
Orientation in a Trail Network
by Exploiting its Geometry for Swarm Robotics

Heiko Hamann, Marc Szymanski, and Heinz Wörn
Institute for Process Control and Robotics

Universität Karlsruhe
76128 Karlsruhe, Germany

Email: {hamann, szymanski, woern}@ira.uka.de

Abstract— Two control algorithms for a swarm robot are pre-
sented that enable it to orientate itself by using information from
the geometry of trail bifurcations within a trail network. The
development of these algorithms was inspired by the behavior of
Pharaoh’s ants as reported by Jackson et al. [4]. The performance
of the robot is analyzed in a large number of embodied exper-
iments with different bifurcation angles. The reactive behavior
implemented by simple rules is sufficient to accomplish this task
using a robot of limited capabilities. The frequency of correct
reorientations is maximized when the trail bifurcation angle is
60 degrees, as found in natural networks.

I. INTRODUCTION

The hardware used in swarm robotics is in general charac-
terized by its boundedness concerning computational power,
memory, energy, communication abilities, accuracy, diversity
and number of sensors and actuators [2], [8]. Despite all
this imprecision, useful and complex behavior can still be
generated by using rules that are both probabilistic and simple.
Nature, especially social insects, served as the biggest source
of inspiration for such behaviors.
The work of this paper was inspired by the behavior of ants
that extract polarity information out of the geometry of their
trail networks [3], [4]. Our aim is not primarily a direct
application of the presented algorithms in swarm robotics but
a proof of concept. Starting from an observed natural phe-
nomenon, that cannot be explained by biologists yet, we tried
to mimic at an abstract level basic concepts of the environment,
the ant’s sensors, and its behavior. The most important part
was, however, unknown which is the algorithm causing this
observed behavior. The only clue that was available, was that
a solution exists. However, it is unknown whether ants have
other capabilities involved in this trail following experiment
that the used robot does not have. The effectiveness of this
approach might be a benefit for both communities, biologists
and swarm roboticists.
In the following the robot is supposed to move on trails that
enable it to orientate itself. The emergence of this trail system
is not addressed in this paper and could be the result of a
self-organized process as it is observed, for example, in social
insects: “Most trail-laying ants produce complex trail net-
works branching throughout their foraging environment” [4].
A schematic representation of such a trail network is given in
Fig. 1. Thus, in the ideal case we have a tree structure and
every bifurcation has two branches leading to the foraging

area and one leading to the nest entrance. In this work the
robot behavior at a single bifurcation of this kind will be
investigated as it was done by Jackson et al. [4]. A probabilistic
reorientation procedure is sufficient since there are usually
several consecutive bifurcations, i.e. there are several chances
to reorientate.

nest entrance
foraging

area

foraging
area

Fig. 1. Schematic representation of a trail network.

Besides the inspiration by nature the algorithms were found
out in a traditional trial-and-error fashion because of the lack
of other applicable top-down approaches. However, this is
unendurable and first steps to more sophisticated top-down
approaches have been proposed recently [5]–[7]. The use of
online learning techniques for such a swarm robot would have
been a research topic on its own, although an interesting one.
The option of developing or learning a controller in simulation
was consciously ignored because there are too many important
subtleties that are complicated to simulate in this scenario, e.g.
highly variable turning angles or intrinsic inhomogeneities in
the trail on which the found robot behavior relies as discussed
in section III.
Please note that the purpose of this work is not to produce a
realistic model of the Pharaoh’s ant. Whether the reorientation
behavior of this ant is reactive or makes use of memory is an
open question. In a previous biological work the reorientation
behavior of the Pharaoh’s ant is also modeled with agents
acting reactively [3].
In the next section we briefly describe the swarm robot
“Jasmine”, which is a respectable byproduct of the European
I-SWARM project, while the main aim of this project is to
develop a robot in sizes of one magnitude below Jasmine’s
(about 3×3×3 mm3 compared to about 3×3×3 cm3). In
section III we will describe the algorithms in detail and in
section IV we present the results.

310

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

Fig. 2. The Jasmine swarm robot.

II. MATERIALS AND METHODS

A. The Swarm Robot “Jasmine”

The swarm robot Jasmine (see Fig. 2 and [1]) was developed
especially for swarm robot research. Despite its small size of
about 30 × 30 × 30 mm3, it has good local communication
abilities and a far distance scanning and distance measuring
sensor. The good communication abilities result from six
infra-red sensors and emitters arranged around the robot with
a displacement of 60 degrees. These sensors are also used
for short distance measurements. The far distance measuring
sensor is hooked to the front of the robot. Two differentially
driven wheels give this micro-robot a high manoeuvrability at
a high speed. Generation two, that was used in this paper, has
an Atmel Mega 8 micro-controller with 1 Kbyte RAM and
8 Kbyte Flash. Two LiPo battery packs provide 7.2 V for up
to two hours of motion.
Generation three of the robot, that was not used here, has
an Atmel Mega 168 micro-controller with 1 Kbyte RAM and
16 Kbyte Flash. Now a single LiPo battery pack is sufficient
with the same endurance and optical encoders are available
that allow odometric measurements in the mm-range.
Different from some other swarm robots Jasmine supports
only local communication. Long distance communication via
radio frequency is not implemented and does not correspond
with the views of the construction team about swarm robot
capabilities.
In this work we used an optional sensor board with two
photodiodes that can be fixed on top of the robot. Here
the board just sends permanently an averaged value of the
measured brightness encoded in one byte per sensor to the
robot’s controller. These values are the average of 50 sensor
measurements. In the experiments here, a video projector that
projects the trails onto the arena was the only light source. The

Fig. 3. The Robot Jasmine and the projection of the trail.

sensor board gives values of the full interval from 0 (dark)
to 255 (bright) depending on the brightness of the part of
the projected image that is shed on the photodiodes. In the
following the currently measured value of the left and the
right photodiode will be referenced by L and R.
Because of its design for low cost and the artificial restriction
to use no long distance communication the Jasmine robot
might seem to be below the technological state of the art.
However, this makes it a suitable testbed for even much
smaller robots because besides the locomotion there are no
conceptual problems for miniaturization.

B. Motion Description Language Two Extended (MDL2ǫ)

To program the robot we used MDL2ǫ as it is presented
in this proceedings [9]. The Programming of a swarm robot
can be done very efficiently using MDL2ǫ if all needed
atoms (smallest abstract component in an MDL2ǫ-controller)
have been already implemented. An MDL2ǫ program is
usually very compact and concise, which makes quick changes
easy. The implementation work of the below algorithms was
definitely sped up by using this programming framework.

C. Experimental Setup

The setup for the experiments is simple. The video projector
that is mounted about 2.5 m above the arena projects the trail in
white on the floor (see Fig. 3). At positions in the arena that are
not directly below the projector the light beams down in angles
smaller than 90 degrees which is displayed by the shadow of
the robot and its displacement to the projection on the ground
in Fig. 3. The geometry of the projected trail bifurcation for
α = 90◦ is shown in Fig. 4 and the key situations of the robot
approaching a bifurcation are shown in Fig. 5.

III. TWO ALGORITHMS FOR THE ORIENTATION IN TRAIL

NETWORKS

In this section we present two algorithms, one that enables the
robot to find the nest (we will refer to this as the nest algo-
rithm) and one to find the food places (food algorithm) in

311

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

α

20cm

20cm

20cm

B

C

D
A

3cm

to nest

to food

Fig. 4. Geometry of a trail bifurcation.

a trail network of trail bifurcations of given angles. In an
implementation of a transportation scenario the robot could
switch between these two algorithms using simple MDL2ǫ
mechanisms.
The trail following behavior is based on the input of the
two photodiodes only. They are used to basically keep the
robot on the trail and to identify the bifurcations. Three
different events are relevant: First, at one sensor it is much
brighter than at the other one: |L − R| > δdiff, for some
threshold δdiff. See Fig. 5(b) for a typical situation in the
experiment where this holds. Second, at both sensors it is very
dark: (R < δdark) ∧ (L < δdark), for some value δdark ≪ 255,
see Fig. 5(c). Third, at both sensors it is very bright:
(R > δbright) ∧ (L > δbright), for some value δbright > δdark, see
Fig. 5(d). For simple straight-ahead driving on the trail it
would be sufficient to rotate to the brighter side (in the
following this will be called correction turn) if at one sensor
it is much brighter than at the other one (L > R + δdiff or
R > L + δdiff). To reorientate correctly at the bifurcations in
the network more sophisticated mechanisms are needed which
will be discussed below.

A. The Food Algorithm

We say that walking to C or B in Fig. 4 takes you to the
foraging area as it is true in most cases for trail networks of
the Pharaoh’s ant [3]. Hence in this section the robot should
leave the bifurcation at C or B. Additionally, in case it moves
in the wrong direction, i.e. it approaches a bifurcation from C
or B, it should turn and leave the bifurcation either at C or B
but not at A. A simplified flow chart of the algorithm is given
in Fig. 6. The conditions are implemented as interrupts. Thus
the execution of an action will be stopped if the superordinate
conditions do not hold anymore. The values that were used
for the thresholds are given in Table I.
The first condition checks if the light at one sensor is much
brighter than at the other one. If |L − R| > δdiff is true, a
correction turn will be executed. Otherwise it is checked if it
is quite dark at both sensors. Then a u-turn is performed and

TABLE I

BRIGHTNESS THRESHOLDS.

Threshold Value
δdiff 20
δdark 11
δbright 130

otherwise the robot keeps going straight.
Here the correction turn is, with up to about 45 degrees, bigger
than the correction turn of the nest algorithm (see below). It
should be noted that this turning angle is not constant. The
rotation will be stopped immediately if the interrupt does not
hold anymore, e.g. in case of a correction turn to the left the
rotation is stopped if the interrupt condition L > R is not
true anymore. Even if the turn would be repeated in the exact
same environmental setting, the angles could differ a lot since
the version of the Jasmine robot that we used in this work
(generation two) has no odometry.
In the case of coming from A the basic idea of this algorithm
is to avoid approaching the bifurcation in a driving direction
parallel to the line through A and D because this might
trigger a u-turn if both photodiodes leave the trail almost
synchronously. Coming from B or C we hope for this u-turn
when the robot approaches the big angles ADB or ADC (for
α 6= 120◦) as it is shown in Fig. 5(c).

B. The Nest Algorithm

In the nest algorithm the correction turn is, with up to about
35 degrees, smaller than the correction turn of the food
algorithm. The other change to the food algorithm is an extra
condition that checks for a high brightness at both sensors. In
that situation the robot turns up to 120 degrees. The rotation
direction is chosen randomly with a 50% chance of a right
and a 50% chance of a left turn.
The basic idea is that the robot coming from A is nicely
aligned to the trail such that it gets into the situation shown
in Fig. 5(d). Then a bigger turn of up to 120 degrees followed
by correction turns should bring it back to A. Coming from B
or C the robot should overcome the bifurcation by correction
turns and should not approach the position of brightest light.

IV. RESULTS

The setup for our experiments is shown in Fig. 4. In corre-
spondence to the natural networks the direction to A is called
“to the nest” and to B and C is called “to the food”. The bi-
furcation angles were varied: α ∈ {30◦, 45◦, 60◦, 90◦, 120◦}.
Each experiment starts with the robot being placed at A, B, or
C positioned straight ahead and switched on. The experiment
ends with one of six possible outcomes: The robot arrives at
A, B, or C by having driven at least 20 cm on the trail before
having possibly executed a u-turn, it executed a u-turn before
having driven at least 20 cm (failure), it left the trail (failure),
or it got caught in some repetitive behavior for more than two
seconds, e.g. turning permanently.
For the food algorithm the definition of correct turns is as
follows: The robot started at B or C (sine qua non) and arrived

312

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

(a) Approach of a bifurcation coming from the
food place.

(b) Typical situation for a correction turn (here to
the right).

(c) Typical position for a u-turn.

(d) Position of brightest light.

Fig. 5. Exemplary situations occurring when the robot (grey box with two
little black boxes indicating the position of the photodiodes) approaches the
trail bifurcation (in white).

Start

|L − R| > δdiff

L > R

R < δdark
∧L < δdark

Rotate
Left

(≈ 45◦)

Rotate
Right

(≈ 45◦)
U-turn

(≈ 180◦)
Move

Forward

false

true

false

true

false

true

Fig. 6. Simplified flow chart of the food algorithm.

at B or C again or it ended up in a repetitive behavior. This
is a fair classification because the robot has recognized the
bifurcation and with a more sophisticated algorithm it would
be possible to minimize repetitive behavior and dropping the
restriction of a purely reactive control it would be possible to
avoid it at all. The definition of incorrect turns is this: The
robot started at A (sine qua non) and arrived at A again or
ended up in a repetitive behavior.
The definitions for the nest algorithm are defined in an analog
way. Since fails occurred very seldom (< 1%), they were not
counted and experiments were repeated in case of fails.
For each, nest and food algorithm, we performed 50 exper-
iments starting at B, 50 starting at C, and 100 starting at
A for α ∈ {30◦, 45◦, 90◦, 120◦} and 100 at C, 100 at B,
and 200 at A for α = 60◦. The results are shown in Fig. 8
and the ratio between the number of correct reorientations Rc

divided by the number of incorrect reorientations Ri is given
in Fig. 9(a). As long as Rc/Ri > 1 holds the algorithm is in
principle effective. The average of both algorithms is clearly
below the reported performance of the Pharaoh’s ant [4]. The
food algorithm performs much better than the nest algorithm.
This is discussed below. But the nest algorithm is still effective
for α < 75◦ although it might take a long time for a robot
to find the nest. The peak of both algorithms is at α = 60◦

as observed in ants [4]. The noticeable drop in performance
for α = 45◦ is induced by an incompatibility of the average
correction turn angles and α. Although in many experiments
for α = 45◦, at first, the robot turned correctly, it then
approached the border of the straight trail paths in a low
angle, which prevented it from executing another correction
turn because of the threshold in the interrupt (|L−R| > δdiff).
Thus it went often off the trail and did a u-turn.

313

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Start

|L − R| > δdiff

L > R

R < δbright
∨L < δbright

Rotate
Left

or Right
randomly
(≈ 120◦)

R < δdark
∧L < δdark

Rotate
Left

(≈ 35◦)

Rotate
Right

(≈ 35◦)
U-turn

(≈ 180◦)
Move

Forward

false

true

false

true

false

true

false

true

Fig. 7. Simplified flow chart of the nest algorithm.

The case of α = 120◦ can serve as a sanity check for the data.
Since there cannot be any polarity information encoded in a
120 degree bifurcation we assume that all three outcomes (A,
B, and C; counting repetitive behavior as leaving at were it
came from) are uniformly distributed, ignoring for simplicity
that 180-degree-turns versus 120-degree-turns do not have to
be equiprobable (here for α = 120◦ the ratio of 180-degree-
turns to 120-degree-turns was about 1.5). Since we do the
same amount of experiments starting at A as starting at B
and C together, we get: 16.6̄% incorrect and 33.3̄% correct
reorientations for the food task. That means we get a correct
to incorrect ratio of Rc/Ri = 2 for granted. For the nest
task we get vice versa: Rc/Ri = 0.5, which makes the nest
finding a harder task. In Fig. 9(b) the ratios normalized to
these values are given. This diagram shows clearly that both
algorithms perform significantly better than and similarly well
compared to random behavior.

V. CONCLUSION

At first, we presented the swarm robot Jasmine that was used
to conduct the experiments. We showed that even for a very
bounded hardware platform it is possible to solve complex
tasks as reorienting in a network of trails depending on certain
geometric properties of bifurcations. While the performance of
the reorientation algorithm for finding food is good, the nest
algorithm might possibly be improved heavily. The fact that on
one hand it is easier for a robot moving totally random finding
the food than finding the nest and that, on the other hand,
the authors were not able to find a nest algorithm showing
similar performance as the food algorithm might indicate that
this is the more difficult part of the task or that the natural ant
uses a different mechanism to return to the nest. However, this

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 40 60 80 100 120
α

correct

incorrect

pe
rc

en
ta

ge
of

ro
bo

ts
re

or
ie

nt
at

in
g

(a) Food algorithm.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 40 60 80 100 120
α

correct

incorrect

pe
rc

en
ta

ge
of

ro
bo

ts
re

or
ie

nt
at

in
g

(b) Nest algorithm.

Fig. 8. Correct and incorrect reorientations for
α ∈ {30◦, 45◦, 60◦, 90◦, 120◦}, error-bars indicate the 95% confidence
interval (some values are shifted by ±0.5◦ for better readability).

hypothesis can, of course, easily be falsified by presenting an
algorithm with better performance.
The behavior described here is highly probabilistic which is a
typical characteristic of natural and artificial swarms. Because
of that for laymen watching our robot working its way through
the trail network it might not look “intelligent” at all as it
is true for following a natural ant’s route. Such behavior is
the only possibility to overcome the impreciseness of the
individuals in a swarm, since highly efficient behaviors of
the individuals (Rc/Ri → ∞) cannot be achieved. However,
because of the dependence on probabilities the algorithms
presented here are hard to analyze. Only by directly measuring
the robot’s turning angles and tagging the triggering events,
for example, it will be possible to find the probability distribu-
tion of the angles. This distribution is not explicitly specified
in the algorithm but in the ensemble of the hardware platform
and the software as it might be true for the natural ant. As
already mentioned better approaches to master this unison of
hardware and software are in need.

314

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

 0

 1

 2

 3

 4

 5

 6

 30 40 50 60 70 80 90 100 110 120
α

food alg.

average

nest alg.

R
c
/
R

i

(a) For values Rc/Ri > 1 the algorithm is effective.

 0.5

 1

 1.5

 2

 2.5

 3

 30 40 50 60 70 80 90 100 110 120
α

food alg.

nest alg.R
′ c
/
R

′ i

(b) Normalized, R′

c
/R′

i
= 1 is the ratio for random behavior.

Fig. 9. Ratio of correct to incorrect reorientations.

ACKNOWLEDGMENTS

Hamann is supported by the German Research Foundation
(DFG) within the Research Training Group GRK 1194 Self-
organizing Sensor-Actuator Networks. Szymanski is supported
by the European Union within the “Beyond Robotics” Proac-
tive Initiative – 6th Framework Programme: 2003-2007 (I-
SWARM project, Project Reference: 507006).

REFERENCES

[1] Jasmine robot - project website, 2007. http://www.swarmrobot.org/.
[2] G. Caprari, P. Balmer, R. Piguet, and R. Siegwart. The autonomous

microbot alice: a platform for scientific and commercial applications. In
Proc. of the Ninth Int. Symp. on Micromechatronics and Human Science,
pages 231–235, Nagoya, Japan, 1998.

[3] D. E. Jackson. The Shortest Path is the One You Know. PhD thesis,
University of Sheffield, September 2005.

[4] D. E. Jackson, M. Holcombe, and F. L. W. Ratnieks. Trail geometry gives
polarity to an foraging networks. Nature, 432:907–909, 2004.

[5] S. Kornienko, O. Kornienko, and P. Levi. Swarm embodiment – a new
way for deriving emergent behavior in artificial swarms. In P. Levi,
M. Schanz, R. Lafrenz, and V. Avrutin, editors, Autonome Mobile
Systeme, pages 25–32, 2005.

[6] K. Lerman, C. Jones, A. Galstyan, and M. Mataric. Analysis of dynamic
task allocation in multi-robot systems. Int. J. of Robotics Research,
25(3):225 – 241, 2006.

[7] A. Martinoli, K. Easton, and W. Agassounon. Modeling swarm robotic
systems: A case study in collaborative distributed manipulation. Int.
Journal of Robotics Research, 23:415–436, 2004.

[8] J. Seyfried, M. Szymanski, N. Bender, R. Estana, M. Thiel, and H. Wörn.
The i-swarm project: Intelligent small world autonomous robots for
micro-manipulation. In E. Sahin and W. Spears, editors, Swarm Robotics
Workshop: State-of-the-art Survey, pages 70–83, Berlin Heidelberg New
York, 2005. Springer-Verlag.

[9] M. Szymanski and H. Wörn. Jamos - a mdl2e based operating system
for swarm micro robotics. Appearing in this proceedings.

315

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

