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Abstract 

NASA is conducting research on advanced technologies 
for future exploration using intelligent swarms of robotic 
vehicles. One of these missions is the Autonomous Nano 
Technology Swarm (ANTS) mission that will explore the 
asteroid belt using 1,000 cooperative autonomous space- 
craft. From an engineering point of view, the complexity 
and emergent behavior of this kind of system is one of the 
main challenges that has to be overcome, since it makes 
the behavior of the swarm unpredictable. In NASA, many 
approaches are being explored towards this goal, mainly, 
a tailored software engineering approach, called agent- 
oriented software engineering, and formal methods. In this 
papel; we report on the main advances we have made to- 
wards modeling, implementing, and testing NASA swarms- 
based concept missions. 

1. Introduction 

NASA is investigating new paradigms for future space 
exploration, heavily focused on the (still) emerging tech- 
nologies of autonomous and autonomic systems [3 11. Tra- 
ditional missions, reliant on one large spacecraft, are be- 
ing replaced by missions with smaller collaborating space- 
craft, analogous to swarms in nature [7]. This approach of- 
fers several advantages: the ability to send spacecraft to 
explore where traditional craft simply would be impracti- 
cal, greater redundancy (and greater protection of assets), 
and reduced costs and risk, to name a few. These new ap- 
proaches to exploration simultaneously pose many chal- 

lenges. The missions will be unmanned and highly au- 
tonomous. They will also exhibit the properties of au- 
tonomic systems, being self-protecting, self-healing, self- 
configuring, and self-optimizing. 

Swarms [I]  consist of a large number of simple agents 
that have local interactions (between each other and the 
environment). There is no central controller directing the 
swarm and no one agent has a global view; they are self- 
organizing based on the emergent behaviors of the simple 
interactions. This type of behavior is observed in insects 
and flocks of birds. Bonabeau el al. [2], who studied self- 
organization in social insects, state that "complex collec- 
tive behaviors may emerge from interactions among indi- 
viduals that exhibit simple behaviors" and describes emer- 
gent behavior as "a set of dynamical mechanisms whereby 
structures appear at the global level of a system from inter- 
actions among its lower-level components." The emergent 
behavior is sometimes referred to as the macro-level behav- 
ior, and the individual behaviors and local interactions as 
the micro-level behavior. Though swarm behaviors are the 
combination of often simple individual behaviors, when ag- 
gregated, they can form complex and unexpected behaviors. 

Although this kind of system presents many advantages, 
since complex behaviors emerge from the definition of sim- 
ple individual behaviors, reducing the effort in design, its 
unpredictability represents a problem since unexpected be- 
haviors may cause the failure of a mission. We survey cur- 
rent NASA efforts towards exploiting intelligent swarm- 
based systems in the development of new paradigms of ex- 
ploration missions, with assurances that they are operat- 
ing safely. For this purpose, the main approaches that are 
being explored are: Agent-Oriented Software Engineering 
(AOSE) and Formal Methods. 
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2. Problems modeling swarm-based systems 

Complexity is one of the main problems of engineer- 
ing software systems, and is especially relevant when tack- 
ling the development of swarm-based missions. Several au- 
thors agree that the complexity is a consequence of interac- 
tions [13, 171: Complexity is caused by the collective behav- 
ior of many basic interacting agents. In fact, many authors 
point out that the complexity is the consequence of those 
interactions among agents, and that these interactions can 
vary at execution time, and cannot be predicted thoroughly 
at design time because of emergent behavior. The reasons 
for the emergence can be traced to two features present in 
these systems: self-adaptation, and self-organization [lo]. 
It is important to observe that this capability of demonstrat- 
ing emergent behavior is the key factor that drove us to im- 
plement swarm-based solutions in the first place, since this 
key capability is essential to address solutions to the tar- 
geted domains. 

Jennings [13] adapts the three main principles to man- 
age complexity proposed by Booch in the 00 context [3] 
to AOSE: Abstraction, Decomposition and Organiza- 
tionl~ierarch~' : 

Abstraction: defines simplified models of the systems that 
emphasize some details while avoiding others. 

Decomposition: is based on "divide and conquer". It helps 
to limit the design scope to a portion of the problem. 

Composition: consists in identifying and managing the 
inter-relationships between the various subsystems in 
the problem. 

In addition, automation and reuse have been presented as 
two important principles to overcome complexity [9, 141: 

Automation: results in lower complexity of models and re- 
duces effort and errors. Some procedures must be car- 
ried out based on the human modeler. However, some 
steps can be performed using automatic techniques 
with a software tool to transform models. 

Reuse: based on previous knowledge in designing systems. 
It saves modelers from redesigning some parts of the 
system and avoids errors, thus achieving lower com- 
plexity of models. 

2.1. AOSE and complexity 

From the engineering point of view, these principles im- 
ply a set of requirements for AOSE methodologies: mod- 
eling artifacts, software process, and techniques to manage 
models [26]. 

1 Hereafter we call it Cofnposition in order to differentiate it froin other 
uses of the term organization in agent-based systems 

In modeling artifacts, the first elements we must consider 
are roles, since this is the concept that allows us to focus 
on interactions, the main source of complexity. In addition, 
roles also allow us to decompose an agent by its respon- 
sibilities, which represents the decomposition principle. In 
addition to roles, artifacts for abstracting interactions and 
organizations are needed, as well as enabling the possibil- 
ity of modeling a Multiagent System (hereafter MAS) us- 
ing several abstraction layers, which is also crucial to cover 
the abstraction principle. Because of structuring of models 
in several layers, models devoted to maintaining traceabil- 
ity across layers are also needed. 

From the software process point of view, bottom-up and 
top-down approaches are needed to enable us to go through 
layers completing models. Using both bottom-up and top- 
down perspectives permits us to obtain intermediate layers 
which link micro-level, that is to say lower layers that repre- 
sent agent behavior, with macro-level, that is to say higher 
layers that represent the organizationlemergent behavior. In 
addition, the bottom-up software process provides a means 
for reusing models, an important principle for dealing with 
complexity. 

Regarding automatic techniques to transform and ana- 
lyze models, AOSE methodologies must provide techniques 
to decompose and to compose models, techniques to refine 
and abstract them, and techniques to determine where to 
draw the limits for composition/decomposition. These tech- 
niques must be automated as much as possible and can be 
used to support top-down and bottom-up software processes 
since decomposition of models into finer grain descriptions 
(refinement) helps top-down development, and composition 
of models into higher-level models (abstraction) helps us to 
perform a bottom-up development. 

2.2. Formal Methods and complexity 

Formal methods are proven approaches for assuring the 
correct operation of complex interacting systems [I I]. For- 
mal methods are mathematically-based tools and techniques 
for specifying and verifying systems. They are particularly 
useful for specifying complex parallel and distributed sys- 
tems where the entire system is difficult for a single person 
to fully understand and when more than one person was in- 
volved in the development. 

With formal methods, we may propose that certain prop- 
erties hold, and prove that they hold automatically or semi- 
automatically, thus applying the automation principle. In 
particular this is invaluable for properties that we cannot 
test on Earth. By its nature, a good formal specification can 
guide us to propose and verify certain behaviors (or lack of 
certain behaviors) that we would often not think of when 
using regular testing techniques. Moreover, if properly ap- 
plied, and properly used in the development process, a good 
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formal specification can guarantee the presence or absence 
of particular properties in the overall system well in advance 
of mission launch, or even implementation. Indeed, various 
formal methods offer the additional advantage of support 
for simulation, model checking and automatic code genera- 
tion, making the initial investment well worth while. 

Verifying emergent behavior is an area that has been ad- 
dressed very little by formal methods, although there has 
been some work done in this area by computer scientists an- 
alyzing biological [29] and robotic [32] systems. However, 
formal methods may provide guidance in determining pos- 
sible emergent behaviors that must be considered. Formal 
methods have been widely used for test case generation to 
develop effective test cases. Similar techniques may be used 
with formal methods, not to generate a test plan, but to pro- 
pose certain properties that might or might not hold, or cer- 
tain emergent behaviors that might arise. 

3. Case study 

The Autonomous Nano-Technology Swarm (ANTS) 
concept mission [5] will launch a swarm of autonomous 
pico-class (approximately lkg) spacecraft to explore the as- 
teroid belt for asteroids with certain scientific proper- 
ties. Figure 1 gives an overview of the ANTS mission [30]. 
In this mission, a transport ship will travel to a Lagrangian 
point. From this point, 1000 spacecraft, that have been man- 
ufactured en route from Earth, will be launched into the 
asteroid belt. The asteroid belt presents a large risk of de- 
struction for large (traditional) spacecraft. Even with 
pico-class spacecraft, 60 to 70 percent of them are ex- 
pected to be lost. Because of their small size, each space- 

craft will carry just one specialized instrument for collect- 
ing a specific type of data from asteroids. 

To implement this mission, a heuristic approach is being 
considered that provides for a social structure to the space- 
craft that uses a hierarchical behavior in some respects anal- 
ogous to colonies or swarms of insects, with some space- 
craft directing others. Artificial intelligence technologies 
such as genetic algorithms, neural nets, fuzzy logic, and on- 
board planners are being investigated to assist the mission 
to maintain a high level of autonomy. Crucial to the mission 
will be the ability to modify its operations autonomously to 
reflect the changing nature of the mission and the distance 
and low bandwidth communications back to Earth. The 
swarm is envisioned to consist of several types of space- 
craft. Approximately 80 percent of the spacecraft will be 
workers that will carry the specialized instruments. Some 
will be coordinators (called rulers or leaders) that have rules 
that decided the types of asteroids and data the mission is in- 
terested in and that will coordinate the efforts of the work- 
ers. The third type of spacecraft are messengers that will 
coordinate communication between the rulers and workers, 
and communications with mission control on Earth. 

The swarm will form sub-swarms, each under the con- 
trol of a ruler, which contains models of the types of science 
to be pursued. The ruler will coordinate workers, which use 
their individual instruments to collect data on specific aster- 
oids and feed this information back to the ruler, who will de- 
termine which asteroids are worth examining further. If the 
data matches the profile of a type of asteroid that is of inter- 
est, an imaging spacecraft will be sent to the asteroid to as- 
certain the exact location and to create a rough model to be 
used by other spacecraft for maneuvering around the aster- 
oid. Other teams of spacecraft will then coordinate to finish 
mapping the asteroid to form a complete model. 

4. The FAST project 

A NASA project, Formal Approaches to Swarm Tech- 
nology (FAST), is investigating appropriate formal methods 
for use in swarm-based missions, and is beginning to ap- 
ply these techniques to specifying and verifying parts of the 
NASA ANTS mission as a test-bed [27]. To verify NASA 
swarm-based missions an effective formal method must be 
able to predict the emergent behavior of 1000 agents as a 
swarm as well as the behavior of the individual agent. Cru- 
cial to the mission will be autonomic properties and the abil- 
ity to modify operations autonomously to reflect the chang- 
ing nature of the mission. For this, a formal specification 
will need to be able to track the goals of the mission as they 
change and to modify the model of the universe as new data 
comes in. The formal specification will also need to allow 
for specification of the decision-making process to aid in the 
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decision as to which instruments will be needed, at what lo- 
cation, with what goals, etc. 

The FAST project identified several important attributes 
needed in a formal approach for verifying swarm-based sys- 
tems and surveyed a wide range of formal methods and for- 
mal techniques to determine whether existing formal meth- 
ods would be suitable for specifying and verifying swarm- 
based missions and their emergent behavior [27]. Various 
methods were surveyed based on a small number of criteria 
that were determined to be important in their application to 
intelligent swarms. These included: support for concurrency 
and real-time constraints, formal basis, existing tool sup- 
port, past experience in application to agent-based and/or 
swarm-based systems, and algorithm support. 

Based on the results of the survey, four formal methods 
were selected to be used for a sample specification of part 
of the ANTS mission. These methods were: the process al- 
gebras CSP [12] and WSCCS [29], X-Machines [16], and 
Unity Logic [4]. CSP was chosen as a baseline specification 
method because the team has had significant experience and 
success [28] in specifying agent-based systems with CSP. 
WSCCS and X-Machines were chosen because they have 
already been used for specifying emergent behavior by oth- 
ers, apparently with some success. Unity Logic was also 
chosen because it had been successfully used for specify- 
ing concurrent systems and was a logic-based specification, 
which offered a contrast to the other methods. 

5. Modeling using MaCMAS 

MaCMAS is the AOSE methodology that we use for 
modeling swarm-based systems and is based on previously 
developed concepts [2212. It is specially tailored to model 
complex Multiagent Systems covering all the requirements 
for tackling complexity shown previously and to the best of 
our knowledge is the only one that covers all of these princi- 
ples. MaCMAS can be categorized in the AOSE methodolo- 
gies that follows the organizational metaphor that is based 
on engineer MASS mimicking human organizations which 
can be also applied to swarm-based structures. 

The organizational metaphor has been proven to be an 
appropriate tool for engineering these kinds of systems, 
and has been successfully applied by other methodologies, 
e.g., [18,21]. It shows that a MASIswarm organization can 
be observed from two viewpoints [33]: 

Acquaintance point of view: shows the organization as 
the set of interaction relationships between the roles 
played by agents. 

Structural point of view: shows agents as artifacts that 
belong to sub-organizations, groups, teams. In this 

2 See http:lljames.eii.us.es/MaCMASI for Further details and case stud- 
ies using this methodology. 

Figure 2. Acquaintance analysis discipline 

view agents are also structured into hierarchical struc- 
tures showing the social structure of the system. 

Both views are intimately related, but show the organi- 
zation from radically different viewpoints. Since any struc- 
tural organization must include interactions between agents 
in order to function, it is safe to say that the acquaintance 
organization is always contained in the structural organiza- 
tion. Therefore, a natural map is formed between the ac- 
quaintance organization and the corresponding structural 
organization. This is the process of assigning roles to agents 
[33]. Then, we can conclude that any acquaintance organi- 
zation can be modeled orthogonally to its structural organi- 
zation [ 151. 

Entering into details, MaCMAS focuses on the acquain- 
tance organization view providing a set of UML2.0-based 
models, a software process to build them, and a set of tech- 
niques to compose, decompose, refine and abstract models, 
as required by the principles to deal with complexity. These 
models are not orthogonal to the formal specifications, but 
complementary since they provide a graphical representa- 
tion of the system that improves the understanding of the 
formal specifications. 

Figure 3, summarize the structure of models produced 
by MaCMAS and how they are obtained. Roughly speak- 
ing, MaCMAS produces a set of models of the system at 
different levels of abstraction in order to tackle the com- 
plexity of a system iteratively. Thus, a model of the sys- 
tem at the micro-level, where all details are modeled, can be 
linked with a model of the system at the macro-level where 
only relevant properties are modeled using abstraction. This 
allows us to ensure properties at the micro, macro, and in- 
termediate levels of the system by means of formal meth- 

351

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



Figure 3. Overview of the structure of MaC- 
MAS models 

ods. In addition to this structure of models, as shown in the 
following, MaCMAS also provides techniques to refine and 
abstract these models to complete layers. 

In Figure 2, we summarize all the models, activities and 
guidelines included in MaCMAS. From all the models pro- 
posed in this methodology, the most important are: 

a) Static Acquaintance Organization View: This shows 
the static interaction relationships between roles in the 
system and the knowledge processed by them. In this 
category, we can find models for representing the on- 
tology managed by agents, models for representing 
their dependencies, and role models. The most impor- 
tant are the role models: 

Role Models: show an acquaintance sub-organization 
as a set of roles collaborating by means of sev- 
eral multi-Role Interactions (mRI) [23]. mRIs are 
used to abstract the acquaintance relationships 
amongst roles in the system. 

b) Behavior of Acquaintance Organization View: The 
behavioral aspect of an organization shows the se- 
quencing of mRIs in a particular role model. It is 
represented by two equivalent models: 

Plan of a role: separately represents the plan of each 
role in a role model showing how the mRIs of 
the role sequence. It is represented using UML 
2.0 ProtocolStateMachines [20]. 

I 
Coal 7 ,*,* - 
;? 

Par- 
d*, 

RT-Y">% % ,.' ;Reuse Tr- 
"ti 
L- 

: New- 
: A c q m  
: Model 

Figure 4. Acquaintance analysis process 

applying MaCMAS we obtain the acquaintance organiza- 
tion of the MAS thus enabling us to assign roles to run-time 
agents using a middleware that supports this feature. This 
allows us to build the structural organization and to change 
it at run-time, thus easing the modeling and management of 
self-organizing systems, e.g. NASA swarm-based missions. 

The software process of MaCMAS is described as 
a set of abstract Software Process Engineering Meta- 
model (SPEM) work definitions which can be instantiated 
by any work definition that produces the same work prod- 
ucts (cf. [19] the SPEM specification). In Figure 4, we 
show our process by means of several general process com- 
ponents in the form of SPEM work definitions. These work 
definitions are strictly related to the main principles deal- 
ing with complexity and are responsible for applying 
them: 

Plan of a role model: represents the order of mRIs in Build Initial Acquaintance organization model: an ini- 
a role model with a centralized description. It is tial set of role models which provide an initial under- 
represented using UML 2.0 StateMachines [20]. standing of the system to be built. 

c) Traceability view: shows how models in different ab- Layer Completion: a new acquaintance organization 
straction layers relate. It shows how mRIs are ab- model due to the composition or the decomposi- 
stracted, composed or decomposed by means of clas- tion of a model(s) developed in a previous itera- 
siJication, aggregation, generalization or redejinition. tion or in the build initial acquaintance organization 

The software process of MaCMAS starts with require- work dejinition. 

ments documented using a goal-directed approach [8]. After Traceability Maintenance: updates the traceability 
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model which documents the relations between mod- 
els in different layers and requirements system goals. 
This model helps us to link macro-level behav- 
iors with micro-level behaviors, and helps us to con- 
trol the emergent behavior. 

Reuse: instantiates parameterized role models stored in a 
repository when appropriate. It is also responsible for 
analyzing models produced in the layer completion 
work dejinition to add them to the repository. 

5.1. Modeling autonomous and autonomic systems 

MaCMAS can be used to model autonomous and auto- 
nomic properties of swarm-based systems as required by 
NASA missions. To exemplify the models of MaCMAS and 
how they are applied to model both kinds of properties, we 
use the case study described in Section 3. 

After applying all the software process of MaCMAS to 
the case study, we obtain the traceability diagram of Fig- 
ure 5. This diagram summarizes the mRIs in the system 
structured by layers of abstraction. In this diagram, the top 
layer is the most abstract, i.e. the macro-level. As each node 
represents a system-goal also, we can see here the division 
of tasks necessarily undertaken to develop the system. As 
each mRI is inside a role model, we can also see which 
roles we have determined to carry out by observing the role 
models. In the model shown, we have depicted several sub- 
regions. Horizontal subdivisions depict layers of abstrac- 
tion, while the vertical line denotes the distinction between 
the parts of the system that represent autonomic and the 
parts of the system that represent autonomous behaviors. 
In addition to mRIs, MaCMAS also uses UML packages 
to represent role models that contain several mRIs. In Fig- 
ure 5 we identify two of these packages, which group the 
mRIs used in the example that follows. 

As role models can be used at any level of abstraction, we 
can use them for specifying autonomic properties that con- 
cern a single agent, or even a group of agents when deal- 
ing with autonomic properties at the swarm level. Thus, as 
shown in the traceability model, we have a role model at ab- 
straction layer 2 that shows the swarm autonomic behavior, 
while at layer 4, we show autonomic properties at the level 
of individual spacecraft. 

5.2. Modelling Multiagent Systems Product Lines 

Many organizations develop a range of products over pe- 
riods of time that exhibit many of the same properties and 
features. The multiagent systems community exhibits sim- 
ilar trends. However, the community has not as yet devel- 
oped the infrastructure to develop a core multiagent system 
(hereafter, MAS) from which concrete (substantially simi- 
lar) products can be derived. 

Figure 6. Overview of the process for build- 
ing the core architecture of a MAS-PL 

The software product line paradigm (hereafter, SPL) au- 
gurs the potential of developing a set of core assets for a 
family of products from which customized products can be 
rapidly generated, reducing time-to-market, costs, etc. [6], 
while simultaneously improving quality, by making greater 
effort in design, implementation and test more financially 
viable, as this effort can be amortized over several prod- 
ucts. The feasibility of building MASS product lines is pre- 
sented in [25]. 

NASA swarm-based missions present many common 
features, thus it is feasible to apply a MAS-PL approach, 
improving the application of the reuse principle, and thus 
improving our capabilities to deal with complexity. This 
may also dramatically reduce costs (in terms of time and 
money) of these related missions. 

For enabling a product line, one of the important activ- 
ities to be performed is to identify a core architecture. In 
Figure 6, we show the SPEM definition of the software pro- 
cess of our approach to build the core architecture: build 
acquaintance organization, build features model, analyze 
commonalities, and compose code features. 

old that we have selected, set up at the 60%, for consid- 
ering a feature to be core or not. As shown in the Figure, 
the commonality for the features self-protection from a so- 
lar storm and orbiting is 100%. Thus we have to add them 
to the core architecture, since they appear in all the possi- 
ble products. 

5.3. Modeling evolving systems using MaCMAS 

MaCMAS is also able to model evolving systems as re- 
quired by swarm-based NASA missions [24]. MaCMAS 
is based on viewing different instances of a system as it 
evolves as different "products" in a Software Product Line. 
That Software Product Line is in turn developed with an 
agent-oriented software engineering approach and views the 
system as a Multiagent System Product Line. The use of 
such an approach is particularly appropriate as it allows us 
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Figure 5. Traceability model of ANTS 

[STMeasurer.SolarStorrnRisk()>K] 
6. Conclusions and Future work 

S- U lFpo~cl_~m--_a*nnal  

] (?> Complexity is a big challenge for current software de- 
... t r m  solar .-. velopment. When tackling systems with the properties of 

operaion storm NASA ANTS, complexity become unmanageable with cur- 

[STMeasurer.SolarStormRisk()c=K] rent engineering and software tools. The main conclusion 
S - 6 n p _ h 0 ~ _ ~ - , 1 ~  \ { F - _ t m _ ~ r _ - l  we can draw from our work on these missions is that the 

modeling of this kind of system is not feasible using only 
Figure 7. Evolution plan of our case study UML-based tailored models, or only formal methods, but 

requires a new set of formal techniques along with a tai- 
lored set of models and software processes. As shown, we 

to scale our view to address enterprise architectures where have had to base our approach on techniques from many 

various entities in the enterprise are modeled as software fields ranging from, but not limited to, the use of several 

agents. This, improves the application of the decomposition formal methods, autonomic computing, swarm-based sys- 

principle allowing us to factorize the models and the formal tems, and new applications of the software product line ap- 

specifications making them simpler and more understand- proach. 

able. 

Each product in a MAS-PL is defined as a set of features. 
Given that all the products present a set of features that re- 
main unchanged, the core architecture is defined as the part 
of all of the products that implement these common fea- 
tures. Thus, a system can evolve by changing, or evolving, 
the set of non-core features. 

In Figure 7, we show part of the evolution plan of our 
case study. There we represent two products, one represent- 
ing the swarm when orbiting an asteroid, and another rep- 
resenting the swarm when orbiting and protecting from a 
solar storm. As can be seen, we add or delete the feature 
corresponding to "protect from solar storms" depending on 
whether or not the swarm is at risk from a solar storm. 
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