057.6 0 
14 1300 455 455 130 130 85 20 25 0 0 0 27251.1 0 
15 1200 455 455 130 130 30 0 0 0 0 0 24150.3 0 
16 1050 455 310 130 130 25 0 0 0 0 0 21513.7 0 
17 1000 455 260 130 130 25 0 0 0 0 0 20641.8 0 
18 1100 455 360 130 130 25 0 0 0 0 0 22387 0 
19 1200 455 455 130 130 30 0 0 0 0 0 24150.3 0 
20 1400 455 455 130 130 162 33 25 10 0 0 30547.6 490 
21 1300 455 455 130 130 85 20 25 0 0 0 27251.1 0 
22 1100 455 360 0 0 145 20 25 0 0 0 22735.5 0 
23 900 455 420 0 0 0 20 0 0 0 0 17645.4 0 
24 800 455 345 0 0 0 0 0 0 0 0 15427.4 0 

Total 563938 4090 
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TABLE IV 
COMPARISON OF RESULTS 

Total cost 
Method 

Best Average Worst 
BCGA[24] 567367 N/A N/A 
ICGA[24] 566404 N/A N/A 

SA[23] 565828 565988 566260 
DP[20] 565825 N/A N/A 
LR[20] 565825 N/A N/A 

PSOLR[25] 565275 N/A N/A 
LRGA[22] 564800 N/A N/A 
ACSA[26] 564049 N/A N/A 
EPL[27] 563977 N/A N/A 
ELR[27] 563977 N/A N/A 

UCC-GA[21] 563977 N/A 565606 
HPSO[19] 563942 564772 565785 

PSO-B-SA1 563938 564115 564985 
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