
Co-ordination in Intelligent Ant-Based Application Service Mapping
in Grid Environments

Sharath Babu Musunoori
SIMULA Research Laboratory

P.O.Box 134, 1325 Lysaker, Norway
sharath@simula.no

Geir Horn
SINTEF ICT

P.O.Box 124, 0314 Oslo, Norway
Geir.Horn@sintef.no

Abstract— A key problem of component-based grid application
configuration is to map services onto the execution nodes of
the grid environment such that all services of the application
satisfy some minimum quality requirements. This problem is
known to be NP-hard. This paper presents two extensions to
our previous ant-based application service mapping heuristic, in
order to establish some coordination among the working agents
in a decentralized environment and improve its convergence rate.
The first extension proposes to use gatekeepers that learn to guide
the movement of intelligent foraging ants. The second extension
is a coordination mechanism to allow an ant to draw on the
learned knowledge of its co-workers. The simulation evaluation of
the proposed extensions shows that inclusion of scaled sleep time
further improves the convergence rates while the gatekeepers
seem to have a negative effect.

Keywords: Service Configuration, Mapping, Partitioning, Learning
Automata.

I. INTRODUCTION

Computational grids are widely accepted as future platforms
for parallel and distributed systems, since grid middleware
aims to solve problems of resource sharing and management
across organizational domains. However, achieving acceptable
performance in a computational grid environment remains a
difficult engineering challenge. On the other hand, a range of
distributed applications can be understood as a composition of
services [2]. The useful application experienced by the user is
consequently a service graph with corresponding communica-
tion among the services. Besides an overall functional behavior
of an application, its performance is estimated as a measure
of the non-functional (quality) behavior of services within in
the application. For this, services in this distributed application
need to acquire a set of resources (e.g. memory, CPU, disk,
input/output) such that they can perform their functional task
and contribute to the overall application performance. This
is particularly relevant to a broad class of applications that
require fulfilment of some quality requirements in order to
satisfy users’ needs. Such concerns occur not only in real-time
and multimedia applications, but also in any application where
a user is waiting for output. A grid node can thus be seen as a
capsule holding and executing a subset of an application’s ser-
vices. In the physical world there will be connections among
the capsules with certain network properties like bandwidth,
transmission delays and packet jitter.

Consequently, the fundamental problem addressed here is

the configuration of an application for a dynamic grid envi-
ronment. This is the problem of partitioning in a stochastic
environment: How to split the application’s service set �
onto a set of heterogeneous capsules �, each offering a set
of resources to the running services, such that all services
get sufficient resources to allow them to achieve at least
the minimum quality to be useful for the application and no
capsule is oversubscribed with respect to its resources?

The optimal service configuration is the one that simultane-
ously tries to maximize the quality levels for all services from
the given set of available resources of the grid environment.
However, examining the whole solution space is impossible
since an exhaustive search through all possible configurations
in the solution space takes too long. Furthermore, computa-
tional and communication resources in the grid environment
may join and leave very often. Thus, the objective is to seek
a feasible solution instead of the optimal solution. A feasible
service configuration is the one that tries to achieve at least
minimum required quality levels for all services from the given
set of resources.

Despite the success of various heuristics in solving the
combinatorial optimization problems like the one at hand,
they do not scale and fail to deliver for large systems since
they often need full control over the system in order to make
global decisions. Additionally, these methods may not live
up to their expectations if the solution space has stochastic
behavior. One natural extension to this is to model a system
where several individual entities make appropriate decisions
that will eventually lead to a global convergence. Such an
extension may create a decentralized environment for decision
making where all agents coordinate with each other to generate
a global behavior for the system.

The ant system (AS) was inspired by the natural behavior of
social elements (a colony of ants or wasps) of an ecosystem.
With an objective of completing a given task, each ant walks
within the environment (usually a graph) and updates its
objective function while cooperating with other ants working
for the same purpose [1]. Such a foraging behavior of multiple
ants create a collective intelligence, which is capable in
nature to generate useful solutions. The present authors have
previously shown how the metaphor can be applied to the
problem at hand [4]. In order to improve convergence on a
solution the ants were made intelligent by the use of learning
automata in [5]. The use of learning automata for this problem

303

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

is motivated by the fact that the fastest known equipartitioning
algorithm is based on a fixed-structure stochastic learning
automata (FSSA) [8]. Recently learning automata have also
been successfully used to map the processes (services) of an
application onto processing nodes [3] [6], and that problem
resembles the one at hand.

In order to improve the convergence beyond what was
achievable with learning ants in [5], this paper proposes two
conceptual enhancements to the previous works:

• Gatekeepers: Learning Automata [7] whose job is to
advice the ants issued by a service what will be the
best next capsule for their movements. This is a static
intelligence in the capsules to complement the dynamic
or moving intelligence of the ants. The gatekeepers are
described in Section III.

• Ant-to-ant co-ordination: A drawback of the previously
cited approaches to solve this problem with an ant sys-
tem is that the ants were acting in complete isolation.
This contrasts the natural approach where real ants do
exchange information about what is the better location
of food. Thus, a co-ordination mechanism is proposed
that obeys the requirement of no global intelligence and
individually acting ants, still exploring the knowledge col-
lectively learned by the ants. The mechanism is described
in Section IV.

The algorithms have been tested and the results are analyzed
through simulations on randomly generated sets of application
services and grid environments, see Section VI. The analysis
in Section VII of the results obtained from simulations shows
that the proposed methods provide viable solutions to the
complex problem of application service partitioning in grid-
like environments.

II. SERVICES AND THEIR ANTS

A. The Ants

Inspired by the basic principles of ant colony [1] and learn-
ing automata [7] [8], an ant-based service partitioning logic
has been designed [5]: each service employs several intelligent
ants. Each ant is an agent that acts as a proxy for the service it
has been created for. The ant actually move in a random walk
among the capsules and check the quality levels of its service
where it to be deployed in the capsule currently hosting the
ant. Let �Si = {ASi,1,ASi,2, . . . ,ASi,|�Si |

} be a set of ants created
for a service Si. Similarly let � = {�S1 ,�S2 , . . . ,�S|�|} be the
set of all ants created for all services in � respectively. When
released all ants take a step before they update their service
quality on the destination capsule. Afterwards, the ants will
continue to move until all services in � find a suitable place.

To terminate an unsuccessful search, the ants are assumed
to die after some time according to the biological system
inspiring this work. Thus, a death rate d ∈ 〈0,1〉 is associated
with every move an ant does. In this way the number of
surviving ants will be binomially distributed with survival
probability 1−d, and the expected number of ants from service

Si alive after k moves is

|�Si(k)| = |�Si(0)|(1−d)k (1)

Given that only a fraction ξ of the ants should survive 2|�|
iterations, one has

d = 1− exp

(
log(ξ)

2|�|

)
(2)

When an ant arrives in a capsule, the perception or happi-
ness of the ant is measured by its service quality, given the
current location of all the other application services. If the ant
is happy with its current placement it sleeps in the current
capsule for a certain time period, tSi(k) before it continues
to move further. The happiness for an ant is defined as the
average distance between actual and minimum qualities, i.e.,
QSi, j −Qmin

Si, j for all quality dimensions j = 1, . . . , |�i|. These
distances are scaled to their [Qmin

Si, j,Q
max
Si, j] interval. The sleeping

time after k moves, tSi(k), for an ant of service Si is defined
as:

tSi(k) =

⎧⎨
⎩

−1 : QSi, j < Qmin
Si, j

|�|∗|�Si (k)|
|�i|

∑
|�i|
j=1

QSi, j−Qmin
Si, j

Qmax
Si, j−Qmin

Si, j
: Otherwise

(3)

Any positive value of tSi(k) means the capsule has enough
resources to host its service.

The ants can make an intelligent decision whether to stay
with its present capsule or move to another [5]. The ant re-
evaluates the quality when it wakes up, and if the capsule still
has the capacity to host its service, there is no reason for it to
move around. In this case the ant has become more confident
that the current capsule is the best one for its service. In other
words, each ant has a confidence level counter counting the
number of times it goes to sleep in the same capsule. In the
same way, when an ant wakes up and finds that the capsule
no longer is able to satisfy its service, its confidence in the
capsule is reduced. However, this does not imply that the ant
should move because the unfavorable interim conditions could
be caused by the current time variate service configuration.
The ant should move only if its confidence is reduced to zero,
otherwise it should hold on to the capsule a little longer and
move to the end of the ant execution list without sleeping.
In this way the other ants get the opportunity to move and
change the service configuration before the ant re-evaluates
the situation.

B. The Services

The sleeping times of individual ants force them to flock
onto one or more capsules capable of hosting their service.
This allows a service to detect the “best” capsule based on
location and confidence of its ants. The services themselves
move based on their ants’ confidence. In other words, a service
is said to be present in the capsule or the computing node with
the maximum total confidence of its ants.

There is a question whether to count the confidence left
behind by the dead ants or not. In [5], the confidence gained
by the dead ants was also considered while calculating the total

304

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

confidence of local ants for a service placement. Positively one
can see this as the dying ants leave their confidence behind for
their co-workers. In other words, already learned knowledge of
a dead ant can still be useful for its service to get a consistent
impression of the environment.

However, this is not necessarily true because if one capsule
is optimal for some time for a service before another capsule
becomes optimal, it is likely that the ants owned by the service
flock on to the first capsule and consequently the confidence of
some of these ants will continue to exist in the first capsule in
the form of dead ants. In such case, the service will continue
to select the first capsule until the total confidence of its ants
on the second capsule is increased sufficiently for the second
capsule to be chosen. In this respect confidence gained by the
dead ants may not help the services in finding better places,
instead this may force the services to be biased towards one
or more capsules resulting in low convergence rate. To avoid
this situation, the dead ants’ confidence should be omitted
or should be reduced over the time. One innovation of this
paper is thus not to include the dead ants when computing the
confidence of the capsules.

III. GATEKEEPERS: GUIDING THE AGENTS

The job of the gatekeeper is to advice the ants of a
service what will be the best next capsule. For this it keeps a
probability vector the possible capsules and in the worst case
of a complete capsule graph this vector has length |�|. Thus,
a gatekeeper is a variable structure stochastic automaton [7]
defined by a probability vector p(t) =

(
p1(t), . . . , p|�|(t)

)
with

pi(t) being the probability that capsule i ∈ {1, . . . , |�|} will be
recommended as the next capsule for an ant to make a move
at time t.

Initially each service creates |�| gatekeepers and locates
them on each of the |�| capsules respectively. When an ant
issued by a particular service is to move from a capsule, it
interacts with gatekeeper of its service on that capsule. The
gatekeeper then proposes a destination capsule based on the
probabilities in its action probability vector.

The basic functionality of Learning Automata (LA) can be
described in terms of a sequence of repetitive feedback cycles
in which the automaton interacts with the environment. During
a cycle, the automaton chooses an action, which triggers a
response from the environment, a response that can be either
a reward or a penalty. The automaton uses this response and
the knowledge acquired from previous actions to determine
its next action. By learning to choose the optimal action, the
automaton adapts itself to the environment.

Fundamentally, in the terminology of the learning automata
theory, the gatekeeper gets a feedback from the ant when it
has computed the quality of its service at the new capsule.
If the ant finds “food”, the gatekeeper is rewarded for its
recommendation. On the other hand, if the capsule is not good
for the service owning the ant, the gatekeeper is penalized.

In this work the gatekeepers are modelled as Linear Reward-
Penalty automata (LR−P). Given that the environment is highly
non-stationary because the services move with the ants, the

action probability vector should be able to change over time.
Using this scheme, the possible capsules to be recommended
are called “actions” whose probability vector p(t) is changed
on both a positive feedback and a negative feedback. On a
favorable response for a chosen action i, a small portion is
reduced from each action probability value p j(t) for all j �= i
and the removed probability mass is added to the current action
probability value pi(t):

p j(t + 1) = λp j(t) ∀ j �= i

pi(t + 1) = 1−
|�|

∑
j �=i

p j(t + 1)

= 1−λ
|�|

∑
j �=i

p j(t)

= 1−λ(1− pi(t))
= λpi(t)+ (1−λ)

Note that the first update is done for all the elements of the
probability vector corresponding to the capsules not recom-
mended. Since the vector p(t) already was a probability vector,

∑
|�|
j �=i p j(t) = 1− pi(t), enabling the update for probability of

the recommended capsule to be simplified.
The value 0 < λ < 1 is a learning parameter, for which a

small value leads to fast convergence and high variance, while
a larger value slows the convergence and lowers the variance.

When there is a negative feedback the gatekeeper only
knows which recommendation was not a good one, but not
which of the other recommendations that would have been
better and should have increased probability. The updating
scheme will in this case reduce the probability of the action
that was penalized, and distribute the removed probability
mass onto the other actions. One only needs to ensure that
the probability vector remains a probability vector, hence

1 =
|�|

∑
m=1

pm(k + 1) = λp j(k)+
|�|

∑
m�= j

(λpm(k)+ c)

1 =

(
λ

|�|

∑
m=1

pm(k)

)
+

(
|�|

∑
m�= j

c

)

1 = λ +(|�|−1)c

and solving for the constant c gives

c =
1−λ

|�|−1

Thus the LR−P automaton responds to the unfavorable re-
sponses from the environment for recommending capsule i
by updating its action probability values as follows:

p j(t + 1) = p j(t)+
1−λ

|�|−1
∀ j �= i

pi(t + 1) = λpi(t) (4)

Given an abstract situation where the reward and penalties
are generated by an unknown stationary probability distribu-
tion, the action probabilities estimated by the LR−P automa-
ton will not be identical to the true underlying probability

305

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

distribution. This is strengthened by the fact that the LR−P

automaton is an ergodic scheme that will never converge
to any fixed set of probabilities, but have an ever changing
action probability vector. However, the interest here is not in
the rigorous estimates as such, but in the capability of the
gatekeeper to guide the ants. For this the action probabilities
of the LR−P automaton may be sufficient.

IV. CO-ORDINATION OF THE AGENTS

One desirable property of the proposed system is that
the ants (agents) work without any central intelligence. It is
however likely that an ant may be more successful in its
search if it is able to exploit information also from other
ants, like real ants do in nature when meeting fellow workers
on the path. This section proposes a simple co-ordination
mechanism by enhancing the already introduced concepts. The
fundamental idea is to allow the ants of less confident services
to move more around than the ants representing more confident
services. Here the confidence of a service is understood as the
total confidence of its ants.

Referring to the Section II-A, each arriving ant evaluates
the quality achievable by its service on the capsule and if this
value exceeds the minimum quality required by the service
the ant goes to sleep in that capsule. Recall that the ant sleeps
for a time tSi(k) proportional to the quality obtained. Except
creating randomness in the execution order of intelligent ants,
this does not help to establish any communication among the
agents that are expected to coordinate with each other.

Therefore it is proposed to use a scaling factor which allows
an ant to sleep as a function of the confidence of its co-
workers. Along with its current sleep time measured by (3)
the final scaled sleep time for an ant of a service Si after k
moves:

TSi(k) = (fSi(k)+ 1)tSi(k) (5)

Here fSi(k) is a scaling factor which represents the commu-
nication among the moving ants of a service. The scaling
factor could be any monotonically increasing function of the
confidence level attained by all the ants of a service. In other
words, each ant estimates the scaling factor as a function of
the confidence levels of its co-workers so that the ant can place
itself in an appropriate place within the execution queue. For
a higher value of the scaling factor, an ant is expected to sleep
for a longer time. In principle this should allow the ants with
zero confidence, and also the ants with less group confidence,
to move to the front of the ant execution queue and make more
moves than their more confident colleagues.

A simple linear scaling factor for an ant ASi,m of a service
Si can be defined as

fSi,m(k) =
∑
|�Si (k)|
j �=m c j

(|�si(k)|−1)cmax
(6)

Thus, the scaling factor calculated for an ant is a ratio between
the total confidence of all remaining ants of a service and the
maximum total confidence achievable by all remaining ants of

the service. This ratio is a value between zero and one. But if
there is a large number of ants working for their services, the
above defined linear function may not be efficient enough to
discriminate the execution order for the different ants.

Therefore it is suggested to use a non-linear function to
derive an appropriate scaling factor. For example, one can use
the following simple non-linear function assuming that this
will influence the overall convergence performance of the ant-
based algorithm.

fSi,m(k) = log

⎛
⎝|�Si (k)|

∑
j �=m

c j

⎞
⎠ (7)

V. THE ALGORITHM

The final algorithm consists of two parts derived from the
above discussion:

• A subroutine for the functional behavior of an intelligent
ant shown in Figure 1. Observe that step 8 of this
subroutine has two versions. One that will be used when
there are no gatekeepers, i.e. the next capsule to move
to has to be selected completely at random. The second
variant is for the case where there is a gatekeeper advising
the next capsule. In this case the ant will move to the
capsule, check if there is sufficient quality for its service
on that capsule and provide the necessary feedback to the
gatekeeper.

• The overall algorithm of Figure 2. The main loop of
the algorithm takes the first ant out of the time sorted
execution queue and gives this ant the possibility to
execute according to the above sub-routine for the ants.
After the ant has moved, its service will evaluate the
situation and move to a new capsule if there is a change
in the capsule with the maximum confidence level. This
loop continues until either all ants have died, a non-
convergence, or a feasible solution to the partitioning
problem has been found, i.e. the system has converged.

VI. SIMULATION

Before we continue to test the above described ant-based
algorithm for a set of services, � in a grid setting with |�|
computational nodes, it is important to make sure that there
is at least one feasible configuration such that all services are
satisfied with their minimum quality requirements. For this we
first generate the grid computational environment with random
amount of resources. Then the minimum quality requirements
of all services are set such that there is a feasible configuration
�. The feasible service configuration thus generated here, will
fully exploit the available communication and computational
resources of the grid environment. More details on how this
was done can be found in [5].

The generation of an ordered feasible solution � is neces-
sary because the proposed algorithm will never converge if
the service configuration problem has no solution. In order to
test the applicability of the proposed algorithm for the service
configuration problem, it should be invoked from a random
starting configuration. This is constructed by first redistributing

306

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Parameters
A service, Si; Death rate, d.

Initialization
Nest of an ant is the host capsule of
its service: Nest(ASi, j)=HostCapsule(Si) ∀ j ∈
[1, |�Si |].

1: begin INTELLIGENT ANT
2: Calculate quality (QSi, j ∀ j) for its service Si.
3: if (QSi, j ≥ Qmin

Si, j ∀ j)
4: Increase Confidence.
5: else
6: Decrease Confidence.
7: if (Confidence level is zero)
8: Move to a capsule Cn selected randomly,

Cn ∈ �.
OR
8A. Move to a capsule Cn selected by
gatekeeper on the current capsule Cm.
8B. Calculate service quality (QSi, j ∀ j).
8C. Return the feedback received from Cn

to the gatekeeper on Cm.
9: Decay with the rate, d. See section II-A.

10: Calculate sleep time, tSi(k). See (3).
11: Calculate final scaled sleep time, TSi(k). See (5).
12: if (Feasible Configuration Check)
13: Force Si to move to the capsule Cm.
14: go to step 16.
15: Sleep for time, TSi(k).
16: end

Fig. 1. Subroutine for the functional behavior of an intelligent ant

the |�| first services one by one onto the capsules ensuring that
each capsule host at least one service. This is deterministic
rehashing since these services were allocated to only the first
capsules in the above construction of feasible configuration.
Then the remaining services are assigned randomly to host
capsule U [1, |�|]. Note that this may indeed create a very
skewed distribution of the services per capsule. In order to
have control on the goodness of the random numbers the ran2
generator proposed by [9, pp. 282–286] was used.

The algorithm was implemented in C++ based on the frame-
work of [3] and the test software ran on the Condor1 LAN
grid system at the University of Oslo. The usefulness of the
algorithm is tested for a range of grid platform sizes measured
in terms of number of computational nodes (capsules), and
application sizes in terms of the number of services. It is also
important that the average number of services per capsule
differs. By keeping the expected number of services per
capsule, E {|�m|} = {4,6,8,10}, the tests are conducted for
all combinations of, |�| = {4,8,16} and |�|= E {|�m|}× |�|.

1http://www.cs.wisc.edu/condor/

Input
A set of capsules, �; A set of services, �.
Communication pattern, comm(Si,S j)∀ i, j.
The quality requirements, Qmin

Si, j, Qmax
Si, j ∀ i, j.

Assumptions
There is at least one feasible solution.

Initialization
Create a random partition, �(0).

Output
A feasible partition of the service set � =

∪
|�|
i=1�i such that at least minimum quality

requirements of each service Si are satisfied.
1: begin
2: Create x∗ |�| ants for all Si in �.
3: Release all ants in �.
4: do
5: Allow an ant to perform its task.

5A. Choose the ant at the head of the
execution queue.
5B. Execute the ant subroutine:

INTELLIGENT ANT. See Figure 1.
6: The service owning the executed ant is

placed based on its ants’ confidence.
7: if (AllAntsDead)
8: Report ”No Convergence”.
9: Go to step 13.

10: until
11: All services in � achieve at least mini-

mum specified quality levels, i.e. QSi, j �

Qmin
Si, j ∀ i, j.

12: Report the service partition (configuration).
13: end

Fig. 2. Pseudo code for the basic algorithm to partition the services

VII. DISCUSSION

The proposed solution methods are evaluated based on the
convergence of the algorithm on feasible solutions. The five
variants of our ant based algorithm would naturally terminate
when all the ants have died. An evaluation of convergence
only makes sense if there is at least one feasible solution.
This is precisely the reason for � as initialized in section VI.
With �, there is at least this feasible solution guaranteeing
that a non-convergence is caused by a failing search algorithm.
Initially each service dispatched 5|�| ants and the death rates
are computed by (2) with ξ = 0.75.

The fraction of 300 simulations capable of finding a feasible
solution is given in the Table I for the capsule set sizes 4,
8, and 16. When the confidence of dead ants is being used
for placing a service, the reported convergence rates [5] were
very low in particular for 8 and 16 capsule combinations.
In contrast, convergence rates of intelligent ants presented in
this paper show significant improvement and this shows the
necessity to eliminate the dead ants’ confidence.

The first enhancement of this paper was to use external

307

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE I

THE CONVERGENCE (CON) RESULTS FOR 4, 8 AND 16 CAPSULES.

|�| |�| Action Type Convergence(%)

4

16

Intelligent Ants 96.0
LR−P Gatekeeper 92.66

ScaledSleeping - Linear 95.66
ScaledSleeping - Nonlinear 97.33

LR−P - ScaledSleeping 93.66

24

Intelligent Ants 97.33
LR−P Gatekeeper 97.66

ScaledSleeping - Linear 97.66
ScaledSleeping - Nonlinear 98.66

LR−P - ScaledSleeping 100.0

32

Intelligent Ants 94.66
LR−P Gatekeeper 94.33

ScaledSleeping - Linear 96.0
ScaledSleeping - Nonlinear 97.0

LR−P - ScaledSleeping 97.66

40

Intelligent Ants 89.66
LR−P Gatekeeper 92.33

ScaledSleeping - Linear 89.66
ScaledSleeping - Nonlinear 89.66

LR−P - ScaledSleeping 95.33

8

32

Intelligent Ants 99.0
LR−P Gatekeeper 99.33

ScaledSleeping - Linear 98.33
ScaledSleeping - Nonlinear 100.0

LR−P - ScaledSleeping 98.66

48

Intelligent Ants 98.66
LR−P Gatekeeper 99.33

ScaledSleeping - Linear 98.66
ScaledSleeping - Nonlinear 97.66

LR−P - ScaledSleeping 99.0

64

Intelligent Ants 90.66
LR−P Gatekeeper 86.0

ScaledSleeping - Linear 87.33
ScaledSleeping - Nonlinear 93.66

LR−P - ScaledSleeping 91.0

80

Intelligent Ants 70.0
LR−P Gatekeeper 68.66

ScaledSleeping - Linear 73.33
ScaledSleeping - Nonlinear 75.33

LR−P - ScaledSleeping 72.0

16

64

Intelligent Ants 100.0
LR−P Gatekeeper 100.0

ScaledSleeping - Linear 100.0
ScaledSleeping - Nonlinear 100.0

LR−P - ScaledSleeping 100.0

96

Intelligent Ants 99.66
LR−P Gatekeeper 96.33

ScaledSleeping - Linear 99.0
ScaledSleeping - Nonlinear 99.0

LR−P - ScaledSleeping 97.66

128

Intelligent Ants 83.0
LR−P Gatekeeper 64.33

ScaledSleeping - Linear 82.0
ScaledSleeping - Nonlinear 91.0

LR−P - ScaledSleeping 74.66

160

Intelligent Ants 47.0
LR−P Gatekeeper 24.0

ScaledSleeping - Linear 49.83
ScaledSleeping - Nonlinear 49.33

LR−P - ScaledSleeping 39.33

learning agents that act as gatekeepers for the moving ants and
provide some feedback when the ants require to know where
to move. The use of such gatekeepers together with intelligent
ants is labelled as ”LR−P Gatekeeper”. In this setting both
moving ants and gatekeepers are considered to be intelligent
and thus it is expected that the ants will quickly converge to
a feasible solution with higher convergence rates. However,
gatekeepers seem to have a negative affect on intelligent ants,
since the convergence results are inferior to the ones achieved
with just intelligent ants.

It is indeed a paradox that applying learning twice gives
the worst results. However, from an information theoretical
point of view, it is the same quality evaluation that is used
twice: first to provide a feedback to the gatekeeper of the
capsule just left behind by an ant, and second to set the initial
ant confidence to unity provided that the ant went to sleep
in the new host capsule. Using the same information two
times does not bring any additional information, and hence
the performance of intelligent ants with gatekeepers should be
identical to the the performance without the gatekeepers since
it can hardly be any better.

The reduction in performance when using gatekeepers
comes from the outdated advice they bring. Consider one gate-
keeper and one ant. The ant moves according to the advice of
the gatekeeper, and is satisfied in its new capsule. After some
sleep the ant wakes up and re-evaluates the quality achievable
for its service. Unfortunately, it is no longer sufficient and the
ant moves on. However, the gatekeeper is ignorant of this new
information, and is likely advice the same capsule also to the
next ant passing. In other words, in a stationary environment
the gatekeepers would have performed better, but with the
services moving around based on the location of their ants, the
environment becomes non-stationary and the advises given by
the gatekeepers will necessarily be outdated. For the ant it is
better to act as if nothing is known of the environment than
listening to outdated information.

There are two changes that may make the gatekeepers
perform better with intelligent ants:

• Increase the number of ants dispatched by a service. This
will have a cost in terms of extra memory consumption
by the algorithm as well as in execution time. However, it
will allow more ants to pass a gatekeeper more frequently
such that its probability vector will be more frequently
updated enabling the gatekeeper to adapt to the changed
environment.

• Unlearn as ants move further. The idea is that the ant
gives feedback to the gatekeeper two times: A positive
feedback when it arrives to a capsule and finds the
quality level acceptable. Then a negative feedback if it
has to leave the capsule at some later time because the
environment has changed to the degree that the capsule
is no longer capable of sustaining the ant’s service.
This requires the ant to remember the last gatekeeper it
interacted with. Note that this approach is philosophically
different from the one originally proposed in this paper
since adding memory is adding intelligence. This because

308

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

intelligence can be understood as memory and an algo-
rithm to use the remembered information, and learning
as the way to update the remembered information based
on new information.

If an ant has non-zero confidence (see step 7 in Figure 1),
it makes no move but continue to sleep in its current location.
In other words, the corresponding gatekeeper in that capsule
is asked only if the ant has zero confidence and moves to a
remote capsule. However, the cases where the ants increase
or even decrease their confidence levels, are not informed to
their gatekeepers on that capsule. In particular, if there are not
enough resources available to satisfy the ant’s service quality
(see step 2 in Figure 1), the corresponding gatekeeper has to
wait until the the ant’s confidence is reduced to zero before the
gatekeeper is allowed to make changes to its action probability
vector. This situation leaves two intelligent groups of agents
(intelligent ants and gatekeepers) partly isolated. This would
also indicate that the further investigations are required to get
more insight and improve the convergence.

The second enhancement was to use a scaling factor to
represent the communication among the ants as a function
of confidence of co-workers of an ant. The motivation for
introducing a scaling factor was to force unsatisfied ants and
their services to move more often than the happy ants that still
can sleep in a safe capsule. This naturally allows less confident
ants to make more moves giving them more opportunities to
gain enough confidence on behalf of their services. When
the concept of scaling factor (see equations (5) (6) (7)) is
applied together with intelligent ants, the convergence results
are slightly better than the ones achieved with intelligent
ants. Further the use of a non-linear scaling factor have the
advantage over linear scaling factor, at least for 8 and 16
capsule combinations. Although it is tempting to assert that
higher scaling factors would yield better results, it is not clear
how the long sleep times of happy ants would compensate the
overall execution time of the algorithm.

When both gatekeepers and (non-linear) scaling factor were
used together with intelligent ants, the resultant convergence
rates are better than the ones of LR−P Gatekeepers (see Table
I). However it is important to note that this small improvement
was due to scaling factor and underperformance was due to
gatekeepers.

VIII. CONCLUSION

This paper builds on previous attempts to solve the problem
of service allocation in a dynamic grid environment by the use
of intelligent foraging ants searching the capsule graph for
a good placement for the service they are representing. Two
extensions proposed in this work are: (1) learning gatekeepers
to guide the movement of the ants among the capsules to
enhance the efficiency of the capsule graph exploration (2) a
scaled sleep time where each ant’s sleep time is a function of
the confidence of its co-workers. The results obtained from ex-
tensive simulations on randomly generated application services
and grid environments, show that the use of scaled sleep time
improves the convergence rates because the variations in sleep

times of ants allow the less confident ants to move more often.
However it was surprising to learn that the guiding elements,
gatekeepers, have no positive effect when combined with
intelligent ants. Instead the convergence results achieved with
gatekeepers are inferior to the ones achieved with intelligent
ants presented in Section II-B. In the future, we will focus
on identifying more efficient coordination techniques that will
further improve the convergence rates.

REFERENCES

[1] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System:
Optimization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[2] D. Gannon et al. Programming the Grid: Distributed Software Compo-
nents, P2P and Grid Web Services for Scientific Applications. Journal
of Cluster Computing, Special Issue on Grid Computing, July 2002.

[3] Geir Horn and B. John Oommen. A fixed-structure learning automaton
solution to the stochastic static mapping problem. In H. J. Siegel,
David A. Bader, and Jean-Luc Gaudiot, editors, Proceedings 19th IEEE
International Parallel and Distributed Processing Symposium, pages 297b
– 297b, Denver, Colorado, April 2005. IEEE.

[4] S. B. Musunoori and G. Horn. Ant-based approach to the quality aware
application service partitioning in a grid environment. In IEEE Congress
on Evolutionary Computation (CEC 2006). IEEE, 2006.

[5] S. B. Musunoori and G. Horn. Intelligent ant-based solution to the
application service partitioning problem in a grid environment, 2006.
Accepted to the Sixth International Conference on Intelligent System
Design and Applications (ISDA 2006).

[6] S.B. Musunoori and G. Horn. A Fixed Structure Learning Automaton
Solution to the Quality Aware Application Service Configuration in a
Grid Environment. In Proceedings of 17th International Conference on
Parallel and Distributed Computing and Systems (PDCS 2005), Phoenix,
AZ, USA, November 2005.

[7] K. S. Narendra and M. A. L. Thathachar. Learning Automata: An
Introduction. Prentice-Hall, Englwood Cliffs, NJ, 1989.

[8] B. John Oommen and Daniel C. Y. Ma. Deterministic learning automata
solutions to the equipartitioning problem. IEEE Transactions on Com-
puters, 37(1):2–13, January 1988.

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C++: The Art of Scientific Computing.
Cambridge University Press, 2nd edition, 2002. ISBN 0-521-75033-4.

309

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

