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Abstract—A self-tuning fuzzy control methodology via particle
swarm optimization based a robust stability criterion, is proposed.
The plant is modeled considering a Takagi-Sugeno (TS) fuzzy
structure from input-output experimental data, by using the fuzzy
C-Means clustering algorithm (antecedent parameters estima-
tion) and weighted recursive least squares (WRLS) algorithm
(consequent parameters estimation), respectively. An adaptation
mechanism based on particle swarm optimization is used to tune
recursively the parameters of a model based fuzzy PID controller,
from the gain and phase margins specifications. Computational
results for adaptive fuzzy control of a thermal plant with
time varying delay is presented to illustrate the efficiency and
applicability of the proposed methodology.

I. INTRODUCTION

In general, the most practical control loops are character-
ized by changes in the plant due to uncertainty, nonlinearity,
stochastic disturbances, change in the nature of the input, prop-
agation of disturbances along the chain of unit processes, time-
varying pure delay, etc. In all such situations, a conventional
controller presents limitations to maintain the performance
of the control loop at acceptable levels, and fuzzy adaptive
control has been suggested as an alternative approach to these
conventional control techniques in many applications [1], [2],
[3], [4], [5], [6], [7].

The first adaptive fuzzy controller called the linguistic
self-organizing controller was introduced in [8]. Since then,
several other adaptive fuzzy control techniques have been
proposed [9], [10], [11], [12], [13], [14], [15]. In which, the use
of genetic algorithm, particle swarm optimization, simulated
annealing and other bio-inspired intelligent optimization tech-
niques for tuning adaptive fuzzy controllers can be emphasized
as a recent topic of interest in the adaptive fuzzy control
field [16], [17], [18], [19], [20], [21], [22], [23]. In [24], a
genetic algorithm based adaptive fuzzy controller design has
been proposed for the multi-variable control of temperature
and relative humidity of a real world system by manipulating
valve positions to adjust the water and steam flow rates for a
air handling unit. In [25], an approach based on fuzzy rules for
online continuous tuning of a low pass filter with adjustable
gain in the feedback loop, is proposed. The fuzzy controller
is optimally tuned using Particle Swarm Optimization (PSO)
taking into accounts both the tracking error and the controller
output signal range. In [26], a fuzzy adaptive control for
pneumatic muscle actuator with simulated annealing tuning is

proposed. A hybrid adaptive approach was developed, where
a conventional PD controller is placed into the feedforward
branch and a fuzzy controller is placed into the adaptation
branch. The fuzzy controller compensates for the actions of
PD controller under conditions of inertia moment variation.
The design of fuzzy controller is based on the results of
optimization using simulated annealing algorithm.

In this context, a self-tuning robust stability adaptive
fuzzy control methodology via particle swarm optimization,
is proposed. The plant is identified by a TS fuzzy inference
structure from input-output experimental data, by using the
fuzzy C-Means clustering algorithm and WRLS algorithm for
antecedent and consequent parameters estimation, respectively.
An adaptation mechanism based on particle swarm optimiza-
tion is used to tune the fuzzy PID controller parameters, via
Parallel Distributed Compensation (PDC) strategy, based on
gain and phase margins specifications, recursively, according to
identified fuzzy model parameters of the plant. Computational
results for adaptive fuzzy control of a thermal plant with time
varying delay is presented to illustrate the the efficiency and
applicability of the proposed methodology.

This paper is organized as follows: In Section II the
proposed methodology, is presented. The structure of the TS
fuzzy model and PID controller, the tuning formulas based
on gain and phase margins specifications, the fuzzy model
recursive estimation algorithm and particle swarm adaptation
mechanism, are presented. In Section III computational results
for adaptive fuzzy control of a thermal plant with time varying
delay are shown. Finally, in Section IV the conclusions of this
work are discussed.

II. PROPOSED METHODOLOGY

The block diagram of the self-tuning robust stability fuzzy
digital control methodology is depicted in Fig. 1. The TS fuzzy
model is recursively identified using measurement input/output
samples, 𝑢(𝑘) e 𝑦(𝑘), taken from the plant. The normalized
membership grade of each fuzzy rule, 𝜇𝑖, is determined from
the membership functions obtained by a fuzzy clustering
method, where the fuzzy C-Means clustering method is used
in this paper. The consequent parameters of each fuzzy rule,
𝜃𝑖, is recursively estimated via WRLS method. An adaptation
mechanism based on particle swarm optimization is used to
online tune the fuzzy PID controller parameters, [𝛼𝑖, 𝛽𝑖, 𝛾𝑖],
based on gain and phase margins specifications, 𝑀𝐺𝑆 and
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𝑀𝑃𝑆 , to guarantee the robustness to variations in the plant
behavior and tracking of the reference signal, 𝑟.

Fig. 1. Robust stability adaptive fuzzy control scheme.

In this paper, the plant is described by the following TS
fuzzy model:

𝑅𝑖∣𝑖=1,2,...,𝑙 : IF 𝑥1 𝑖𝑠 𝐹
𝑖
1 AND ⋅ ⋅ ⋅ AND 𝑥𝑞 𝑖𝑠 𝐹

𝑖
𝑝 THEN

𝐺𝑖𝑝(𝑧) =
𝑏𝑖0 + 𝑏𝑖1𝑧

−1 + ⋅ ⋅ ⋅+ 𝑏𝑖𝑛𝑢
𝑧−𝑛𝑢

1 + 𝑎𝑖1𝑧
−1 + 𝑎𝑖2𝑧

−2 + ⋅ ⋅ ⋅+ 𝑎𝑖𝑛𝑦
𝑧−𝑛𝑦

𝑧−𝜏
𝑖
𝑑/𝑇 (1)

where R(𝑖) denotes the 𝑖-th rule, and 𝑙 is the number of
rules in the rule base. In the antecedent part, the linguistic
variables 𝑥𝑗 , 𝑗 = 1, 2 ⋅ ⋅ ⋅ , 𝑞, belongs to a fuzzy set 𝐹 𝑖𝑗 with
a truth value given by a membership function 𝜇𝐹 𝑖

𝑗
(𝑥𝑗) :

ℝ → [0, 1]. Each linguistic variable has its own discourse
universe 𝑈𝑥1

, ⋅ ⋅ ⋅ , 𝑈𝑥𝑛
, partitioned by fuzzy sets representing

its linguistics terms, respectively. The consequent part of the
𝑖-th inference rule is composed of 𝑛𝑦-th order discrete-time
transfer functions, 𝐺𝑖𝑃 (𝑧), in which 𝜏 𝑖𝑑 is its time delay,
𝑎𝑖1,2,⋅⋅⋅ ,𝑛𝑦

and 𝑏𝑖1,2,⋅⋅⋅ ,𝑛𝑢
are its numerator and denominator

parameters, respectively.

The TS fuzzy PID controller, to be designed based on gain
and phase margins specifications according to PDC strategy,
where the designed fuzzy controller shares the same fuzzy sets
with the fuzzy model in the premise part with the controller
and the plant [27], in the 𝑖∣𝑖=1,2,...,𝑙-th rule, without loss of
generality, is given by:

𝑅𝑖 : IF 𝑥1 𝑖𝑠 𝐹
𝑖
1 AND ⋅ ⋅ ⋅ AND 𝑥𝑞 𝑖𝑠 𝐹

𝑖
𝑝 THEN

𝐺𝑖𝑐(𝑧) =
𝛼𝑖𝑧2 + 𝛽𝑖𝑧 + 𝛾𝑖

𝑧2 − 𝑧
(2)

with:

𝛼𝑖 = 𝐾𝑖
𝑃 +

𝐾𝑖
𝐼𝑇

2
+
𝐾𝑖
𝐷

𝑇
(3)

𝛽𝑖 =
𝐾𝑖
𝐼𝑇

2
−𝐾𝑖

𝑃 −
2𝐾𝑖

𝐷

𝑇
(4)

𝛾𝑖 =
𝐾𝑖
𝐷

𝑇
(5)

where 𝐾𝑖
𝑃 , 𝐾𝑖

𝐼 and 𝐾𝑖
𝐷 are proportional, integral, and deriva-

tive fuzzy controller gains of the 𝑖-th inference rule, and 𝑇 is
the sample time, respectively [28].

From equations 1 and 2, the gain and phase margins of the
fuzzy control system are given by:

∠
[

𝑙∑
𝑖=1

𝜇𝑖𝐺𝑖𝑐(𝑧, 𝑒
𝑗𝜔𝑝)𝐺𝑖𝑃 (𝑧, 𝑒

𝑗𝜔𝑝)

]
= −𝜋 (6)

𝐺𝑀 =
1∣∣∣∣∣

𝑙∑
𝑖=1

𝜇𝑖𝐺𝑖𝑐(𝑧, 𝑒
𝑗𝜔𝑝)𝐺𝑖𝑃 (𝑧, 𝑒

𝑗𝜔𝑝)

∣∣∣∣∣
(7)

∣∣∣∣∣
𝑙∑

𝑖=1

𝜇𝑖𝐺𝑖𝑐(𝑧, 𝑒
𝑗𝜔𝑔 )𝐺𝑖𝑃 (𝑧, 𝑒

𝑗𝜔𝑔 )

∣∣∣∣∣ = 1 (8)

𝑃𝑀 = ∠
[

𝑙∑
𝑖=1

𝜇𝑖𝐺𝑖𝑐(𝑧, 𝑒
𝑗𝜔𝑔 )𝐺𝑖𝑃 (𝑧, 𝑒

𝑗𝜔𝑔 )

]
+ 𝜋 (9)

where the gain margin is given by equations (6) and (7), and
the phase margin is given by equations (8) and (9), respectively.
The 𝜔𝑝 is called phase crossover frequency and 𝜔𝑔 is called
gain crossover frequency.

A. Fuzzy Model Recursive Estimation Algorithm

The consequent of the dynamic TS fuzzy model, given
in the Eq. 1, can be represented by an ARX structure with
input 𝑢(𝑘) and 𝑖-th sub-model output 𝑦𝑖(𝑘) in each iteration
𝑘. Considering 𝐷𝑖 = −𝜏 𝑖𝑑/𝑇 , it is stated as

𝑦𝑖(𝑘) =

𝑛𝑦∑
𝑛=1

−𝑎𝑖𝑛𝑦𝑖(𝑘 − 𝑛) +

𝑛𝑢∑
𝑛=0

𝑏𝑖𝑛𝑢(𝑘 − (𝑛+𝐷𝑖)) (10)

By applying a standard fuzzy inference method, that is,
by using a singleton fuzzifier, product fuzzy inference, and
center-average defuzzifier, the global TS fuzzy model output,
𝑦, is obtained as following

𝑦(𝑘) =

𝑙∑
𝑖=1

𝜇𝑖(𝑘)

[
𝑛𝑦∑
𝑛=1

−𝑎𝑖𝑛𝑦𝑖(𝑘 − 𝑛) +

𝑛𝑢∑
𝑛=0

𝑏𝑖𝑛𝑢(𝑘 − (𝑛+𝐷𝑖))

]
(11)

where 𝜇𝑖(𝑥) is the normalized membership function satisfying

𝜇𝑖(𝑥) =
𝜉𝑖(𝑥)
𝑙∑

𝑗=1

𝜉𝑗(𝑥)

, (12)

𝜉𝑖(𝑥) =

𝑞∏
𝑗=1

𝐹 𝑖𝑗 (𝑥𝑗), (13)

𝜇𝑖(𝑥) ≥ 0, (14)
𝑙∑

𝑖=1

𝜇𝑖(𝑥) = 1, (15)

and 𝐹 𝑖𝑗 (𝑥𝑗) is the membership grade of 𝑥𝑗 in the fuzzy set 𝐹 𝑖𝑗 .

The time delay, given by 𝐷𝑖 = −𝜏 𝑖𝑑/𝑇 samples can be
obtained by any approach for time delay obtaining based
on experimental data, such as cross-correlation method. And
the sub-model parameters vector in 𝑖-th rule, (𝜃𝑖)𝑇 =
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[
𝑎𝑖1 𝑎𝑖2 ⋅ ⋅ ⋅ 𝑎𝑖𝑛𝑦

𝑏𝑖0 𝑏𝑖1 ⋅ ⋅ ⋅ 𝑏𝑖𝑛𝑢

]
, can be obtained in bath

by least squares method, as following

𝜃𝑖 =
[
Φ𝑇𝑀 𝑖Φ

]−1
Φ𝑇𝑀 𝑖𝑌 (16)

where 𝑌 = [𝑦(1) 𝑦(2) ⋅ ⋅ ⋅ 𝑦(𝑁)]
𝑇 is the output vector

of the dynamic system, considering 𝑁 input-output pairs
of observations {𝑢(𝑘), 𝑦(𝑘), 𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑁}. Φ =
[𝜑𝑇 (1) 𝜑𝑇 (2) ⋅ ⋅ ⋅ 𝜑𝑇 (𝑁)]𝑇 is the matrix of regression
with regression vectors 𝜑𝑇 (𝑘 − 1) = [−𝑦(𝑘 − 1) ⋅ ⋅ ⋅ −
𝑦(𝑘 − 𝑛𝑦) 𝑢(𝑘) ⋅ ⋅ ⋅ 𝑢(𝑘 − 𝑛𝑢)]. And the matrix 𝑀 𝑖 is the
diagonal weighting matrix of 𝑖− 𝑡ℎ rule, as follows

𝑀 𝑖 =

⎡
⎢⎢⎣

𝜇𝑖(1) 0 ⋅ ⋅ ⋅ 0
0 𝜇𝑖(2) ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝜇𝑖(𝑁)

⎤
⎥⎥⎦ (17)

The recursive parameters estimation of the TS fuzzy model
can be obtained by rewritten the Eq. 16 in the recursive form,
as following

𝜃𝑖(𝑘) =

[
𝑘∑

𝑛=1

𝜇𝑖(𝑛)𝜑(𝑛)𝜑𝑇 (𝑛)

]−1 𝑘∑
𝑛=1

𝜇𝑖(𝑛)𝜑(𝑛)𝑦(𝑛) (18)

where 𝑃 𝑖(𝑘) =

[
𝑘∑

𝑛=1

𝜇𝑖(𝑛)𝜑(𝑛)𝜑𝑇 (𝑛)

]−1

is the fuzzy co-

variance matrix.

Then, it has

(𝑃−1)𝑖(𝑘) = (𝑃−1)𝑖(𝑘 − 1) + 𝜇𝑖(𝑘)𝜑(𝑘)𝜑𝑇 (𝑘) (19)

The least-squares estimator 𝜃𝑖(𝑘), equation (18), can be
written as follows:

𝜃𝑖(𝑘) = 𝑃 𝑖(𝑘)

[
𝑘−1∑
𝑛=1

𝜇𝑖(𝑛)𝜑(𝑛)𝑦(𝑛) + 𝜇𝑖(𝑘)𝜑(𝑘)𝑦(𝑘)

]
(20)

By writing (18) at time 𝑘 − 1, it has[
𝑘−1∑
𝑛=1

𝜇𝑖(𝑛)𝜑(𝑛)𝜑𝑇 (𝑛)

]
𝜃𝑖(𝑘 − 1) =

𝑘−1∑
𝑛=1

𝜇𝑖(𝑛)𝜑(𝑛)𝑦(𝑛)

(21)

The left side of equation (21) can be represented in compact
form as (𝑃−1)𝑖(𝑘 − 1)𝜃𝑖(𝑘 − 1). Substituting this result into
the equation (20), it has

𝜃𝑖(𝑘) = 𝑃 𝑖(𝑘)
[
(𝑃−1)𝑖(𝑘 − 1)𝜃𝑖(𝑘 − 1) + 𝜇𝑖(𝑘)𝜑(𝑘)𝑦(𝑘)

]
(22)

From equations (19) and (22), it has

𝜃𝑖(𝑘) = 𝜃𝑖(𝑘 − 1) + 𝜇𝑖(𝑘)𝐾𝑖(𝑘)𝜉𝑖(𝑘) (23)

where

𝐾𝑖(𝑘) = 𝑃 𝑖(𝑘)𝜑(𝑘) (24)

𝜉𝑖(𝑘) = 𝑦(𝑘)− 𝜑𝑇 (𝑘)𝜃𝑖(𝑘 − 1) (25)

The covariance matrix, 𝑃 𝑖(𝑘), is computed by applying the
matrix inversion lemma in the equation (19), and

𝑃 𝑖(𝑘) = 𝑃 𝑖(𝑘 − 1)− 𝑃 𝑖(𝑘 − 1)𝜇𝑖(𝑘)𝜑(𝑘)[𝜑𝑇 (𝑘)

𝑃 𝑖(𝑘 − 1)𝜇𝑖(𝑘)𝜑(𝑘) + 𝐼]−1𝜑𝑇 (𝑘)𝑃 𝑖(𝑘 − 1) (26)

This implies that

𝐾𝑖(𝑘) = 𝑃 𝑖(𝑘 − 1)𝜑(𝑘)
(
𝜑𝑇 (𝑘)𝑃 𝑖(𝑘 − 1)𝜇𝑖(𝑘)𝜑(𝑘) + 𝐼

)−1

(27)
and

𝑃 𝑖(𝑘) = 𝑃 𝑖(𝑘 − 1)− 𝜇𝑖(𝑘)𝐾𝑖(𝑘)𝜑𝑇 (𝑘)𝑃 𝑖(𝑘 − 1) (28)

Therefore, the recursive weighted least squares is given
by equations (23), (27) and (28). Considering the forgetting
factor 𝜆𝑖 for 𝑖− 𝑡ℎ rule, the recursive estimation algorithm of
the consequent parameters of the fuzzy model, is given by:

𝜉𝑖(𝑘) =
[
𝑦(𝑘)− 𝜑𝑇 (𝑘)𝜃(𝑘 − 1)

]
(29)

𝐾𝑖(𝑘) = 𝑃 𝑖(𝑘 − 1)𝜑(𝑘)[𝜑𝑇 (𝑘)𝑃 𝑖(𝑘 − 1)

𝜇𝑖(𝑘)𝜑(𝑘) + 𝜆𝑖𝐼]−1 (30)

𝜃𝑖(𝑘) = 𝜃𝑖(𝑘 − 1) + 𝜇𝑖(𝑘)𝐾𝑖(𝑘)𝜉𝑖(𝑘) (31)

𝑃 𝑖(𝑘) =
1

𝜆𝑖
(𝑃 𝑖(𝑘 − 1)− 𝜇𝑖(𝑘)𝐾𝑖(𝑘)

𝜑𝑇 (𝑘)𝑃 𝑖(𝑘 − 1)) (32)

B. Particle Swarm Adaptation Mechanism

In this paper, the adaptation mechanism is accomplished
through a recursive multiobjective particle swarm optimization
algorithm. The optimal parameters of the fuzzy PID controller
are tuned, recursively, based on the fuzzy model parameters
estimated by WRLS estimator and from the gain and phase
margin specifications. The gain margin obtained in the 𝑘-
th recursion, 𝐺𝑀𝑂(𝑘), must be so near as possible of the
specified gain margin, 𝐺𝑀𝑆 . In the same hand, the phase
margin obtained in the 𝑘-th recursion, 𝑃𝑀𝑂(𝑘), must be so
near as possible of the specified gain margin, 𝑃𝑀𝑆 . The multi-
objective adaptation mechanism is formulated by weighted-
sum or scalarization method, in which the multiple objectives
are combined into one single-objective scalar function, 𝑓(𝑘),
by minimization of a positively weighted convex sum of the
objectives

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑘)=𝛿1∣𝐺𝑀𝑂(𝑘)−𝐺𝑀𝑆 ∣+𝛿2∣𝑃𝑀𝑂(𝑘)−𝑃𝑀𝑆 ∣ (33)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺𝑀𝑂(𝑘)≥𝐺𝑀𝑆 (34)

𝑃𝑀𝑂(𝑘)≥𝑃𝑀𝑆 (35)
𝐺𝑀𝑂(𝑘)>0 (36)
𝑃𝑀𝑂(𝑘)>0 (37)

where ∣𝐺𝑀𝑂(𝑘) − 𝐺𝑀𝑆 ∣ and ∣𝑃𝑀𝑂(𝑘) − 𝑃𝑀𝑆 ∣ are the
objectives functions, the Eq. 34, 35, 36 and 37 are the
constraint functions of the problem, 𝛿1 and 𝛿2 are weights,
in which

𝛿1 + 𝛿2 = 1, 𝛿1 > 0, and 𝛿2 > 0 (38)
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Considering 𝑙 rules and 𝑝 particles, a 3𝑙-Dimensional
swarm is initially generated in a search space defined around
of the controller parameters encountered in the back iteration,
as following:

𝛼𝑖,0𝑝 (𝑘) ∼ 𝑈(𝛼𝑖(𝑘 − 1)−Δ𝛼𝑖 , 𝛼𝑖(𝑘 − 1) + Δ𝛼𝑖) (39)

𝛽𝑖,0𝑝 (𝑘) ∼ 𝑈(𝛽𝑖(𝑘 − 1)−Δ𝛽𝑖 , 𝛽𝑖(𝑘 − 1) + Δ𝛽𝑖) (40)

𝛾𝑖,0𝑝 (𝑘) ∼ 𝑈(𝛾𝑖(𝑘 − 1)−Δ𝛾𝑖 , 𝛾𝑖(𝑘 − 1) + Δ𝛾𝑖) (41)

where Δ𝛼𝑖 , Δ𝛽𝑖 and Δ𝛾𝑖 are defined by expert; 𝛼𝑖(𝑘 − 1),
𝛽𝑖(𝑘 − 1) and 𝛾𝑖(𝑘 − 1) are the controller parameters of the
𝑖
∣∣𝑖=1,2,⋅⋅⋅ ,𝑙.

∣∣ − 𝑡ℎ rule in the back iteration. The recursive
particle swarm adaptation mechanism is implemented as shown
in Algorithm 1 and 2.

Algorithm 1: Adaptation mechanism algorithm: part 1

repeat
for each particle 𝑝 ∈ 1, ..., 𝑁 do

Compute the Gain and Phase Margin:

∠[
∑𝑙

𝑖=1 𝜇
𝑖𝐺𝑖

𝐶(𝑧,𝑒𝑗𝜔𝑝 )𝐺𝑖
𝑃 (𝑧,𝑒𝑗𝜔𝑝 )]=−𝜋

𝐺𝑀𝑂(𝑘)= 1

∣∑𝑙
𝑖=1 𝜇

𝑖𝐺𝑖
𝐶(𝑧,𝑒𝑗𝜔𝑝 )𝐺𝑖

𝑃 (𝑧,𝑒𝑗𝜔𝑝 )∣
∣∑𝑙

𝑖=1 𝜇
𝑖𝐺𝑖

𝐶(𝑧,𝑒𝑗𝜔𝑝 )𝐺𝑖
𝑃 (𝑧,𝑒𝑗𝜔𝑝 )∣=1

𝑃𝑀𝑂(𝑘)=∠[
∑𝑙

𝑖=1 𝜇
𝑖𝐺𝑖

𝐶(𝑧,𝑒𝑗𝜔𝑝 )𝐺𝑖
𝑃 (𝑧,𝑒𝑗𝜔𝑝 )]+𝜋

if (𝐺𝑀𝑂(𝑘)<𝐺𝑀𝑆 or 𝑃𝑀𝑂(𝑘)<𝑃𝑀𝑆) then
for each fuzzy rule 𝑖∈1,...,𝑙 do

𝛼𝑖
𝑝(𝑘)=𝛼

𝑖
𝑝(𝑘−1)

𝛽𝑖
𝑝(𝑘)=𝛽

𝑖
𝑝(𝑘−1)

𝛾𝑖
𝑝(𝑘)=𝛾

𝑖
𝑝(𝑘−1)

end
end
else

Evaluate the fitness of the 𝑝-th particle 𝑓𝑝

𝑓𝑝=
√
𝛿1(𝐺𝑀𝑂(𝑘)−𝐺𝑀𝑆)2+𝛿2(𝑃𝑀𝑂(𝑘)−𝑃𝑀𝑆)2

end
Update local best position
if 𝑓(𝑙𝑜𝑐𝑎𝑙)<𝑓𝑝 then

for each fuzzy rule 𝑖∈1,...,𝑙 do
𝛼𝑖

𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)=𝛼
𝑖
𝑝(𝑘)

𝛽𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)=𝛽

𝑖
𝑝(𝑘)

𝛾𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)=𝛾

𝑖
𝑝(𝑘)

end
end

end

III. COMPUTATIONAL RESULTS

The computational results are based on experimental data
from a thermal plant. The data acquisition platform is com-
posed by virtual instrumentation environment, data acquisition

Algorithm 2: Adaptation mechanism algorithm: part 2

Update global best position
if 𝑓(𝑔𝑙𝑜𝑏𝑎𝑙)<𝑓(𝑙𝑜𝑐𝑎𝑙) then

for each fuzzy rule 𝑖∈1,...,𝑙 do
𝛼𝑖

𝑝(𝑔𝑙𝑜𝑏𝑎𝑙)(𝑘)=𝛼
𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)

𝛽𝑖
𝑝(𝑔𝑙𝑜𝑏𝑎𝑙)(𝑘)=𝛽

𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)

𝛾𝑖
𝑝(𝑔𝑙𝑜𝑏𝑎𝑙)(𝑘)=𝛾

𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)

end
end
Apply velocity update v𝑝(𝑘+1)

for each fuzzy rule 𝑖∈1,...,𝑙 do

𝑣
[𝛼𝑖

𝑝]

𝑝 (𝑘+1)=𝜔𝑣3𝑖−2
𝑝 (𝑘)+𝑐1𝑟

[𝛼𝑖
𝑝]

1 (𝑘)[𝛼𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)−𝛼𝑖

𝑝(𝑘)]+

+𝑐2𝑟
[𝛼𝑖

𝑝]

2 (𝑘)[𝛼𝑖
𝑝(𝑔𝑙𝑜𝑏𝑎𝑙)(𝑘)−𝛼𝑖

𝑝(𝑘)]

𝑣
[𝛽𝑖

𝑝]

𝑝 (𝑘+1)=𝜔𝑣3𝑖−1
𝑝 (𝑘)+𝑐1𝑟

[𝛽𝑖
𝑝]

1 (𝑘)[𝛽𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)−𝛽𝑖

𝑝(𝑘)]+

+𝑐2𝑟
[𝛽𝑖

𝑝]

2 (𝑘)[𝛽𝑖
𝑝(𝑔𝑙𝑜𝑏𝑎𝑙)(𝑘)−𝛽𝑖

𝑝(𝑘)]

𝑣
[𝛾𝑖

𝑝]

𝑝 (𝑘+1)=𝜔𝑣3𝑖𝑝 (𝑘)+𝑐1𝑟
[𝛾𝑖

𝑝]

1 (𝑘)[𝛾𝑖
𝑝(𝑙𝑜𝑐𝑎𝑙)(𝑘)−𝛾𝑖

𝑝(𝑘)]+

+𝑐2𝑟
[𝛾𝑖

𝑝]

2 (𝑘)[𝛾𝑖
𝑝(𝑔𝑙𝑜𝑏𝑎𝑙)(𝑘)−𝛾𝑖

𝑝(𝑘)]

end
Apply position update x𝑝(𝑘+1)

for each fuzzy rule 𝑖∈1,...,𝑙 do
𝛼𝑖

𝑝(𝑘+1)=𝛼𝑖
𝑝(𝑘)+𝑣[𝛼

𝑖
𝑝]𝑝(𝑘+1)

𝛽𝑖
𝑝(𝑘+1)=𝛽𝑖

𝑝(𝑘)+𝑣
[𝛽𝑖

𝑝]

𝑝 (𝑘+1)

𝛾𝑖
𝑝(𝑘+1)=𝛾𝑖

𝑝(𝑘)+𝑣
[𝛾𝑖

𝑝]

𝑝 (𝑘+1)

end
𝑘=𝑘+1

until iterations number of PSO;

hardware, sensor and actuator, as shown in Fig. 2. The thermal
plant consists in a monophasic toaster AC 220 Volts, with
functional temperature from 25 ∘C to 265 ∘C. The virtual
instrumentation environment (Human Machine Interface) is
based in LabVIEW software (LABoratory Virtual Instrument
Engineering Workbench) which allows the designer to view,
storage and process the acquired data. The data acquisition
hardware performs the interface between sensors/actuators and
the virtual instrumentation environment, and is composed by
NI cRIO-9073 integrated system, the NI 9219 analog input
module and the NI 9263 analog output module. The tempera-
ture sensor was the LM35, and the actuator is based on TCA
785 [29].

For recursive estimation of the consequent parameters of
the TS fuzzy model, the input signal (RMS Voltage, in Volts)
applied to monophasic toaster and the corresponding response
(temperature, degree Celsius) were used as experimental data.
A batch identification procedure was considered to obtain the
initial conditions for implementation of the adaptive fuzzy
control system: The antecedent membership functions of a
TS fuzzy model (with two rules) were obtained using FCM
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Human Machine Interface
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Control Voltage

Lm35 Sensor

Fig. 2. Data acquisition platform based on virtual instrumentation.

(Fuzzy C-Means) algorithm; The time delay was estimated
by computing the crosscorrelation function between input and
output signals of the thermal plant, resulting in a time delay of
130 and 266 samples, corresponding to 𝜏1𝑑 = 2.210 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
and 𝜏2𝑑 = 4.522 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 with sample time of 𝑇 = 17𝑚𝑠,
for the second order transfer functions in first and second
rules, respectively; The parameters of the transfer functions
were 𝑏10(0) = 0, 0082, 𝑏11(0) = −0, 0075, 𝑎11(0) = −0, 5435,
𝑎12(0) = −0, 456, 𝑏20(0) = 0, 000352, 𝑏21(0) = 0, 000248,
𝑎21(0) = −0, 5648, 𝑎22(0) = −0, 4348 for the second order
transfer functions in first and second rules, respectively; The
forgetting factor adopted was of 𝜆1 = 𝜆2 = 0.997 and
covariance matrix was of 𝑃 𝑖(0) = 10−5I4; The gain and phase
margins specified were 5 - 70 ∘, and from a multiobjetive par-
ticle swarm algorithm, the initial parameters of the fuzzy PID
controller were: 𝛼1 = 2, 8515, 𝛽1 = −2, 8585, 𝛾1 = 0, 0081,
𝛼2 = 3, 0964, 𝛽2 = −3, 1560, 𝛾2 = 0, 0606, and the gain and
phase margins obtained were 5 - 72, 37 ∘ and 5, 064 - 70, 73 ∘,
in the first and second rules, respectively. The results for TS
fuzzy model parameters recursive estimation of the thermal
plant, are shown in Fig. 3.

The recursive particle swarm adaptation of the fuzzy PID
controller parameters is shown in Fig. 4. In this implementation
of the particle swarm adaptation mechanism, the following
conditions were adopted: Δ𝛼𝑖 = Δ𝛽𝑖 = 1.0, Δ𝛾𝑖 = 0.01,
𝐺𝑀𝑠 = 5.0, 𝑃𝑀𝑠 = 70.0, 𝛿1 = 0.96, 𝛿2 = 0.04. It can
be seen that according to variations in the parameters of the
plant, as shown in Fig. 3, the corresponding parameters of the
controller, as shown in Fig. 4, were satisfactorily estimated to
guarantee the robust stability from the gain and phase margins
instantaneously computed, as shown in Fig.5. It can be also
observed that the gain margin is greater than or equal to 5 and
the phase margin is greater than or equal to 70 ∘, as required
previously in the performance criterion.

The temporal response of the thermal plant and the control
action are shown in Fig. 6 and Fig. 7, respectively. The initial
set point for temperature was 100 ∘𝐶, and a changing to 80 ∘𝐶
was applied at time of 5 minutes. A gain variation for the
thermal plant of 1.2 and 0.8333 was considered at time of
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-0.5435
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a
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-0.4348

-0.4348
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(f)
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×10-4

3.45

3.5

3.55

3.6
(g)

Time (minutes)
0 5 10

b
2 1

×10-4

2.4

2.45

2.5

2.55
(h)

Fig. 3. Recursive parametric estimation: (a)-(d) consequent parameters of
the first rule, (e)-(h) consequent parameters of the second rule.

1.8333 minutes and 6.8333 minutes, respectively. It can be
seen the efficiency of the proposed methodology through the
self-tune of the fuzzy PID controller based on gain and phase
margins specifications to guarantee the robust stability in spite
of variations in the plant behavior and tracking of the reference
signal.

5



Time (minutes)
0 5 10

α
1

-10

-5

0

5
(a)

Time (minutes)
0 5 10

β
1

-5

0

5

10
(b)

Time (minutes)
0 5 10

γ
1

-0.2

0

0.2

0.4
(c)

Time (minutes)
0 5 10

α
2

-40

-20

0

20
(d)

Time (minutes)
0 5 10

β
2

-20

0

20

40
(e)

Time (minutes)
0 5 10

γ
2

-0.4

-0.2

0

0.2
(f)

Fig. 4. Recursive estimation fuzzy PID controller parameters: (a)-(c)
consequent parameters of the first rule, (d)-(f) consequent parameters of the
second rule.
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Fig. 5. Gain and Phase Margin Obtained for the Thermal Plant.

IV. CONCLUSIONS

In this paper, a self-tuning fuzzy digital control method-
ology based on gain and phase margins specifications, was
proposed. The robust stability was satisfied via particle swarm
adaptation mechanism used for self-tune of the fuzzy PID con-
troller, in spite of variations in the plant behavior and track the
reference trajectory as well. The development of an “evolving
fuzzy system” scheme applied to proposed methodology is of
particular interest.
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