
Using Formal Methods and Agent-Oriented Software Engineering for Modeling
NASA Swarm-Based Systems

Christopher A. Rouff Michael G. Hinchey
SAIC Loyola College in Maryland

Advanced Technologies and Solutions Business Unit Computer Science Department
McLean, VA 22102 Baltimore, MD, USA

rouffc @ saic.com mike.hinchey @usa.net

Joaquin Pefia and Antonio Ruiz-Cortks
University of Seville

Seville, Spain
{joaquinp,aruiz) @us.es

Abstract

NASA is conducting research on advanced technologies
for future exploration using intelligent swarms of robotic
vehicles. One of these missions is the Autonomous Nano
Technology Swarm (ANTS) mission that will explore the
asteroid belt using 1,000 cooperative autonomous space-
craft. From an engineering point of view, the complexity
and emergent behavior of this kind of system is one of the
main challenges that has to be overcome, since it makes
the behavior of the swarm unpredictable. In NASA, many
approaches are being explored towards this goal, mainly,
a tailored software engineering approach, called agent-
oriented software engineering, and formal methods. In this
papel; we report on the main advances we have made to-
wards modeling, implementing, and testing NASA swarms-
based concept missions.

1. Introduction

NASA is investigating new paradigms for future space
exploration, heavily focused on the (still) emerging tech-
nologies of autonomous and autonomic systems [3 11. Tra-
ditional missions, reliant on one large spacecraft, are be-
ing replaced by missions with smaller collaborating space-
craft, analogous to swarms in nature [7]. This approach of-
fers several advantages: the ability to send spacecraft to
explore where traditional craft simply would be impracti-
cal, greater redundancy (and greater protection of assets),
and reduced costs and risk, to name a few. These new ap-
proaches to exploration simultaneously pose many chal-

lenges. The missions will be unmanned and highly au-
tonomous. They will also exhibit the properties of au-
tonomic systems, being self-protecting, self-healing, self-
configuring, and self-optimizing.

Swarms [I] consist of a large number of simple agents
that have local interactions (between each other and the
environment). There is no central controller directing the
swarm and no one agent has a global view; they are self-
organizing based on the emergent behaviors of the simple
interactions. This type of behavior is observed in insects
and flocks of birds. Bonabeau el al. [2], who studied self-
organization in social insects, state that "complex collec-
tive behaviors may emerge from interactions among indi-
viduals that exhibit simple behaviors" and describes emer-
gent behavior as "a set of dynamical mechanisms whereby
structures appear at the global level of a system from inter-
actions among its lower-level components." The emergent
behavior is sometimes referred to as the macro-level behav-
ior, and the individual behaviors and local interactions as
the micro-level behavior. Though swarm behaviors are the
combination of often simple individual behaviors, when ag-
gregated, they can form complex and unexpected behaviors.

Although this kind of system presents many advantages,
since complex behaviors emerge from the definition of sim-
ple individual behaviors, reducing the effort in design, its
unpredictability represents a problem since unexpected be-
haviors may cause the failure of a mission. We survey cur-
rent NASA efforts towards exploiting intelligent swarm-
based systems in the development of new paradigms of ex-
ploration missions, with assurances that they are operat-
ing safely. For this purpose, the main approaches that are
being explored are: Agent-Oriented Software Engineering
(AOSE) and Formal Methods.

348

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

2. Problems modeling swarm-based systems

Complexity is one of the main problems of engineer-
ing software systems, and is especially relevant when tack-
ling the development of swarm-based missions. Several au-
thors agree that the complexity is a consequence of interac-
tions [13, 171: Complexity is caused by the collective behav-
ior of many basic interacting agents. In fact, many authors
point out that the complexity is the consequence of those
interactions among agents, and that these interactions can
vary at execution time, and cannot be predicted thoroughly
at design time because of emergent behavior. The reasons
for the emergence can be traced to two features present in
these systems: self-adaptation, and self-organization [lo].
It is important to observe that this capability of demonstrat-
ing emergent behavior is the key factor that drove us to im-
plement swarm-based solutions in the first place, since this
key capability is essential to address solutions to the tar-
geted domains.

Jennings [13] adapts the three main principles to man-
age complexity proposed by Booch in the 00 context [3]
to AOSE: Abstraction, Decomposition and Organiza-
tionl~ierarch~' :

Abstraction: defines simplified models of the systems that
emphasize some details while avoiding others.

Decomposition: is based on "divide and conquer". It helps
to limit the design scope to a portion of the problem.

Composition: consists in identifying and managing the
inter-relationships between the various subsystems in
the problem.

In addition, automation and reuse have been presented as
two important principles to overcome complexity [9, 141:

Automation: results in lower complexity of models and re-
duces effort and errors. Some procedures must be car-
ried out based on the human modeler. However, some
steps can be performed using automatic techniques
with a software tool to transform models.

Reuse: based on previous knowledge in designing systems.
It saves modelers from redesigning some parts of the
system and avoids errors, thus achieving lower com-
plexity of models.

2.1. AOSE and complexity

From the engineering point of view, these principles im-
ply a set of requirements for AOSE methodologies: mod-
eling artifacts, software process, and techniques to manage
models [26].

1 Hereafter we call it Cofnposition in order to differentiate it froin other
uses of the term organization in agent-based systems

In modeling artifacts, the first elements we must consider
are roles, since this is the concept that allows us to focus
on interactions, the main source of complexity. In addition,
roles also allow us to decompose an agent by its respon-
sibilities, which represents the decomposition principle. In
addition to roles, artifacts for abstracting interactions and
organizations are needed, as well as enabling the possibil-
ity of modeling a Multiagent System (hereafter MAS) us-
ing several abstraction layers, which is also crucial to cover
the abstraction principle. Because of structuring of models
in several layers, models devoted to maintaining traceabil-
ity across layers are also needed.

From the software process point of view, bottom-up and
top-down approaches are needed to enable us to go through
layers completing models. Using both bottom-up and top-
down perspectives permits us to obtain intermediate layers
which link micro-level, that is to say lower layers that repre-
sent agent behavior, with macro-level, that is to say higher
layers that represent the organizationlemergent behavior. In
addition, the bottom-up software process provides a means
for reusing models, an important principle for dealing with
complexity.

Regarding automatic techniques to transform and ana-
lyze models, AOSE methodologies must provide techniques
to decompose and to compose models, techniques to refine
and abstract them, and techniques to determine where to
draw the limits for composition/decomposition. These tech-
niques must be automated as much as possible and can be
used to support top-down and bottom-up software processes
since decomposition of models into finer grain descriptions
(refinement) helps top-down development, and composition
of models into higher-level models (abstraction) helps us to
perform a bottom-up development.

2.2. Formal Methods and complexity

Formal methods are proven approaches for assuring the
correct operation of complex interacting systems [I I]. For-
mal methods are mathematically-based tools and techniques
for specifying and verifying systems. They are particularly
useful for specifying complex parallel and distributed sys-
tems where the entire system is difficult for a single person
to fully understand and when more than one person was in-
volved in the development.

With formal methods, we may propose that certain prop-
erties hold, and prove that they hold automatically or semi-
automatically, thus applying the automation principle. In
particular this is invaluable for properties that we cannot
test on Earth. By its nature, a good formal specification can
guide us to propose and verify certain behaviors (or lack of
certain behaviors) that we would often not think of when
using regular testing techniques. Moreover, if properly ap-
plied, and properly used in the development process, a good

349

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Asteroid belt

Asteroid(s)

X-ray worker
**blesrenger

Figure 1. ANTS Mission Concept

Earth

formal specification can guarantee the presence or absence
of particular properties in the overall system well in advance
of mission launch, or even implementation. Indeed, various
formal methods offer the additional advantage of support
for simulation, model checking and automatic code genera-
tion, making the initial investment well worth while.

Verifying emergent behavior is an area that has been ad-
dressed very little by formal methods, although there has
been some work done in this area by computer scientists an-
alyzing biological [29] and robotic [32] systems. However,
formal methods may provide guidance in determining pos-
sible emergent behaviors that must be considered. Formal
methods have been widely used for test case generation to
develop effective test cases. Similar techniques may be used
with formal methods, not to generate a test plan, but to pro-
pose certain properties that might or might not hold, or cer-
tain emergent behaviors that might arise.

3. Case study

The Autonomous Nano-Technology Swarm (ANTS)
concept mission [5] will launch a swarm of autonomous
pico-class (approximately lkg) spacecraft to explore the as-
teroid belt for asteroids with certain scientific proper-
ties. Figure 1 gives an overview of the ANTS mission [30].
In this mission, a transport ship will travel to a Lagrangian
point. From this point, 1000 spacecraft, that have been man-
ufactured en route from Earth, will be launched into the
asteroid belt. The asteroid belt presents a large risk of de-
struction for large (traditional) spacecraft. Even with
pico-class spacecraft, 60 to 70 percent of them are ex-
pected to be lost. Because of their small size, each space-

craft will carry just one specialized instrument for collect-
ing a specific type of data from asteroids.

To implement this mission, a heuristic approach is being
considered that provides for a social structure to the space-
craft that uses a hierarchical behavior in some respects anal-
ogous to colonies or swarms of insects, with some space-
craft directing others. Artificial intelligence technologies
such as genetic algorithms, neural nets, fuzzy logic, and on-
board planners are being investigated to assist the mission
to maintain a high level of autonomy. Crucial to the mission
will be the ability to modify its operations autonomously to
reflect the changing nature of the mission and the distance
and low bandwidth communications back to Earth. The
swarm is envisioned to consist of several types of space-
craft. Approximately 80 percent of the spacecraft will be
workers that will carry the specialized instruments. Some
will be coordinators (called rulers or leaders) that have rules
that decided the types of asteroids and data the mission is in-
terested in and that will coordinate the efforts of the work-
ers. The third type of spacecraft are messengers that will
coordinate communication between the rulers and workers,
and communications with mission control on Earth.

The swarm will form sub-swarms, each under the con-
trol of a ruler, which contains models of the types of science
to be pursued. The ruler will coordinate workers, which use
their individual instruments to collect data on specific aster-
oids and feed this information back to the ruler, who will de-
termine which asteroids are worth examining further. If the
data matches the profile of a type of asteroid that is of inter-
est, an imaging spacecraft will be sent to the asteroid to as-
certain the exact location and to create a rough model to be
used by other spacecraft for maneuvering around the aster-
oid. Other teams of spacecraft will then coordinate to finish
mapping the asteroid to form a complete model.

4. The FAST project

A NASA project, Formal Approaches to Swarm Tech-
nology (FAST), is investigating appropriate formal methods
for use in swarm-based missions, and is beginning to ap-
ply these techniques to specifying and verifying parts of the
NASA ANTS mission as a test-bed [27]. To verify NASA
swarm-based missions an effective formal method must be
able to predict the emergent behavior of 1000 agents as a
swarm as well as the behavior of the individual agent. Cru-
cial to the mission will be autonomic properties and the abil-
ity to modify operations autonomously to reflect the chang-
ing nature of the mission. For this, a formal specification
will need to be able to track the goals of the mission as they
change and to modify the model of the universe as new data
comes in. The formal specification will also need to allow
for specification of the decision-making process to aid in the

350

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

decision as to which instruments will be needed, at what lo-
cation, with what goals, etc.

The FAST project identified several important attributes
needed in a formal approach for verifying swarm-based sys-
tems and surveyed a wide range of formal methods and for-
mal techniques to determine whether existing formal meth-
ods would be suitable for specifying and verifying swarm-
based missions and their emergent behavior [27]. Various
methods were surveyed based on a small number of criteria
that were determined to be important in their application to
intelligent swarms. These included: support for concurrency
and real-time constraints, formal basis, existing tool sup-
port, past experience in application to agent-based and/or
swarm-based systems, and algorithm support.

Based on the results of the survey, four formal methods
were selected to be used for a sample specification of part
of the ANTS mission. These methods were: the process al-
gebras CSP [12] and WSCCS [29], X-Machines [16], and
Unity Logic [4]. CSP was chosen as a baseline specification
method because the team has had significant experience and
success [28] in specifying agent-based systems with CSP.
WSCCS and X-Machines were chosen because they have
already been used for specifying emergent behavior by oth-
ers, apparently with some success. Unity Logic was also
chosen because it had been successfully used for specify-
ing concurrent systems and was a logic-based specification,
which offered a contrast to the other methods.

5. Modeling using MaCMAS

MaCMAS is the AOSE methodology that we use for
modeling swarm-based systems and is based on previously
developed concepts [2212. It is specially tailored to model
complex Multiagent Systems covering all the requirements
for tackling complexity shown previously and to the best of
our knowledge is the only one that covers all of these princi-
ples. MaCMAS can be categorized in the AOSE methodolo-
gies that follows the organizational metaphor that is based
on engineer MASS mimicking human organizations which
can be also applied to swarm-based structures.

The organizational metaphor has been proven to be an
appropriate tool for engineering these kinds of systems,
and has been successfully applied by other methodologies,
e.g., [18,21]. It shows that a MASIswarm organization can
be observed from two viewpoints [33]:

Acquaintance point of view: shows the organization as
the set of interaction relationships between the roles
played by agents.

Structural point of view: shows agents as artifacts that
belong to sub-organizations, groups, teams. In this

2 See http:lljames.eii.us.es/MaCMASI for Further details and case stud-
ies using this methodology.

Figure 2. Acquaintance analysis discipline

view agents are also structured into hierarchical struc-
tures showing the social structure of the system.

Both views are intimately related, but show the organi-
zation from radically different viewpoints. Since any struc-
tural organization must include interactions between agents
in order to function, it is safe to say that the acquaintance
organization is always contained in the structural organiza-
tion. Therefore, a natural map is formed between the ac-
quaintance organization and the corresponding structural
organization. This is the process of assigning roles to agents
[33]. Then, we can conclude that any acquaintance organi-
zation can be modeled orthogonally to its structural organi-
zation [151.

Entering into details, MaCMAS focuses on the acquain-
tance organization view providing a set of UML2.0-based
models, a software process to build them, and a set of tech-
niques to compose, decompose, refine and abstract models,
as required by the principles to deal with complexity. These
models are not orthogonal to the formal specifications, but
complementary since they provide a graphical representa-
tion of the system that improves the understanding of the
formal specifications.

Figure 3, summarize the structure of models produced
by MaCMAS and how they are obtained. Roughly speak-
ing, MaCMAS produces a set of models of the system at
different levels of abstraction in order to tackle the com-
plexity of a system iteratively. Thus, a model of the sys-
tem at the micro-level, where all details are modeled, can be
linked with a model of the system at the macro-level where
only relevant properties are modeled using abstraction. This
allows us to ensure properties at the micro, macro, and in-
termediate levels of the system by means of formal meth-

351

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Figure 3. Overview of the structure of MaC-
MAS models

ods. In addition to this structure of models, as shown in the
following, MaCMAS also provides techniques to refine and
abstract these models to complete layers.

In Figure 2, we summarize all the models, activities and
guidelines included in MaCMAS. From all the models pro-
posed in this methodology, the most important are:

a) Static Acquaintance Organization View: This shows
the static interaction relationships between roles in the
system and the knowledge processed by them. In this
category, we can find models for representing the on-
tology managed by agents, models for representing
their dependencies, and role models. The most impor-
tant are the role models:

Role Models: show an acquaintance sub-organization
as a set of roles collaborating by means of sev-
eral multi-Role Interactions (mRI) [23]. mRIs are
used to abstract the acquaintance relationships
amongst roles in the system.

b) Behavior of Acquaintance Organization View: The
behavioral aspect of an organization shows the se-
quencing of mRIs in a particular role model. It is
represented by two equivalent models:

Plan of a role: separately represents the plan of each
role in a role model showing how the mRIs of
the role sequence. It is represented using UML
2.0 ProtocolStateMachines [20].

I
Coal 7 ,*,* -
;?

Par-
d*,

RT-Y">% % ,.' ;Reuse Tr-
"ti
L-

: New-
: A c q m
: Model

Figure 4. Acquaintance analysis process

applying MaCMAS we obtain the acquaintance organiza-
tion of the MAS thus enabling us to assign roles to run-time
agents using a middleware that supports this feature. This
allows us to build the structural organization and to change
it at run-time, thus easing the modeling and management of
self-organizing systems, e.g. NASA swarm-based missions.

The software process of MaCMAS is described as
a set of abstract Software Process Engineering Meta-
model (SPEM) work definitions which can be instantiated
by any work definition that produces the same work prod-
ucts (cf. [19] the SPEM specification). In Figure 4, we
show our process by means of several general process com-
ponents in the form of SPEM work definitions. These work
definitions are strictly related to the main principles deal-
ing with complexity and are responsible for applying
them:

Plan of a role model: represents the order of mRIs in Build Initial Acquaintance organization model: an ini-
a role model with a centralized description. It is tial set of role models which provide an initial under-
represented using UML 2.0 StateMachines [20]. standing of the system to be built.

c) Traceability view: shows how models in different ab- Layer Completion: a new acquaintance organization
straction layers relate. It shows how mRIs are ab- model due to the composition or the decomposi-
stracted, composed or decomposed by means of clas- tion of a model(s) developed in a previous itera-
siJication, aggregation, generalization or redejinition. tion or in the build initial acquaintance organization

The software process of MaCMAS starts with require- work dejinition.

ments documented using a goal-directed approach [8]. After Traceability Maintenance: updates the traceability

352

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

model which documents the relations between mod-
els in different layers and requirements system goals.
This model helps us to link macro-level behav-
iors with micro-level behaviors, and helps us to con-
trol the emergent behavior.

Reuse: instantiates parameterized role models stored in a
repository when appropriate. It is also responsible for
analyzing models produced in the layer completion
work dejinition to add them to the repository.

5.1. Modeling autonomous and autonomic systems

MaCMAS can be used to model autonomous and auto-
nomic properties of swarm-based systems as required by
NASA missions. To exemplify the models of MaCMAS and
how they are applied to model both kinds of properties, we
use the case study described in Section 3.

After applying all the software process of MaCMAS to
the case study, we obtain the traceability diagram of Fig-
ure 5. This diagram summarizes the mRIs in the system
structured by layers of abstraction. In this diagram, the top
layer is the most abstract, i.e. the macro-level. As each node
represents a system-goal also, we can see here the division
of tasks necessarily undertaken to develop the system. As
each mRI is inside a role model, we can also see which
roles we have determined to carry out by observing the role
models. In the model shown, we have depicted several sub-
regions. Horizontal subdivisions depict layers of abstrac-
tion, while the vertical line denotes the distinction between
the parts of the system that represent autonomic and the
parts of the system that represent autonomous behaviors.
In addition to mRIs, MaCMAS also uses UML packages
to represent role models that contain several mRIs. In Fig-
ure 5 we identify two of these packages, which group the
mRIs used in the example that follows.

As role models can be used at any level of abstraction, we
can use them for specifying autonomic properties that con-
cern a single agent, or even a group of agents when deal-
ing with autonomic properties at the swarm level. Thus, as
shown in the traceability model, we have a role model at ab-
straction layer 2 that shows the swarm autonomic behavior,
while at layer 4, we show autonomic properties at the level
of individual spacecraft.

5.2. Modelling Multiagent Systems Product Lines

Many organizations develop a range of products over pe-
riods of time that exhibit many of the same properties and
features. The multiagent systems community exhibits sim-
ilar trends. However, the community has not as yet devel-
oped the infrastructure to develop a core multiagent system
(hereafter, MAS) from which concrete (substantially simi-
lar) products can be derived.

Figure 6. Overview of the process for build-
ing the core architecture of a MAS-PL

The software product line paradigm (hereafter, SPL) au-
gurs the potential of developing a set of core assets for a
family of products from which customized products can be
rapidly generated, reducing time-to-market, costs, etc. [6],
while simultaneously improving quality, by making greater
effort in design, implementation and test more financially
viable, as this effort can be amortized over several prod-
ucts. The feasibility of building MASS product lines is pre-
sented in [25].

NASA swarm-based missions present many common
features, thus it is feasible to apply a MAS-PL approach,
improving the application of the reuse principle, and thus
improving our capabilities to deal with complexity. This
may also dramatically reduce costs (in terms of time and
money) of these related missions.

For enabling a product line, one of the important activ-
ities to be performed is to identify a core architecture. In
Figure 6, we show the SPEM definition of the software pro-
cess of our approach to build the core architecture: build
acquaintance organization, build features model, analyze
commonalities, and compose code features.

old that we have selected, set up at the 60%, for consid-
ering a feature to be core or not. As shown in the Figure,
the commonality for the features self-protection from a so-
lar storm and orbiting is 100%. Thus we have to add them
to the core architecture, since they appear in all the possi-
ble products.

5.3. Modeling evolving systems using MaCMAS

MaCMAS is also able to model evolving systems as re-
quired by swarm-based NASA missions [24]. MaCMAS
is based on viewing different instances of a system as it
evolves as different "products" in a Software Product Line.
That Software Product Line is in turn developed with an
agent-oriented software engineering approach and views the
system as a Multiagent System Product Line. The use of
such an approach is particularly appropriate as it allows us

353

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Figure 5. Traceability model of ANTS

[STMeasurer.SolarStorrnRisk()>K]
6. Conclusions and Future work

S- U lFpo~cl_~m--_a*nnal

] (?> Complexity is a big challenge for current software de-
... t r m solar .-. velopment. When tackling systems with the properties of

operaion storm NASA ANTS, complexity become unmanageable with cur-

[STMeasurer.SolarStormRisk()c=K] rent engineering and software tools. The main conclusion
S - 6 n p _ h 0 ~ _ ~ - , 1 ~ \ { F - _ t m _ ~ r _ - l we can draw from our work on these missions is that the

modeling of this kind of system is not feasible using only
Figure 7. Evolution plan of our case study UML-based tailored models, or only formal methods, but

requires a new set of formal techniques along with a tai-
lored set of models and software processes. As shown, we

to scale our view to address enterprise architectures where have had to base our approach on techniques from many

various entities in the enterprise are modeled as software fields ranging from, but not limited to, the use of several

agents. This, improves the application of the decomposition formal methods, autonomic computing, swarm-based sys-

principle allowing us to factorize the models and the formal tems, and new applications of the software product line ap-

specifications making them simpler and more understand- proach.

able.

Each product in a MAS-PL is defined as a set of features.
Given that all the products present a set of features that re-
main unchanged, the core architecture is defined as the part
of all of the products that implement these common fea-
tures. Thus, a system can evolve by changing, or evolving,
the set of non-core features.

In Figure 7, we show part of the evolution plan of our
case study. There we represent two products, one represent-
ing the swarm when orbiting an asteroid, and another rep-
resenting the swarm when orbiting and protecting from a
solar storm. As can be seen, we add or delete the feature
corresponding to "protect from solar storms" depending on
whether or not the swarm is at risk from a solar storm.

Acknowledgements

This work was supported by the Spanish Ministry of Sci-
ence and Technology under grants TIC2003-02737-C02-01
and TIN2006-00472, by the NASA Software Engineering
Laboratory, NASA Goddard Space Flight Center, Green-
belt, MD, USA, and by the NASA Office of Safety and
Mission Assurance (OSMA) Software Assurance Research
Program (SARP) and managed by the NASA Independent
Verification and Validation (IV&V) Facility. This work de-
scribed in this paper was performed while Mike Hinchey
was with NASA Goddard Space Flight Center.

354

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

References

[I] G. Beni and J. Want. Swarm intelligence. In Proc. Sev-
enth Annual Meeting of the Robotics Society of Japan, pages
425428, Tokyo, Japan, 1989. RSJ Press.

[2] E. Bonabeau, G. ThCraulaz, J. Deneubourg, S. Aron, and
S. Camazine. Self-organization in social insects. Trends in
Ecology and Evolution, 12: 188-1 93, 1997.

[3] G. Booch. Object-Oriented Design with Applications. Ben-
jaminICummings, Redwood City, CA, 1990.

[4] K. Mani Chandy and Misra J. Parallel Program Design: A
Foundation. Addison-Wesley Publishing Company, 1988.

[S] P.E. Clark, S.A. Curtis, and M.L. Rilee. ANTS: Applying a
new paradigm to Lunar and planetary exploration. In Proc.
Solar System Remote Sensing Symposium, Pittsburgh, Penn-
sylvania, USA, 20-21 September 2002.

[6] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. SEI Series in Software Engineering.
Addison-Wesley, August 2001.

[7] S.A. Curtis, J. Mica, J. Nuth, G. Man; M.L. Rilee, and
M.K. Bhat. ANTS (Autonomous Nano-Technology Swarm):
An artificial intelligence approach to Asteroid Belt resource
exploration. In Proc. Int'l Astronautical Federation, 51st
Congress, October 2000.

[8] A. Dardenne, A. van Lamsweerde, and S.Fickas. Goal-
directed requirements acquisition. Science of Computer Pro-
gramming, 20:3-50, 1993.

[9] D.F. D'Souza and A.C. Wills. Objects, Components, and
Frameworks with UML: The Catalysis Approach. Addison-
Wesley, Reading, Mass., 1999.

[lo] J. Fromm. The Emergence of Complexity. Kassel university
press, 2004.

[l l] M. Hinchey, J. Rash, and C. Rouff. Verification and val-
idation of autonomous systems. In Proc. SEW-26, 26th
Annual NASAIIEEE Software Engineering Workshop, pages
136-144, Greenbelt, MD, Nov. 2001. NASA Goddard Space
Flight Center, IEEE Computer Society Press.

[12] C.A.R. Hoare. Communicating sequential processess. Pren-
tice Hall, 1985.

[13] N. Jennings. An agent-based approach for building complex
software systems. Comm. of the ACM, 44(4):3541, 2001.

[14] A. Karageorgos and N. Mehandjiev. A design complexity
evaluation framework for agent-based system engineering
methodologies. In A. Omicini, P. Petta, and J. Pitt, editors,
Fourth Int'l Workshop Engineering Societies in the Agents
World, volume 3071 of Lecture Notes in Computer Science,
pages 258-274. Springer, 2004.

[IS] E. A. Kendall. Role modeling for agent system analysis, de-
sign, and implementation. IEEE Concurrency, 8(2):3441,
AprillJune 2000.

[16] W. Michael and L. Holcombe. X-Machines as a basis for sys-
tem specification. Software Engineering, 3(2):69-76, 1988.

[17] J. Odell. Agents and complex systems. Journal of Object
Technology, 1(2):3545, July-August 2002.

[18] J. Odell, H. Parunak, and M. Fleischer. The role of roles in
designing effective agent organisations. In A. Garcia, C. Lu-
cenaand, F. Zambonelliand, A. Omiciniand, and J. Castro,

editors, Software Engineering for Large-Scale Multi-Agent
Systems, number 2603 in LNCS, pages 27-28. Springer-
Verlag, 2003.

[19] OMG. Software process engineering metamodel, ver-
sion 1.1, 2005. Available at http://www.omg.org/
technology/documents/formal/spem.htm.

[20] Object Management Group (OMG). Unified modeling lan-
guage: Superstructure. version 2.0. Final adopted specifica-
tion ptcl03-08-02, OMG, August 2003. www.omg.org.

[21] H. Van Dyke Parunak and James Odell. Representing so-
cial structures in UML. In Jorg P. Miiller, Elisabeth Andre,
Sandip Sen, and Claude Frasson, editors, Proceedings of the
Fifth Int'l Conference on Autonomous Agents, pages 100-
101, Montreal, Canada, 2001. ACM Press.

[22] J. Peiia. On Improving The Modelling Of Complex Acquain-
tance Organisations Of Agents. A Method Fragment For The
Analysis Phase. PhD thesis, University of Seville, 2005.

[23] J. Peiia, R. Corchuelo, and J. L. Arjona. A top down ap-
proach for mas protocol descriptions. In ACM Symposium
on Applied Computing SAC'03, pages 45-49, Melbourne,
Florida, USA, 2003. ACM Press.

[24] J. Peiia, M. G. Hinchey, M. Resinas, R. Sterritt, and J. L.
Rash. Managing the evolution of an enterprise architecture
using a mas-product-line approach. In 5th Int'l Workshop on
SystemLYoftware Architectures (IWSSA'06), page to be pub-
lished, Nevada, USA, 2006. CSREA Press.

[25] J. Pefia, M. G. Hinchey, and Antonio Ruiz-Cortes. Multia-
gent system product lines: Challenges and benefits. Commu-
nications of the ACM, December 2006.

[26] J. Peiia, R. Levy, and R. Corchuelo. Towards clarifying the
importance of interactions in agent-oriented software engi-
neering. Int'l Iberoamerican Jrnl of AI, 8(25): 19-28, 2005.

[27] C. Rouff, M. Hinchey, W. Truszkowski, and J. Rash. Ex-
periences applying formal approaches in the development of
swarm-based space exploration systems. Int'l Journal of on
software Tools for Technology Transfer Special Issue on For-
mal Methods in Industry. (submitted), 2006.

[28] C. A. Rouff, W. F. Truszkowski, M. G. Hinchey, and J. L.
Rash. Verification of NASA emergent systems. In Pmc.
9th IEEE Int'l Conference on Engineering of Complex Com-
puter Systems, Florence, Italy, April 2004.

[29] C. Tofts. Describing social insect behavior using process al-
gebra. Transactions on Social Computing Simulation, pages
227-283,1991.

[30] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff. NASA's
swarm missions: The challenge of building autonomous soft-
ware. IEEE IT Professional, 6(5):47-52, Sept./Oct. 2004.

[31] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A.
Rouff. Autonomous and autonomic systems: A paradigm
for future space exploration missions. IEEE Transactions on
Systems, Man and Cybernetics, Part C, 2006 (to appear).

[32] Alan F.T. Winfield, Jin Sa, Mari-Carmen Fernandez-Gago,
Clare Dixon, and Michael Fisher. On formal specification of
emergent behaviours in swarm robotic systems. Int'l Jour-
nal of Advanced Robotic Systems, 2(4):363-370, Dec. 2005.

[33] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: the GAIA methodology. ACM Trans. on
Software Engineering and Methodology, 12(3), Sept. 2003.

355

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

