
JaMOS - A MDL2ǫ based Operating System for
Swarm Micro Robotics

Marc Szymanski and Heinz Wörn

Institute for Process Control and Robotics
Universität Karlsruhe

76128 Karlsruhe, Germany
Email: {szymanski, woern}@ira.uka.de

Abstract— Micro robots in large scale swarms often have a very
restricted program memory which limits the robot’s application
range. We present a finite state machine operating system for
swarm micro robots, that can overcome such problems and gives
the designer of swarm algorithms a tool that is easy to handle.
The operating system’s flow control or rather the robot’s control
program is represented in the Motion Description Language Two
Extended (MDL2ǫ). MDL2ǫ is based on MDLe but has been
extended to a fully functional behaviour description language as
shown in this paper. The MDL2ǫ based control programs are
encoded in a byte code that is interpreted on a micro controller.
The byte-code concept significantly reduces the size of the control
program which will be shown in this paper.

I. INTRODUCTION

Swarm robotics tries to create complex swarm behaviour with
rather simple robots. The complex behaviour should arise from
the robot-robot and robot-environment interaction based on
comparatively primitive individual behaviour. This paradigm
gets more important the smaller the robots and the larger the
swarm becomes. Expecially when the robot’s size advances to
the micro- or nanoscale.
Working with large scale swarms of micro robots one is faced
with the problem of limited on-board program memory that
crucially constraints the application range. The Alice robot
from EPFL for instance has 8 KByte of program memory [1],
our Jasmine robot 16 KByte and the I-SWARM robot has only
8 KByte. Therefore designing an operating system for swarm
micro robots that is small in program size is an important
step in swarm micro robotics. Another problem one is faced
with is that usual micro controller architectures do not allow
to change the program code during runtime. This makes batch
programming of the whole swarm with wireless techniques
complicated. Our approach to this problem is an operating
system that interprets a byte code and therefore is independent
of the size of the program memory. The byte code can be
placed in the RAM or in external memory devices. On the
other hand the control program of the robot should still be as
flexible as possible.
In swarm robotics many mechanisms exist to control the
autonomous robots in a swarm. Those mechanisms reach
from mainly reactive control [2] by artificial neural networks
(ANN) [3], up to more high level control. Combining purely

Fig. 1. The micro-robot Jasmine III+ with ODeM board on top.

reactive control with other control mechanism like PID con-
trollers, fuzzy logic or ANN leads to a more complex and
more usable way of controlling swarm robots. This hybrid
control can be covered by the proposed Jasmine MDL2ǫ

based Operating System (JaMOS).
The operating system combines data acquirement and data
processing with robot control in an easily exchangeable man-
ner. The control flow is expressed in MDL2ǫ which is
transferred as byte code to the robot and than decoded by an
interpreter. So the design of JaMOS follows the design of a
finite state machine operating system (FSMOS). Expressing a
control program as a finite state automaton in an interpretable
language has several advantages:

• simulation of the robot in any adaptable simulation,
environment (plug-ins for webots, breve and player/stage
have been implemented.),

• easy design of the program,
• reusability of code,
• inter robot code exchange,
• minimising code size,
• batch programming of the swarm and
• verifiability and analysability of the MDL2ǫ-plan with

tools from language theory.

Being able to simulate a swarm before running the algorithms
on the real swarm saves time and leads to an easy design of

324

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

the programs. The way MDL2ǫ works makes it simple to
reuse coded behaviours. This reusability can also be utilised
by the robots. They can have different codes on board or even
construct code for themselfs, that can be exchanged among
robots.
The following section introduces the Jasmine robot for which
JaMOS was implemented. Afterwards in Section III a brief
introduction to MDL2ǫ is given. Section IV describes the
JaMOS operating system. Section V shows results on the
achieved code size reduction and section VI gives an exem-
plary MDL2ǫ-plan for a simple swarm tag game.

II. THE JASMINE SWARM MICRO-ROBOT

The underlying swarm micro-robot Jasmine was developed es-
pecially for swarm robot research and swarm robot games [4].
Despite its small size of about 30 × 30 × 30 mm3, it has
excellent local communication abilities and a far distance
scanning and distance measuring sensor. The excellent com-
munication abilities result from six infra-red sensors and
emitters arranged around the robot with a displacement of
60 degrees. Those sensors can also be used for short distance
measurements. The far distance measuring sensor is hooked
to the front of the robot. Two differentially driven wheels,
that are controlled via an extra micro controller, give this
micro-robot a high maneuverability at a high speed. Optical
encoders allow odometry measurements in the mm-range.
Different from many other swarm robots Jasmine supports
only local communication. Long distance communication via
radio frequency is not implemented and does not correspond
with the views of the construction team about swarm robot
capabilities.
Figure 1 shows the Jasmine swarm micro-robot equipped with
the Optical Data transmission system for swarm Micro robots
(ODeM). The ODeM board allows in conjunction with an
external camera, computer, DLP projector and the MDL2ǫ

interpreter a batch programming of the robot swarm, data
transmission during an experiment, up to four virtual optical
pheromones and provides the robot with structured light for
calculating its own position in the work space [5].
The robot is equipped with an Atmel Mega168 8 bit
µController programmed in AVR-C. The µController has
16 KByte flash memory, 1 KByte RAM and 512 Bytes
EEPROM and runs with an internal oscillator with a frequency
of 8 MHz.

III. MDL2ǫ IN A NUTSHELL

The basic idea behind MDL2ǫ is to describe the robot’s
controller as regular language. The words produced by this
regular language correspond with the chronology of the actions
a robot took. Those actions are the letters of the language
and stand for single actions like moving forward, gripping
an object, or changing internal states. In the following those
letters are called atoms. In the original MDLe proposed by
Manikonda et al. [6], [7] and also in MDL2ǫ atoms posses
an interrupt and a timer. The timer is the upper limit how long
such an atom should be executed. The interrupts connect the

TABLE I

LIST OF ALL BOOLEAN OPERATORS AND THEIR MDL2ǫ COUNTERPARTS.

<INTERRUPT> IS AN ARBITRARY COMBINATION OF THOSE FUNCTIONS

AND BASIC INTERRUPTS.

∧ AND(<interrupt>, <interrupt>)
∨ OR(<interrupt>, <interrupt>)
¬ NOT(<interrupt>)

TABLE II

LIST OF ALL COMPARISON OPERATORS IMPLEMENTED IN MDL2ǫ.

<VALUE> CAN BE A VARIABLE OR A CONSTANT VALUE.

= EQ(<value>, <value>)
≥ GEQ(<value>, <value>)
> GT(<value>m <value>)

robot’s internal state and sensor inputs with an atom and has
to be true – also called active – that an atom is executed. The
regular language describes the possible flow of execution of
active atoms and is described by a regular expression. Like in
a regular expression MDL2ǫ supports brackets, union, kleen-
star operator and concatenation. The corresponding MDL2ǫ-
operators are BEHAVIOUR, UNION, RUNION and MULT.
For concatenation no special operator is needed. An MDL2ǫ-
plan is expressed as a combination of those operators.
Like the atom a behaviour also has an interrupt and a timer.
Using behaviours the state space could be divided, e.g. into
a behaviour for searching food or for bringing food back to
the hive. Therefore MDL2ǫ is not only reactive but could be
seen as a behaviour based control paradigm.
Interrupts are boolean expressions that combine basic inter-
rupts which are preprogrammed in MDL2ǫ e.g. IOBSTACLE
which evaluates to true if an obstacle is sensed on one of the
frontal sensors. Therefore, the boolean operators AND, OR
and NOT are implemented, see Table I. Additionally to the
boolean operators comparison operators were implemented.
Those operators are stated in Table II.
An important MDL2ǫ-operator is the RUNION or random
union. It allows to randomise the execution flow. This can
be used to model time varying behaviours, which execution
probability decreases or increases over time, or for instance to
model behaviours, which execution probability correlates with
the portion of pheromone sensed. Therefore each MDL2ǫ-
operator has a probability attribute which could be a constant
value or a variable. The probability distribution of a random
union is calculated with equation 1:

p(i) =
vp(i)

∑N−1

k=0
vp(k)

, (1)

whereas p(i) is the probability and vp(i) is the probability
value of the ith member of the union and N is the number
of members. Other calculations are possible, e.g. ǫ-greedy for
Reinforcement Learning.
All MDL2ǫ commands are listed in Table III. Arguments

325

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE III

LIST OF ALL MDL2ǫ OPERATORS.

Type MDL2ǫ Expression

Plan <PLAN

** name=”<string>”

duration=”<long>” />

. . .

</PLAN>

Atom <ATOM

name=”<string>”

interrupt=”<string>”

* arg0=”<double>” ... arg19=”<double>”

duration=”<long>”

* probability=”<int>”/>

Behaviour <BEHAVIOUR

name=”<string>”

interrupt=”<string>”

duration=”<long>”

* probability=”<int>”>

. . .

</BEHAVIOUR>

Union <UNION

** name=”<string>”

* probability=”<int>”>

. . .

</UNION>

Random Union <RUNION

** name=”<string>”

* probability=”<int>”>

. . .

</RUNION>

Multiplicity <MULT

** name=”<string>”

multiplicity=”<string>”

* probability=”<int>”>

. . .

</MULT>

that are marked with a ’*’ are optional. Arguments marked
with ’**’ are ignored and are only useful for documentation
purpose. An exemplary plan is given in Table XI.

IV. JAMOS

This section describes in detail the Jasmine MDL2ǫ Oper-
ating System (JaMOS). JaMOS is comprised of five layers.
Beginning from the bottom layer:

1) the physical layer that represents the robots basic abili-
ties, which are constraint by the underlying hardware,

2) the Basic Input-/Output system (BIOS),
3) the MDL2ǫ layer which connects the atoms, interrupts

and variables via the BIOS with the hardware,
4) the interpreter that also schedules the control flow,
5) and the byte code.

The physical layer represents the hardware robot which is
abstracted by the BIOS that implements basic abilities for

TABLE IV

SOME BASIC ATOMS FOR THE JASMINE ROBOT.

Atom Arguments Explanation

ARS232 int Send an integer via the
rs232 interface.

ASEND message, send
count, sensors

Send a 8 bit message.

ABLUEPHERO on/off Start/stop emitting the
blue pheromone.

AGREENPHERO on/off Start/stop emitting the
green pheromone.

AREDPHERO on/off Start/stop emitting the red
pheromone.

ASETSEM semaphore num-
ber

Set semaphore.

ARELSEM semaphore num-
ber

Release a semaphore.

AROT R degree Rotate left.

AROT L degree Rotate right.

ASTOP Stop moving.

AMOVE velocity
(0,1,2,3,4),
steps

Start moving.

Fig. 2. The general execution cycle in JaMOS.

reading sensor data, communication, remote control and mo-
tion control.
At the MDL2ǫ layer a library of atoms, interrupts and
variables exists that allows the MDL2ǫ plan to execute
the desired robot control. The key idea is that this layer
is implemented to give a wide range of possibilities to the
designer. In Tables IV, V, and VI a list of basic atoms,
variables and interrupts is given. However, this layer can be
adopted to the needs of the robot programmer.
The fourth layer holds the interpreter/scheduler. The interpreter
is responsible for interpreting the byte code whereas the
scheduler’s task is to continuously poll for the right sensors
for the currently active interrupts, to evaluate the interrupts
and timers and in case of a state switch order the interpreter
to select a new atom from the plan.

326

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE V

SOME BASIC VARIABLES FOR THE JASMINE ROBOT. ALL VARIABLES ARE

8 BIT UNSIGNED INTEGERS.

Variable Explanation

VREMOTE Last remote control command.

VMESSAGE1 Received message (low byte).

VMESSAGE2 Received message (high byte).

VENERGY On-board energy level.

VTOUCH Last touch sensor value.

VSENSOR0 Last beamer sensor value.

VSENSOR1 Last sensor value front.

VSENSOR2 Last sensor value right front.

VSENSOR3 Last sensor value right back.

VSENSOR4 Last sensor value back.

VSENSOR5 Last sensor value left back.

VSENSOR6 Last sensor value left front.

VDATAL Last data byte (low byte).

VDATAH Last data byte (high byte).

VGREYL Last pheromone value from left sensor.

VGREYR Last pheromone value from right sensor.

VXPOSH Last x position (high byte).

VXPOSL Last x position (low byte).

VYPOSH Last y position (high byte).

VYPOSL Last y position (low byte).

VTHETAH Last angular position (high byte).

VTHETAL Last angular position (low byte).

Figure 2 shows how the interpreter and the scheduler are
working together in the general execution cycle. Always when
a state switch occurs due to an interrupt that gets inactive or
a timer overflow a new atom is selected by the interpreter
from the byte code. Otherwise the scheduler moves on with
collecting data and executing the atom.

During the atom selection process the interpreter pushes all
interrupts that are part of top level behaviours on an interrupt
stack. The last entry of this stack is the interrupt of the newly
selected atom. To be selected by the interpreter all interrupts
on the stack must be true at the moment of selection. The
timers are saved on a second stack. If an active atom was
found the scheduler starts its work again and checks all
interrupts on the stack in each execution cycle. If an interrupt
occurs the next atom will be selected starting from the
follower of the behaviour/atom that caused the interruption.
The following avoidance behaviour is given as an example
for the execution flow:

<PLAN name=”avoidance” duration=”infinite”>

<ATOM name=”AMOVE” interrupt=”NOT(ITOUCH)” duration=”infinite”/>
<BEHAVIOUR interrupt=”ITOUCH” duration=”infinite” >

<ATOM name=”AROT L” interrupt=”AND(ISPACEL, NOT(
TWISYNC))” duration=”50” arg0=”25”/>
<ATOM name=”AROT R” interrupt=”NOT(OR(ISPACEL,
TWISYNC))” duration=”50” arg0=”25”/>

</BEHAVIOUR>

</PLAN>

TABLE VI

SOME BASIC INTERRUPTS FOR THE JASMINE ROBOT.

Interrupt Active

* basic interrupts *

ITRUE always

IFALSE never

* ODeM interrupts *

IGREYSYNC Got new pheromone value.

IPOSSYNC Got position update.

IDATASYNC Received new data.

* Main board Interrupts *

ITWISYNC Step-wise motion finished.

IOBSTACLE Sensed an obstacle.

IINMOTION Moving.

IDIRECTION Moving forwards.

ICRITCOLLISON Sensed critical collision

* communication interrupts *

IREC Received a message.

IRECON1 Received message on front sensor

IRECON2 Received message on front right sensor

IRECON3 Received message on back right sensor

IRECON4 Received message on back sensor

IRECON5 Received message on back left sensor

IRECON6 Received message on front left sensor

* proximity interrupts *

ITOUCH Sensed an obstacle.

ISPACEL There is more space left than right.

* semaphore interrupts *

ISEMAPHORE Semaphore 0 is set.

ISEMAPHORE1 Semaphore 1 is set.

.

ISEMAPHORE7 Semaphore 7 is set.

TABLE VII

EXAMPLE PULSE DIAGRAM FOR THE EXECUTION OF THE AVOIDANCE

PLAN.

ITOUCH LLLL|HHHHHHHHHHHHHH|LLLLLL
ISPACEL LLLLLLLLLLLLLL|HHHHHHHH|LL

ITWISYNC LLLLLLLLL|H|LLLLLLL|H|LLLLLL
active atoms AMOVE AROT R AROT R AROT L AMOVE

Table VII shows the interrupt pulse diagram for the
given example and Fig. 3 shows the robot’s motion. In the
first step the duration of the PLAN-node will be put on the
timer stack. As a placeholder interrupt ITRUE will be pushed
on the interrupt stack. If ITOUCH evaluates to false, no object
is in front of the robot, NOT(ITOUCH) will be pushed on
the interrupt stack and “infinite” on the timer stack. AMOVE
is found to be active and will be executed, Fig. 3(a), until
ITOUCH switches to true, Fig. 3(b). Then the interpreter
starts searching for the next active atom. The old interrupt
and timer will be popped from the stack and the timer and the
interrupt from the next BEHAVIOUR node will be pushed

327

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

(a) AMOVE (b) AROT R

(c) AROT R (d) AROT L

(e) AMOVE (f) AMOVE

Fig. 3. Exemplary run of the avoidance behaviour. The grey robot is the
observed robot. The lines symbolise the distance sensors.

on the stack. The signal TWISYNC gets active when a
stepwise motion command was finished by the motor board,
see Table VI. By default AROT L and AROT R are such
stepwise motion commands. At the beginning TWISYNC
is false. The robot has more free space on the right hand
side, so ISPACEL is false. Therefore AROT L will not be
selected but AROT R. Again the interrupt and the timer will
be pushed on the stack. After the robot rotated 25 degrees the
ITWISYNC signal switches to true and the interrupt evaluates
to false. Then the plan is interpreted from the beginning,
starting with the PLAN-node. There is still an obstacle in
front of the robot, Fig. 3(c). The robot starts turning right
again. This time the atom is interrupted by ISPACEL before
the ITWISYNC signal is received. It seems that the robot
rotated too far and there is an obstacle on the right hand
side. Now the robot starts rotating to the left, Fig. 3(d). After
rotating 25 degrees to the left, Fig. 3(e), the robot continues
moving forward again, Fig. 3(f).

The byte code is the most important part of JaMOS. It
makes the programming of the robots simple, flexible and
exchangeable.
We pursued two ways in generating the byte code. The first
way generates the byte code and an interpreter minimal in
program size. Therefore the plan is analysed prior to the
encoding step according to which MDL2ǫ operators, atoms,
interrupts and variables are used. The disadvantage of this is
that the interpreter can only interpret plans that are coded the

TABLE VIII

EXAMPLE BYTE CODE FOR AN ATOM.

ATOM:
<ATOM name=”AMOVE” interrupt=”ITOUCH” duration=”1024”
arg0=”255” arg1=”1”/>

ATOM ITOUCH #arguments duration

000 10010 10 0000010000000000

arg0 arg1 AMOVE

11111111 00000001 1011

same way and do not include other operators, atoms, interrupts,
and variables. For changing the control flow or adding new
atoms to the plan, the whole interpreter has to be recompiled.
This is adequate if very limited memory resources are provided
by the underlying hardware. But the exchangeability of code
between the robots and the batch programming possibility is
lost.
The second way is to allow to use all MDL2ǫ operators
and a set of atoms, interrupts and variables. This results in
a larger basic operating system, but, on the other hand, one
can exploit all benefits that are provided by an interpreted
control language.
The basic structure of the byte code is to encode all operators,
atoms, interrupts and variables as unique bit strings, whereas
all of them are treated separately. This reduces the size and
can be done due to the fact that the MDL2ǫ structure is fixed.
The MDL2ǫ operators are generally coded with 3 bits. All
other MDL2ǫ members are coded by a bit string of size n,
with 2n ≤ #members in the library. E. g. the 11 atoms in
Table IV can be coded with ⌈ld 11⌉ = 4 Bits, the 22 variables
in Table V with ⌈ld 22⌉ = 5 Bits and the 27 interrupts in
Table V are also coded with ⌈ld 27⌉ = 5 Bits. Those bit
strings are internally mapped directly via an array containing
the pointers to the corresponding functions and variables.
Operators like atoms, behaviours and multiplicities have dif-
ferent arguments. The encoding of such operators will be
explained in the following. Detailed examples are given for
an atom in Table VIII and a behaviour in Table IX.
1) ATOM: An atom has four attributes: name, interrupt, du-
ration, and the arguments. The atom is coded in the following
way. First comes ’000’ that denominates the ATOM itself.
Then the interrupt which can be of variable size, the number
of arguments which is also variable, the duration which is
always a 16 Bit string, then the arguments which are all 8 bit
and finally the coded address of the function that has to be
executed.
2) BEHAVIOUR: A behaviour is separated into two parts. The
first part is the behaviour declaration that contains the code that
should be executed in the behaviour. And the second is the
behaviour call. The call includes the behaviour denominator
’001’ the interrupt and the behaviour’s 16 bit start address
in the byte code that points to the behaviour declaration.
Each behaviour declaration starts with the duration continuous
with the code and ends with ’111’. Behaviour declarations are
copied to the beginning of the byte code. The behaviour in the

328

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

TABLE IX

EXAMPLE BYTE CODE FOR A SIMPLE BEHAVIOUR.

<BEHAVIOUR interrupt=”ITRUE” duration=”infinite” >

<ATOM name=”AMOVE” interrupt=”ITOUCH”
duration=”1024” arg0=”255” arg1=”1”/>

</BEHAVIOUR>

declaration:
behaviour duration atom code behaviour end

0000000000000000 000100101000000
100000000001111
111100000001101
1

111

behaviour call:
BEHAVIOUR ITRUE declaration address

001 000 0000000000000000

example in Table IX has the start address 0x0000. Following
behaviours will be added at the end of the last behaviour
starting at the next free byte.
3) UNION: The UNION starts with ’010’, then all other
MDL2ǫ entries follow in the described way and ends with
’111’.
4) RUNION: To save code size are the probabilities associated
to the RUNION and not to the single operators. The RUNION
starts with the string ’011’ followed by the 8 bit number of
elements inside of the RUNION. Then all probability values,
as described in section III, follow as 8 bit numbers. Afterwards
all MDL2ǫ entries follow and it finishes with ’111’.
5) MULT: The MULT is addressed with ’100’ which is
followed by an 8 bit number expressing the number of loops
that should be performed. The following body contains the
encapsulated MDL2ǫ commands. It also ends with ’111’.
6) PLAN: The plan has only one argument, the duration.
For decoding a plan, the plan start address is given to the
interpreter. Each plan ends with the string ’111’.
7) Interrupts: Interrupts are a fundamental part of MDL2ǫ

in the examples in Tables VIII and IX only a single simple
interrupt is used. However, interrupts can be constructed by
using the boolean and comparison operators from Table I and
II. As operands constant 8 bit values and MDL2ǫ variables
are possible. The interrupt byte code follows the same prefix
notation like the operands in the XML-plan. For indicating an
operator or an operand a preceding indication bit that is ’0’ for
an operand an ’1’ for an operator is introduced. As in the latter
cases all operands have their fix indication bit string. To sepa-
rate between variables and constants another indicator bit has
been introduced that is ’0’ for constants and ’1’ for variables.
The MDL2ǫ interrupt AND(IRECON3,EQ(VMESSAGE1,42))
that describes that the robot received 42 as message on sensor
3 will be encoded to

O AND O IRECON3 O EQ O V VMESSAGE1 I V 42
1 000 0 01101 1 011 0 1 0001 0 0 00101010

where ’O’ stands for the operator/operand and ’V’ for
the variable/constant indication flag.

TABLE X

COMPARISON BETWEEN GENERATE BYTE-CODE AND C-CODE ROBOT

CONTROLLERS IN BYTE FOR THE SWARM TAG GAME PLAN.

byte-code c-code

MDL2ǫ plan 120 1024

MDL2ǫ structure 1704 728

total 1824 1752

The way of encoding behaviours by their address in the byte
code is important for reusability issues. In case of enough
memory a wide variety of preprogrammed behaviours can
be saved in memory. Those behaviours can then be reused
just by pointing to their address. This feature can be used
for behaviour based learning, where several behaviours have
to be evaluated by the learning system. But one can also
save several plans on board that are constructed from those
behaviours. A 64 KByte TWI memory device is integrated on
the ODeM board. Using preprogrammed behaviours also saves
device programming time which is crucial for the ODeM that
operates with an estimated transfer rate of 6 Byte per second
without redundancy and 3 Byte per second with redundancy
for error correction.

V. RESULTS

One of the main goals of JaMOS is to reduce the size of
a swarm robot control program. Several measurements have
been performed with plans of different sizes and different
structural elements. We compared JaMOS with an earlier
version of JaMOS which generates C-code that represents
the MDL2ǫ-plan using mostly if-then-else statements and
additional code for unions, random unions and multiplicities.
Both versions of JaMOS are equal in their functionality
regarding the robot behaviour and they share the same code
for atoms, interrupts and the BIOS.
We distinguished in this comparison between a structural part
and the MDL2ǫ-plan that was created from the XML-file. The
structural part covers the data acquirement, timer management
and interrupt handling. This structural part is for the byte-
code version four times larger as it also covers the MDL2ǫ

interpreter, which has a size of less than 3 KByte. However,
the advantage in the structure part is lost when it comes to the
representation of the MDL2ǫ plan. Here the strength of the
interpreter approach is visible. The interpreted plan needs only
a ninth up to a thirtieth of the space of the C-code version. This
advantage grows dramatically if the plan gets larger. However,
those advantages decrease with a smaller plan. Table X shows
the code sizes for the plan listed in Table XI. Here the C-
code version has a slight advantage. The structural part of
the byte-code in this example is much smaller than 3 KByte
what results from the possibility of adapting the interpreter
to the used MDL2ǫ operators. As the tag game plan has
no random union, union or multiplicity the interpreter code
for this operators has been switched off and has not been
compiled.

329

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

(a) start configuration (b) end configuration

Fig. 4. Figure (a) and (b) show the start and end configuration of the Jasmine tag game. During this run the red robots won the game and aggregated in
the upper left corner of the arena, see Fig. (b). The full video to this experiment can be downloaded from www.swarmrobot.org. The video shows the swarm
game in simulation and in real.

TABLE XI

MDL2ǫ-CODE FOR THE SWARM TAG GAME.

1 <MDLeScript>
2 <PLAN name="JasmineGame" duration="infinite">
3
4 <BEHAVIOUR name="random-walk" interrupt="NOT(IREC)" duration="infinite">
5 <ATOM name="AMOVE" interrupt="NOT(ITOUCH)" duration="infinite"/>
6 <BEHAVIOUR name="avoidance" interrupt="ITOUCH" duration="infinite">
7 <ATOM name="AROT_L" interrupt="AND(ISPACEL,NOT(ITWISYNC))" duration="20" arg0="120"/>
8 <ATOM name="AROT_R" interrupt="AND(NOT(ISPACEL),NOT(ITWISYNC))" duration="20" arg0="120"/>
9 </BEHAVIOUR>
10 </BEHAVIOUR>
11
12 <BEHAVIOUR name="red" interrupt="EQ(VMESSAGE1,1)" duration="infinite">
13 <ATOM name="AREDON" interrupt="ITRUE" duration="1" />
14 <ATOM name="ASEND" interrupt="ITRUE" duration="1" arg0="1" arg1="3"/>
15 <ATOM name="ASTOP" interrupt="ITRUE" duration="infinite" />
16 </BEHAVIOUR>
17
18 <BEHAVIOUR name="green" interrupt="EQ(VMESSAGE1,2)" duration="infinite">
19 <ATOM name="AGREENON" interrupt="ITRUE" duration="1" />
20 <ATOM name="ASEND" interrupt="ITRUE" duration="1" arg0="2" arg1="2"/>
21 <BEHAVIOUR name="random-walk" interrupt="ITRUE"/>
22 </BEHAVIOUR>
23
24 </PLAN>
25 </MDLeScript>

VI. SWARM EXPERIMENTS

This section describes an exemplary swarm experiment im-
plemented in MDL2ǫ utilising JaMOS. Other swarm exper-
iments using MDL2ǫ have been performed in [8] and [9].
In the following experiment the robots play tag. This simple
game includes aggregation, collision avoidance, inter robot
communication and random walk based dispersion. At the
beginning of the game all robots perform a random walk with
collision avoidance. Two of those robots try to infect the other

robots with two different kinds of behaviours, red and green,
via infra-red communication. Behaviour red makes the robots
stop, turn on their red light and allows each of those robots to
infect three other robots. The other behaviour keeps the robot
in the random walk mode and they turn on their green light.
Those robots are allowed to infect two other robots. All robots
could be infected by any of those two behaviours regardless
of the behaviours they executed before. The game stops when
there are only red or only green robots in the arena.

330

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

The MDL2ǫ-plan for the tag game is listed in table XI. It is
structured in three main behaviours: in lines 4-10 the random
walk behaviour, which includes the avoidance strategy; lines
12-16 behaviour red; and lines 18-22 behaviour green, which
reuses the random walk behaviour in line 21.
The plan can be read the following way. As long as the robots
did not receive any message (line 4) they go on with a random
walk including collision avoidance, which means they move
forward until they sense an obstacle with their frontal sensors
(line 5). If they sensed any obstacle (line 6) they rotate anti-
clockwise, if there is more space at the left hand side (line 7)
otherwise rotate clockwise (line 8). If they received a message
they check if the message is equal 1 or 2 (line 12 and 18).
If it is 1, behaviour red is executed, the robot turns on the
red light (line 13), starts sending message 1 three times (line
14) and stops (line 15). If the received message was 2 the
robot turns the green lamp on (line 19), starts sending message
2 two times (line 20) and performs the random walk with
collision avoidance (line 21). It is to say that the ASEND atom
starts a communication process with acknowledge, which runs
concurrently to the execution of other active atoms even if the
ASEND atom is not active any more. It stops sending when
the robot sent all allowed messages to other robots.
Figure 4 shows two snapshots of the experiment, the start
configuration and the end configuration with a cluster of red
robots. The experiment shows a highly dynamic behaviour that
leads to clusters of red robots that move through the arena
permanently dispersing to green robots and aggregating as red.
The same experiment has also been performed with a sec-
ond programming method that implemented the behaviours
in a finite automaton in C-code using the autonomy cycle
approach [10]. No significant difference in terms of the robots’
behaviour can be seen between both methods. The continuous
interpretation of the MDL2ǫ-program and especially inter-
rupts do not lead to a worse response time of the robot.

VII. SUMMARY AND OUTLOOK

In this paper a new finite state machine operating system for
swarm micro robots has been introduced. The task control is
based on regular Motion Description Language Two Extended
which has been described in detail. The operating system uses
an interpreted byte code version of MDL2ǫ as control pro-
gram. The byte code and the interpreter can be automatically
adjusted to the used control program but can also be based on
a fixed description.
Subsequently the interpreter is evaluated in terms of memory
efficiency which shows a significant reduction in terms of a
ninth up to a thirtieth of the former C-coded size. Then an ex-
ample is given that describes a swarm tag game utilising some
canonical behaviours like collision avoidance, aggregation and
dispersion through communication.

In future work this operating system will be enhanced with
learning abilities, e.g. Reinforcement Learning. Currently work
is going on that utilises MDL2ǫ for Genetic Programming.
Several other extensions like atoms that are based on Artificial
Neural Networks or fuzzy controllers can be implemented.
In general the strength of this operating system lies in utilising
the possibility of exchanging code fragments among robots in
a swarm. Using a well designed BIOS and well thought atoms,
interrupts and variables even the code exchange between
inhomogeneous robots is possible. Combining code exchange
with swarm memory effects can lead to a more efficient and
more adaptable swarm. Several programs can latently exist in
the swarm and during a recruitment phase communicated from
one recruited robot to another.

ACKNOWLEDGEMENT

This work supported by the European Union within the
“Beyond Robotics” Proactive Initiative – 6th Framework Pro-
gramme: 2003-2007 (I-SWARM project, Project Reference:
507006).

REFERENCES

[1] G. Caprari and R. Siegwart, “Design and control of the mobile micro
robot alice,” 2003.

[2] R. Beckers, O. E. Holland, and J.-L. Deneubourg, “From local actions
to global tasks: Stigmergy in collective robotics,” in 4th Int. Workshop
on the Sythesis and Simulation of Living Systems (Artificial Life IV),
R. Brooks and P. Maes, Eds. July 1994, pp. 181–189, MIT Press.

[3] M. Dorigo, V. Trianni, E. Sahin, R. Gro, T. Labella, G. Baldassarre,
S. Nolfi, J. Deneubourg, F. Mondada, D. Floreano, and L. Gambardella,
“Evolving self-organizing behaviors for a swarm-bot,” 2004.

[4] Sergey Kornienko and Marc Szymanski, Exploring Robotic Swarms with
Micro Robot Jasmine, Cornell University Library, to appear.

[5] A. Bolettis, A. Brunete, W. Driesen, and J-M Breguet, “Solar cell
powering with integrated global positioning system for mm

3 size
robots,” in IROS 2006, Beijing, China, October 9-15 2006, p. pp204.

[6] V. Manikonda, P. Krishnaprasad, and J. Hendler, “A motion description
language and hybrid architecure for motion planning with nonholonomic
robots,” 1995.

[7] Manikonda, Krishnaprasad, and Hendler, “Languages, Behaviors, Hy-
brid Architectures, and Motion Control,” Mathematical Control Theory,
1998.

[8] M. Szymanski, T. Breitling, J. Seyfried, and Heinz Wörn, “Distributed
shortest-path finding by a micro-robot swarm.,” in ANTS Workshop,
Marco Dorigo, Luca Maria Gambardella, Mauro Birattari, Alcherio
Martinoli, Riccardo Poli, and Thomas Stützle, Eds. 2006, vol. 4150 of
Lecture Notes in Computer Science, pp. 404–411, Springer.

[9] H. Hamannn, M. Szymanski, and H. Wörn, “Orientation in a trail
network by exploiting its geometry for swarm robotics,” in IEEE Swarm
Intelligence Symposium, April 2007, in this proceeding.

[10] S. Kornienko, O. Kornienko, and P. Levi, “Flexible Manufacturing
Process Planning based on multi-Agent Technology,” in Proceedings of
the 21st IASTED International Conference on Artificial Intelligence and
Applications (AIA 2003). University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, January
2003, pp. 156–161, Innsbruck, Austria: n. a.

331

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

