
Urbarium – A Socially - Based Game Platform

 Robert G. Reynolds
 Dept. of Computer Science

 Wayne State University
 Detroit, Michigan 48202

313-577-0726
reynolds@cs.wayne.edu

Farshad Fotouhi
 Dept. of Computer Science

 Wayne State University
 Detroit, Michigan 48202

 313-577-2478
 Fotouhi@wayne.edu

ABSTRACT
In this paper we describe a socially-based game platform, the
Urbarium, developed using XNA, Torque, and Muppets that will
support learning of concepts for the laboratory components of the
IEEE/ACM CS1 and CS2 programming courses. The
Urbarium’s narrative will span three different stages of social
development in a real world location, the Valley of Oaxaca,
Mexico. These stages will correspond to hunter-gatherer
economies, tribal economies, and state organizations. The
students interact with each other over a local-area network. By
solving problems, students collect code segments, and exchange
these segments to complete components. Completed components
provide enhanced rewards to students on future moves. The idea
is to support a net-centric approach to software development and
interaction among students in the lab. We feel that this will
support student learning within a network environment by
weaving a social fabric of cooperation into the code development
process early on in a students’ career.

1. INTRODUCTION
Recently a number of researchers have brought attention to the
cognitive and social factors that impact the creation and
communication of knowledge [1]. It is clear that the social context
in which the creation and learning of knowledge takes place is an
important factor in determining what is learned by a student and
how it is integrated into the student’s knowledge.
In particular, a number of practical techniques have been
proposed for the creation and communication of knowledge. One
approach is to develop tools to support dialogues between
problem solvers. Fischer developed tools to help participants
review their actions [2]. A second approach is the use of metaphor
as a vehicle improving learning of design tasks. Gordon suggested
that problem solving frameworks that invoke appropriate
metaphors for certain design tasks can be useful in proving the
effectiveness of the design process [3]. A third approach involves
the collection of domain specific strategies for problem solving
and interaction [4]. These strategies can be expressed within a
standard framework for retrieval and use. A fourth approach is to
use stories and storytelling to illustrate difficult points in the
teaching of concepts, and to tie seemingly unrelated concepts
together in a narrative framework [5].
 All of these approaches intend to weave a social fabric into the
design process which allows students/designers to more easily
map their past experience into the task at hand. In this paper we
describe an approach, the Urbarium, which uses a gaming
environment to support these activities. The Urbrarium is a

sequence of socially motivated games that can be used as part of
the programming laboratory for CS1 and CS2 courses as specified
by the ACM. It tells the story of the social evolution of a culture
within a real region of the world as the social system evolves
from a hunter-gatherer to a state organization. This story spans
both classes and provides a social thread in which the various
software development concepts can be integrated. Each of the
games is based on existing prototypes of multi-agent system
models of a particular region of the world, the Valley of Oaxaca,
Mexico
The Urbarium runs in a peer to peer network laboratory with
agents interacting with each other via PC’s. Within the Urbarium
framework, code components are distributed throughout the
landscape, or can be generated by solving related problems. These
code components can be exchanged in different ways among the
student to build up a collection of software tools. These tools can
be used to collect larger rewards in the current landscape.
There are three basic games which focus on hunter-gatherer,
village formation, and state formation respectively. Students in
CS1 begin as hunter-gatherers collecting simple code components
with basic functionality. Later in CS1 village formation is
introduced and students begin to acquire data structures and
algorithms that are suitable for those tasks. Village formation
carries over into the beginning of CS2. There, the students begin
to focus more on object oriented design and problem solving in
terms of the state formation process.
In section 2 we give the laboratory context in which the
Urbarium will be used. Section three gives an overview of the
Urbarium game structures for each of the 2 laboraory courses.
Section 4 describes the first of the three games in more detail as it
can be implemented using the MUPPETS game programming
environments. The other games are developed using XNA and
Torque. Section 5 gives our conclusions.

2. THE LEARNING ENVIRONMENT

Wayne State is Michigan's only urban research university.
Located in downtown Detroit, Wayne State's 12 schools and
colleges offer more than 350 major subject areas to our 33,000
graduate and undergraduate students. It has the most diverse
student body in Michigan -- more than 35 percent, or more than
11,800 students are minorities (based on Fall 2004 enrollment
statistics). Of these students, 8,780 were African-American,
2,134 were Asian, 137 were Native Americans, and 764 were
Hispanics [6]. Minority students are attracted to schools with a
racially diverse climate and an appreciation for their presence 3.

361

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

1-4244-0708-7/07/$20.00 ©2007 IEEE

The presence of minority students on campus acts as an incentive
for other minority students to pursue their education in that
environment [7].
In order to retain and engage such a diverse undergraduate
population we have revised our Computer Science undergraduate
program to include a one-credit hour laboratory with each of our
courses including the undergraduate programming classes (i.e.,
CSC 2110, and CSC 2200- See Table 1). It is our vision that these
mandatory labs will provide students with a supervised one-on-
one instructional format that will focus on cooperative problem
solving in a computer laboratory setting. These new labs have
been developed to align our program with the goals of ABET
accreditation and the IEEE/ACM curriculum 2001. Therefore,
these games can be used in any other CS program that is subject
to the accreditation process. In conjunction with these changes to
the core courses, we have instituted a set of four-course sequences
that will allow undergraduates to focus their elective courses in
particular sub-disciplines within Computer Science. These tracks
include Software Engineering, Databases, Networking, and
Computer Gaming to name a few. This, we feel, will be an
opportunity to engage the student within a given sub-discipline.
TABLE 1: Descriptions for CSC 2110 and CSC 2200

CSC 2110 Course Description
In this course the student is introduced to basic object-oriented
programming including classes, subclasses, class hierarchies,
polymorphism, inheritance, templates, and exceptions. The use of
object-oriented methods in supporting event-driven programming
with graphic APIs is highlighted.

CSC 2200 Course Description
In this course the student develops fundamental data structures
using object-oriented techniques. These structures include stacks,
queues, linked lists, and hash tables. Also, control constructs that
can be used for problem solving such as iteration and recursion
are implemented. These will be applied to problem solving along
with related concepts of backtracking, and divide and conquer.
As part of the undergraduate laboratory course sequence (i.e.,
CSC 2111 and CSC 2201) we propose to develop a subset of
assignments that utilize “real world” socially motivated gaming
applications to address fundamental concepts in the course. We
call this the “Urbarium”. The purpose of these game-motivated
programming exercises is to weave a social fabric into the
programming process. The idea is to emphasize both individual
and group performance. Such an idea has recently been the focus
in the development of software tools for on-line project
management systems at companies such as IBM[8].
Each of the three courses will have a “theme” game that will
serve as a foundation around which to build the exercises. These
games, taken together, describe three increasingly more complex
phases of the social evolution process; hunter-gatherers, tribal
society, and state organizations. In the narrative that overarches
the three games it is assumed that they represent three stages in
the social evolution of a given region. The actual region of
interest is the Valley of Oaxaca, Mexico for which Reynolds has
developed a prototype for each of the three social organizations
using real-world data.
Within each of the game frameworks, each student can exchange
control and data structures that they have produced along with
the simulated resources that they have collected. This will provide

the basis for the social fabric behind the software development
process. That is, no one student will be able to generate all of the
useful control and data structures in the allotted time. Therefore,
they will need to distribute the work among themselves and
exchange the results through the laboratory network. Interaction
between individuals can be in the form of balanced reciprocal
exchange, auctions, and cooperative games. The interaction will
take place in a networked lab environment with the games
running on PCs and players connected over the local network. We
now briefly describe the theme-game and platform for each of the
two basic lab courses.

3. THE URBARIUM: AN OVERVIEW

In this section we overview the Urbarium games that will be
applicable to each of the two courses. The key is to integrate the
learning of design and problem solving concepts into games that
are appropriate metaphors for their use. Also, the games are
connected according to a over-arching narrative. So, one’s
accomplishment at the end of the previous game will be carried
over to the next. This we feel will not only motivate the reuse of
concepts, but support the desire for students to “remain in the
game” and finish their requirement for graduation.

3.1 Games for the CS1 Laboratory

For this course, the “theme” application is hunting and collecting
in a virtual world, the Valley of Oaxaca Mexico (we refer to this
as game 1). A related application was developed as part of an
NSF project, and was used also as a vehicle to introduce high
school students to the information necessary for survival in
Southwest Colorado between 500 A.D. and 1200 A.D. This has
been reported in Scientific American [9] as well as in a special
issue of IEEE Transactions on Evolutionary Computation on
computer gaming applications [10]. Here the idea is that code
segments from several related programs are distributed over the
environment. Students take turns moving through the environment
and collect different fragments. Since it is unlikely that any
student will find all of the pieces themselves, they will need to
barter, auction, or exchange pieces. When a student collects all of
the code pieces and arrange them correctly then they can get extra
code points for visiting cells associated with the program. Figure
1 gives a screen shot of a prototype developed for the NSF project
as a tutorial for students taking an Archaeological laboratory at
the Crow Canyon Archaeological center in Mesa Verde,
Colorado. In section 4 we will discuss the prototype for this game
using the MUPPETS framework in the Urbarium environment.

Figure 1. 3D snapshot of the game concept illustrating
a simulated terrain and realistic visualization.

362

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Another exercise for this course is to provide students with a
virtual environment in which each of the students in the lab is a
chief, in charge of a growing town or simulated city (we refer to
this as game 2). The data and graphics used for this application
will come from actual archaeological data that describes the
emergence early villages in the Valley of Oaxaca Mexico.
Students will need to collect information about their site, and use
that information to plan for its future growth. Each student can
develop and exchange functional classes and control with others
in the lab in order to improve their own planning capabilities.

3.2 GAMES FOR THE CS2 LABORATORY
For this course, the Urbarium uses an approach inspired by
Microsofts’ “Age of Empires”. Here the empire builders at each
site now need to interact with competing chiefdoms in the valley
by acquiring resources, deploying armies, and engaging in trade
relationships. This will involve some basic planning, and problem
solving activities. These computational components can be traded
and exchanged along with goods and services produced by the
modeled towns. A successful programmer will be able to build an
empire in the valley and recreate history. A very successful
programmer might be able to organize the empire so that they can
rewrite history by defeating the Aztec armies. A prototype agent-
base simulation for this application was already produced with
support from an NSF grant to Reynolds.
All three “theme games” exist presently in prototype form and
were initially developed as part of related NSF projects. We plan
on developing these games within the context of Muppets, and
XNA game studio express. Each game will use the Cultural
Algorithm social engine. Cultural Algorithms are a computational
mechanism developed by Reynolds to support the evolution of

Cultural Systems [11]. Each places the programmer in a social
context of increasing complexity, and requires them to use their
programming skills to help advance the society. The three games
will be tied together in terms of an overarching narrative which
will help engage the student. That is, the student will want to take
the next course to see how the story is completed, or how they can
complete the story on their own. In addition, the gradual
introduction of the student to Microsoft gaming software will help
to encourage students to consider taking the gaming sequence as
an elective. That sequence will also use the same Microsoft
developed products, but they will be directed to develop their own
extensions.

4. THE HUNTER-GATHERER CS1 GAME

The original prototype for the hunter-gatherer was designed to
allow archaeological students to get the “look and feel” of the
social system that utilized the area hundreds of years ago.
Individuals looked over the landscape for resources. Some of the
resources could be gathered by a single individual while other
required cooperation and perhaps the exchange of collected
resources.

In our case the students are seated at workstations connected via
peer to peer network. They take turns moving through the
environment. The resources that they are collecting here are
syntactic and semantic code components. The current prototype is
being developed using the MUPPETS gaming framework. Figure
2 gives a basic example.

The world map is used from the MUPPETS system. The rider
object also was created there, in addition to the code objects that
should be collected. The callouts show what information should
be collected in each cell. These were added outside of the created
system to complete the conceptual design. Each question mark in
the function inside the belief space represents a statement that the
player must find in the game world to complete the function and
score more points. As functions are completed, the player can
score more points for visiting squares associated with the code. In
other cases completing the code allows the player to perform
certain functionalities in a cell that can lead to more points.
Some of the syntactic element will have many copies spread
throughout the environment, while other code segments may be
uniquely placed. This requires the students to exchange collected
code segments with each other for points or other code segments.
Once a code segment is completed an individual can choose to
exchange copies of a complete or partial function with others or
keep it for themselves.
At each time step each player in the network moves to a cell,
collects what is there. Then there is a pause in which individuals
can engage in an exchange dialogue if desired. Otherwise they
continue on. The laboratory instructor can keep a trace of the
interactions between students in order to assess the degree of
social interaction taking place.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

In figure 2 just a single algorithm is given, the factorial function
shown below:
double factorial(int a){

fact=1;

363

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

for(int i=0; i < a)
 fact *= i;
return fact; }

It is up to the individual to put the collected components together
in the correct fashion. If this is not done, then the code component
will execute. Incorrect code segments can be exchanged between
individuals, so that all players will need to validate the code that
they receive from other. The extent of the validation process will
reflect their “trust” of others.
During the course of the term additional relevant code segments
that have been studied in lecture can be added to the environment,
searched for and exchanged. Thus, the items to be searched for
can change over time as the students understanding of the course
concepts increases.

5. CONCLUSIONS

In this paper we have described our efforts at integrating a social
fabric more explicitly into the design process. Here we use a
gaming framework to support the social integration of knowledge
in terms, of metaphors, and a continuing storyline that encourages
the students to “stay in the game” and complete the course
sequence. In addition, while individuals can still “win” the game
they must cooperate during the code design process in order to do
so. Also, since others can make mistakes, a student must be able
to validate code that they or others generate.

ACKNOWLEDGMENTS
Our thanks to Mostafa Ali for help in developing the current
design of the hunter-gatherer game.

6. REFERENCES
[1]. J.C Thomas, W.A. Kellogg, and T. Erickson, “The

Knowledge Management Puzzle: Human and Social Factors
in Knowledge Management”, IBM Systems Journal, 40, No.
4, 2001.

[2]. E. Arias, H. Eden, G. Fischer, A. Gorfman, and E. Scharff,
“Transcending the Individual Human Mind—Creating
Shared Understanding Through Collaborative Design,” ACM
Transactions on Computer-Human Interaction 7, No. 1, 84–
113 (2000).

[3]. W. Gordon, Synectics, Harper, New York (1961).
[4]. A. S. Gordon, “The Representational Requirements of

Strategic Planning,” Fifth Symposium on Logical
Formalizations of Commonsense Reasoning, New York
University (May 20–22, 2001).

[5]. D. Snowden, “The Paradox of Story,” Journal of Scenario
and Strategy Planning 1, No. 5 (Dec. 1999/Jan. 2000).

[6]. Wayne State University, Key WSU Facts,
http://www.wayne.edu/keyfacts.html, 2005.

[7]. Smith, D. G., The challenge of diversity: Alienation in the
academy and its implications for faculty. Journal on
Excellence in College Teaching, 2, 129-137, 1991.

[8]. Cheng, L., Patterson, J., Rohall, S., Hupfer, S., and Ross, S.,
“Weaving a Social Fabric into Existing Software”, IBM
Research Report, RCS2385 (W0501-029), January 10, 2005.

[9]. Kohler, T., Gummerman, G., and Reynolds, R. G., “Virtual
Archaeology”, Scientific American, vol. 293, no. 1, pp: 76-
84, July, 2005.

[10]. Reynolds, R.G., Kobti, Z., Kohler, T., and Yap, L.,
“Unraveling Ancient Mysteries: Re-imagining the Past
Using Evolutionary Computation in a Computer Gaming
Environment”, IEEE Transactions on Evolutionary
Computation, Vol. 9, No. 6, pp: 708-720, December, 2005.

[11]. Reynolds, R.G., “An Overview of Cultural
Algorithms”, New Ideas in Optimization, D. Corne, F.
Glover, and M. Dorigo Ed., McGraw Hill Press, 1999,
pp: 367-378.

364

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

Figure 2: The MUPPETS prototype for the hunter-gatherer
game.

365

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)

