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Abstract—This paper presents an iterative Takagi Sugeno
Fuzzy Model (TSFM) identification. Interval Type-2 Recursive
Fuzzy C-Means (IT2RFCM) clustering algorithm has been used
to classify the data space to obtain premise variable parameters
and Weighted Recursive Least Square (WRLS) technique has
been used to determine consequence parameters of each linear
model. IT2RFCM clustering algorithm has been obtained from
type-1 Fuzzy C-Means clustering algorithm by introducing fuzzi-
ness parameters. The effectiveness of the proposed IT2RFCM
algorithm has been validated on Mackey-Glass time series data.

I. INTRODUCTION

Takagi-Sugeno Fuzzy Model (TSFM) is extensively used
in various real-time applications, especially in model-based
control and model-based fault diagnosis [1]. The qualitative
approach based TSFM is a systematic process to generating
fuzzy rules from a given input-output data set [2], [3]. The
clustering algorithm has been used to determine the partitions
which is related to rule in TSFM domain. However, Type-1
fuzzy clustering based TSFM can not replicate the real plant
model with high accuracy. Therefore, a type-2 fuzzy set can
be introduced in fuzzy clustering algorithm that makes TSFM
to replicate the original model with high accuracy [4], [5].
Mendel extended and developed a new fuzzy set theory from
type-1 fuzzy set, known as type-2 fuzzy set theory [6], [7].

The main tasks to design TSFM are how to determine
the number of rules and model parameters. Rules are part
of structure identification and variables of each rule are part
of parameter identification. Two approaches have been used
to establish rule-base in a given data set i.e. off-line (batch
processing) and on-line (recursive). In an off-line method, all
the data samples are available at a time for learning the process.
An on-line learning process is entirely different from off-line
i.e. learning of rules have been done by an incremental learning
process.

There are many off-line clustering algorithm in TSFM
identification domain [8]–[10]. But, in the recent years, on-line
clustering algorithm has generated interest among researchers
for constructing the rules from streaming data. Evolving
Takagi-Sugeno model (eTS) is most renowned method existing
in online nonlinear fuzzy model identification domain [11].
The further development is done by incorporating informative
potential nature in this method. The informative potential helps
to capture the new data in rule base. The autonomous modeling

skill is found in eTS, known as eTS+ [12]. In eTS+, the
user defined parameters such as zone influence, density, utility
criteria are required for ensemble learning based fuzzy model.
Evolving Participatory Learning (ePL) is an upgraded version
of eTS+. ePL has been formulated on participatory learning
clustering algorithm [13]. Later, modification of ePL, known
as ePL+, is also found [14]. Beside, a conceptually similar
approach is found in TSFM domain, known as, Dynamic
Evolving Neural Fuzzy Inference System (DENFIS) [3]. The
distance based evolving clustering algorithm has been used for
identifying the structure and WRLS is adopted to identifying
the consequence parameters. A recursive version of vector
quantization clustering algorithm has been used to construct
Flexible Fuzzy Inference Systems (FLEXFIS) [15].

The self organization neural network is another recursive
online method that is generated by error criteria and general-
ization ability of the network. The self-organizing fuzzy neural
network [16] uses nearest heuristic to define width of gaussian
membership functions. Self-adaptive fuzzy inference network
uses learning-induced partition mechanism to classify the data
space. Similar approach is also found in Self-Constructing
Fuzzy Neural Network (SCFNN) [17], Generalized Adaptive
Neural Fuzzy Inference System (GANFIS) [18]. The other
evolving methods are presented in online learning identifica-
tion domain [19]–[21].

The Fuzzy C-Means (FCM) [22] is most popular clustering
algorithm which has been used in TSFM for both cases: off-
line and online. In this paper, the modification of recursive
FCM (type-1)(rFCM) [23] [24] clustering algorithm has been
done by interval type-2 fuzzy logic. The modified algorithm is
represented as interval type-2 recursive FCM (IT2RFCM) in
this study.

The paper is organized as follows: General structure of
TSFM is described in section II. Section III describes type-
2 fuzzy set theory and its extension to interval type-2 fuzzy
set theory. Detailed descriptions of fuzzy c-means clustering
algorithm are presented in section IV. IT2RFCM algorithm
is presented in Section V. In section VI, the effectiveness
of IT2RFCM algorithm based TS fuzzy model has been
demonstrated in the validation of a complex nonlinear model.
Section VII contains concluding remarks.
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II. TS FUZZY MODEL

A multi-input multi-output (MIMO) dynamical system can
be decoupled and represented as sum of multi-input single-
output (MISO) systems. Here, MISO plant is assumed to be
modeled by TS fuzzy logic reasoning and its implication.
TSFM is represented by a set of ”IF-THEN” rules and i-th
rule can be represented as,

P i : IF x1 (k) isA1
i and x2(k) isA2

i and . . .

and xn(k) isAn
i

THEN yi(k) = p0
i +

n∑
j=1

xj(k) ∗ pj
i

= 1 ∗ p0
i + x1(k) ∗ p1

i + x2(k) ∗ p2
i + ... + xn(k) ∗ pn

i

= [1 x
T (k)]θi

= x̄(k)θi

(1)
where, θi = [p0

i, p1
i, ..., pn

i]T ∈ R
(n+1) is the coef-

ficients of consequence parameter of i-th rule, x(k) =
[x1(k), x2(k), ..., xn(k)]

T ∈ R
n is the premise variable and

yi(k) is consequence variable generated by i-rule due to k-th
sample.

Type-2 Gaussian membership grade has been used for
premise variable and upper membership grade Āi

j(xj(k)) is
defined as,

Āi
j(xj(k)) = exp(−

(xj(k)−v̄i
j(k))

2

σ̄i
j(k)

2 ) ∈ [0, 1],

for i = 1, 2, ...C and j = 1, 2, ..., n
(2)

where, v̄ij(k) is the mean and σ̄i
j(k) is width of the upper

membership grade. Similarly, lower membership grade of
premise variable is defined as,

Aj
i(xj(k)) = exp(−

(xj(k)−vj
i(k))

2

σj
i(k)2 ) ∈ [0, 1],

for i = 1, 2, ...C and j = 1, 2, ..., n
(3)

where, vj
i(k) is the mean and σj

i(k) is width of the lower
membership grade.

The estimated output for k-th sample can be obtained by
weighted average of all activated rules,

ŷi(k) =

C∑
i=1

wi(k) ∗ yi(k)

C∑
i=1

wi(k)

. (4)

w̄i(k) = min{Āi
j(xj(k))}.

wi(k) = min{Aj
i(xj(k))}. for k = 1, 2, ..., N

wi(k) = w̄i(k)+wi(k)
2

(5)

where, Āi
j(xj(k)) and Aj

i(xj(k)) is upper and lower mem-
bership grade of j-th component of k-th premise variable
respectively. The overall truth value (wi(k)) of each rule is
obtained by mean of upper and lower membership grade.

III. TYPE-2 FUZZY LOGIC SYSTEM

In the section, type-2 fuzzy set theory is briefly discussed.

A. Type-2 Fuzzy Set (T2FS)

A type-2 fuzzy set [25] in universal set Z is defined as Ã,
and its membership value μÃ(z, u) is defined as,

Ã =

∫
z∈Z

μÃ(z)/z =

∫
z∈Z

⎡
⎣ ∫
u∈Jz

fz(u)/u

⎤
⎦/z, Jz ∈ [0, 1]

(6)
where, fz(u) is the secondary membership function and Jz
is the primary membership function of z, the domain of
secondary membership function.

Definition 1. At each vertical slice z, say z = z
′

, the vertical
slice of secondary membership function is μÃ(z

′, u) in the
domain of universal set Z. It is defined as,

μÃ(z = z′, u) =
∫

u∈Jz′

fz′(u)/u, Jz′ ∈ [0, 1]

0 ≤ fz′(u) ≤ 1
(7)

The type-2 fuzzy set [7] is called interval type-2 fuzzy set
when the secondary membership grade value is 1 i.e. fz′(u) =
1, Jz′ ∈ [0, 1].

Definition 2. An interval type-2 fuzzy Ã, is expressed by its
membership function μÃ(z, u) = 1, i.e.

Ã = {((z, u), 1) |∀z ∈ Z, ∀u ∈ Jz ∈ [0, 1]} (8)

The footprint of uncertainty (FOU) of Ã is expressed as
union of all the primary membership function,

FOU(Ã) = ∪∀z∈Z Jz = {(z, u) |u ∈ Jz ∈ [0, 1]} (9)

The upper membership function (UMF) μ̄Ã(z), and lower
membership function (LMF) μ

Ã
(z), value is associated with

FOU [6] [26].
μ̄Ã(z) = FOU(Ã)

μ
Ã
(z) = FOU(Ã)

(10)

IV. FUZZY C-MEANS CLUSTERING ALGORITHM

In the section, offline type-1 FCM clustering
algorithm is briefly discussed for explaining
proposed IT2RFCM algorithm. Let, the data set
D = {(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))}. where,
input vector, x(k) ∈ R

n . A set of input vector is represented
as a matrix form,

X = [ {x(1), y (1)} ... {x(N), y (N)} ]
(n+1)×N

(11)

In the clustering algorithm, the main objective is to parti-
tion the data space X into C clusters. The fuzzy partition of
X is typically represented by fuzzy subsets Bi(1 ≤ i ≤ C).
These fuzzy subsets are represented by fuzzy membership
values μi(k) ∈ [0, 1] that is implicit member of fuzzy partition
matrix U = [μi(k)] ∈ R

C×N . The fuzzy partitions matrix has
following properties,

μi(k) ∈ [0, 1], i = 1, 2, ..., C and k = 1, 2, ..., N (12)

0 <
N∑

k=1

μi(k) < N (13)

23



Equation (13) implies that sum of the membership value of
samples each cluster is less than the total number of samples,
N . The FCM clustering algorithm produces C partitions. The
distance between data point to point shaped cluster is expressed
as, di

2(k) =
∥∥X(k)− v

i
∥∥
2

2
> 0. A variety of different

norms can be used to measure the distance metric such as
L0, L2, and L∞ norm [23]. The FCM clustering algorithm
can be formulated as an optimization problem,

min
U,V

{
J1(D;U, V ) =

C∑
i=1

N∑
k=1

μm
i(k)

∥∥X(k)− v
i
∥∥
2

2

}
(14)

subject to,

C∑
i=1

μi(k) = 1 (15)

where, V = [v1,v2, ...,vC ] ∈ R
(n+1)×C is cluster center

matrix, m is the fuzziness parameter. The constrained opti-
mization problem in (14-15) can be converted to unconstrained
optimization problem by using N lagrangian multipliers. It can
be represented as,

L(U, V ;X) = J1(D;U, V )−
N∑

k=1

λ(k)(
C∑
i=1

μi(k)− 1) (16)

If, di
2(k) > 0, the analytical solutions of (16) is obtained

as fuzzy partition matrix (U) and cluster center (vi).

μi(k) =
1

C∑
q=1

(
d2

i(k)
d2

q(k)

)1/(m−1)
(17)

The cluster center (vi) is represented as weighted average sum
of the data belonging to the i-th cluster, where the weights are
fuzzy membership value and are expressed as follows,

v
i =

N∑
k=1

μm
i(k)X(k)

N∑
k=1

μm
i(k)

(18)

V. INTERVAL TYPE-2 RECURSIVE FUZZY C-MEANS
CLUSTERING ALGORITHM

The recursive algorithm is incorporated into clustering
algorithm so that its can predict dynamical system behavior
instantly. Recursive version of type-2 FCM clustering algo-
rithm has been obtained by varying fuzziness parameters.

A. Interval type-2 recursive center calculation

We will first introduce the cluster upper and lower center
(v̄i(r) andvi(r)) for constructing IT2RFCM algorithm ac-
cording to the current observation vector i.e. the weighted
mean of the data according to the current membership
degrees. The cluster centroid vectors introduces notation
(v̄i(r) andvi(r)), that means centroid at current current sam-
ple r which is obtained from the current membership degrees.
r stands for the sample index used to calculate cluster centers
(v̄i(r) andvi(r)). In IT2RFCM algorithm, upper and lower
initial cluster centers (v̄i(r) andvi(r)) are obtained by using

observed membership function μi(r) value of r-th sample. The
upper cluster center for (r + 1)-th sample is obtained as,

v̄
i(r + 1) =

r∑
k=1

μm2
i(k)X(k)+μm2

i(r+1)X(r+1)

r∑
k=1

μm2
i(k)+μm2

i(r+1)

=

r∑
k=1

μm2
i(k)X(k)

/ r∑
k=1

μm2
i(k)

r+1∑
k=1

μm2
i(k)

/
r∑

k=1

μm2
i(k)

+ μm2
i(r+1)X(r+1)

r∑
k=1

μm2
i(k)+μm2

i(r+1)

=
v̄
i(r)

r∑
k=1

μm2
i(k)

r+1∑
k=1

μm2
i(k)

+ μm2
i(r+1)X(r+1)

r∑
k=1

μm2
i(k)+μm2

i(r+1)

= v̄
i(r)− v̄

i(r)μm2
i(r+1)X(r+1)

r+1∑
k=1

μm2
i(k)

+ μm2
i(r+1)X(r+1)

r∑
k=1

μm2
i(k)+μm2

i(r+1)

= v̄
i(r) + μm2

i(r+1)(X(r+1)−v̄
i(r))

r∑
k=1

μm2
i(k)+μm2

i(r+1)

= v̄
i(r) + Δv̄

i(r + 1)

(19)

where,

Δv̄
i(r + 1) =

μm2
i(r + 1)[X(r + 1)− v̄

i(r)]
r∑

k=1

μm2
i(k) + μm2

i(r + 1)
(20)

where, μi(r+1) is the membership value of (r+1)-th sample.
m2 is upper fuzziness parameter. The denominator of (20)
for calculating upper cluster center (r + 1)-th sample value
depends on upper membership value of (r + 1)-th sample.
The calculation of current membership value requires all past
r-th sample, that is against the recursive approach [23]. The
approximation for calculating the current membership value
has been done by exponentially weighted constant [23]. The
denominator term of (20) can be represented as,

S̄i(r + 1) = ξ1S̄
i(r) + μm2

i(r + 1) (21)

where, S̄i(r) is represented as,

S̄i(r) =
r∑

k=1

μm2
i(k) (22)

0 < ξ1 < 1 is called forgetting factor constant. The upper
cluster center can be obtained by using (20) and (21),

Δv̄
i(r + 1) =

μm2
i(r + 1)[X(r + 1)− v̄

i(r)]

S̄i(r + 1)
(23)

Similarly, the lower cluster center (vi(r+1)) for (r+1)-th
sample is obtained as,

v
i(r + 1) = v

i(r) + Δv
i(r + 1) (24)

where,

Δv
i(r + 1) =

μm1
i(r + 1)(X(r + 1)− v

i(r))

Si(r + 1)
(25)
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Lower fuzziness parameter is defined as m1 and denominator
term for lower cluster center is represented as,

Si(r + 1) = ξ1S
i(r) + μm1

i(r + 1) (26)

where, Si(r) is represented as,

Si(r) =

r∑
k=1

μm1
i(k) (27)

The membership grade (r+1)-th sample is calculated for both
the cases,

μ̄i(r + 1) = max

⎧⎪⎪⎨
⎪⎪⎩

1
C∑

q=1

(
d̄2
i
(r+1)

d̄2q(r+1)

)1/(m2−1) ,

1
C∑

q=1

(
d2i(r+1)

d2q(r+1)

)1/(m1−1)

⎫⎪⎪⎬
⎪⎪⎭ (28)

μ
i
(r + 1) = min

⎧⎪⎪⎨
⎪⎪⎩

1
C∑

q=1

(
d̄2
i
(r+1)

d̄2q(r+1)

)1/(m2−1) ,

1
C∑

q=1

(
d2i(r+1)

d2q(r+1)

)1/(m1−1)

⎫⎪⎪⎬
⎪⎪⎭ (29)

where, the distance metric is obtained for both cases,

d̄i(r + 1)
2
= (X(r + 1)− v̄

i(r))T (X(r + 1)− v̄
i(r)) (30)

di(r + 1)
2
= (X(r + 1)− v

i(r))T (X(r + 1)− v
i(r)) (31)

B. Interval type-2 recursive fuzzy covariance calculation

Each cluster distribution can be described by its covariance
matrix, F̄i(r) ∈ R

(n+1)×(n+1), i = 1, 2, ..., C and r stands
for the sample index used to calculate the matrix. The upper
(F̄i(r)) and lower (F i(r)) fuzzy covariance matrix for r-th
sample is obtained as,

F̄i(r) =

r∑
k=1

μm2
i(k)[X(k)− v̄

i(r)][X(k)− v̄
i(r)]

T

r∑
k=1

μm2
i(k)

(32)

F i(r) =

r∑
k=1

μm1
i(k)[X(k)− v

i(r)][X(k)− v
i(r)]

T

r∑
k=1

μm1
i(k)

(33)

The upper fuzzy covariance matrix for (r + 1)-th sample is
expressed as follows,

F̄i(r + 1) =

r∑
k=1

μm2
i(k)[X(k)−v̄

i(r)][X(k)−v̄
i(r)]

T

r+1∑
k=1

μm2
i(k)

+μm2
i(r+1)[X(r+1)−v̄

i(r+1)][X(r+1)−v̄
i(r+1)]

T

r+1∑
k=1

μm2
i(k)

F̄i(r + 1) = ξ2
S̄i(r)

S̄i(r+1)
F̄i(r)

+μm2
i(r+1)[X(r+1)−v̄

i(r+1)][X(r+1)−v̄
i(r+1)]

T

S̄i(r+1)
(34)

Similarly, the lower fuzzy covariance matrix is expressed as,

F i(r + 1) = ξ2
Si(r)

Si(r+1)
F i(r)

+μm1
i(r+1)[X(r+1)−v

i(r+1)][X(r+1)−v
i(r+1)]

T

Si(r+1)
(35)

where, 0 < ξ2 < 1 is called forgetting factor constant for upper
and lower covariance matrix. The initial value of covariance
matrix for both cases are defined as, F̄i(0) = F i(0) = I ∈
R

(n+1)×(n+1) .

C. Linear parameters estimation using recursive least square

The fuzzy cluster center and their distribution has been
used to define the membership grade of premise variable.
Once the premise variable parameters are obtained, WRLS has
been used to find the coefficients of consequence parameters
of each local linear model. The input membership grade
are obtained by using projections of the cluster center onto
the input variables. Here, 1, 2, ..., n-th measured variables are
represented as input variables and (n+1) measured variables
represent output variable in the data matrix X. The width
of gaussian membership grade value can be obtained from
cluster distribution i.e. σ̄i(r + 1) = ξ3diag(F̄i(r + 1) ) and
σi(r + 1) = ξ3diag(F i(r + 1) ), where, 0 < ξ3 < 1 is called
overlapping fuzziness factor between the membership grades
[23]. The coefficients of consequence parameters of local linear
model are obtained by weighted recursive least square (WRLS)
[9] approach as follows,

θi(k + 1) = θi(k) +K(k)[y(k)− x̄(k)θi(k)] (36)

The kalman gain (K) update equation and error covariance
matrix is obtained as,

K(k) =
Q(k)[x̄(k + 1)]

T

1
wi(k) + [x̄(k + 1)]Q(k)[x̄(k + 1)]

T
(37)

Q(k + 1) = [1−K(k)x̄(k + 1)]Q(k) (38)

where, wi(k) is obtained from (5) for k-th samples. The WRLS
algorithm is initialized as,

Q (0) = 105I,
θi(0) = 0; i = 1, 2, ..., C; k = 1, 2, ..., r, ..., N.

(39)

The forgetting factors (ξ1, ξ2) affects tracking the original
model values [23]. The general thumb rule for setting the
forgetting factor as follows,

ξt = 1− (
2

N
), for t = 1, 2. (40)

Sometimes beyond this thumb rule, the forgetting factor value
can also be changed based on identification performances [23]
[24]. The high value of Fuzziness factor (0 < ξ3 < 1) causes
high identification error [23]. In the IT2RFCM algorithm, the
number of cluster is preassigned that creates big disadvantage
for classification problems i.e. it can not be applicable for out-
of range data [23]. Since, the range of data space is almost
fixed in the process model or control applications such that
proposed algorithm can construct the TSFM with predefined
number of clusters. The architecture of IT2RFCM clustering
algorithm based TSFM is depicted in Fig. 1.
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Algorithm 1: IT2RFCM clustering algorithm in TS fuzzy
model identification
Initializations:
Define the number of clusters (C).
Set the control parameters (ξ1, ξ2 and ξ3 = 0.25 to 1)
Fuzziness value for upper (m1) and lower (m2)
Define Error Covariance matrix Qi(0) for first sample
using (39).
Define the initial upper (F̄i(r)) and lower (F i(r)) cluster
covariance matrix by using I ∈ R

(n+1)×(n+1)

Define upper and lower cluster center v̄i(k) = x(k) and
vi(k) = x(k) for i = k = 1, 2, ..., C respectively.
The upper and lower membership grade for premise

variable is assigned as,
Āi

j(xj(k)) =

{
1, for i = k
0, else

Aj
i(xj(k)) =

{
1, for i = k
0, else

Define upper and lower membership value
μ̄i(k) = diag(C),
μ
i
(k) = diag(C) for k = 1, 2, ..., C

Calculate the initial upper (S̄i) and lower (Si) by using
(22) and (27).
Repeat
Step 1
Calculate the upper (μ̄i(r + 1)) and lower (μ

i
(r + 1))

membership value by using (28) and (29).
Type reduction of membership value by using simple mean

technique. i.e. μi(r + 1) =
μ̄i(r+1)+μ

i
(r+1)

2
Step 2
Update upper S̄i(r + 1)) and lower Si(r + 1)) by using
(21) and (26) respectively.
Step 3
Update cluster centers (Δv̄

i(r + 1) and Δv
i(r + 1)) for

both cases by using (20) and (25) respectively.
Step 4
Update cluster centers (v̄i(r + 1) and v

i(r + 1))
for both cases by using (19) and (24) respectively.
Step 5
Calculate new fuzzy covariance matrix
(F̄ i(r + 1) and F i(r + 1))
for both cases by using (34) and (35) respectively.
Step 6
Upper and lower membership grade for premise variable is
obtained by using (2) and (3) respectively.
Type reduction for membership grade same as
in Step 1.
Step 7
Local linear model parameters are determined by using
(36-38).
Until all samples (N) are over.

Fig. 1: Architecture of the IT2RFCM based TS Fuzzy Model

VI. EXPERIMENTAL VALIDATION

The proposed method has been tested on Mackey-Glass
time series data. Non Dimensional Error Index (NDEI) has
been considered as performance index to check the modeling
precision. It is evaluated as,

RMSE =

√√√√√ N∑
k=1

(y(k)− ŷ(k))
2

N
(41)

NDEI =
RMSE

std(Y )
(42)

where, Y = [y(1), y(2), ..., y(N)]T , y(k) is model output,
ŷ(k) is estimated output of TSFM, std(.) is standard deviation
function, and N is number of samples.

A. Mackey-Glass Time Series Prediction

The Mackey-Glass (M-G) chaotic time series [23] is rep-
resented by delayed differential equation,

dx(t)

dt
=

0.2(t− τ)

1 + x10(t− τ)
− 0.1x(t) (43)

Here, the parameters were set to x(0) = 1.2 and τ = 17
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for generating the data. The data set (D) has been created as,

D = [x(t), y(t)], t = 1, 2, ...., 5500
x(t) = [x(t− 18) x(t− 12) x(t− 6) x(t)]T

y(t) = x(t+ 85)
(44)

The data set (D) is contained with 5500 samples from which
3000 (t = 200 to 3200) samples are used to train the model.
Model validation has been done by remaining 500 (t = 5000
to 5500) samples, same as in [3] [23]. IT2RFCM algorithm has
been tested on M-G time series data by varying two different
fuzzifiers (m1,m2). The fuzziness factor and forgetting factor
parameters were chosen based on performing the experiments
in terms of NDEI value. The tuning parameters are listed in
Table I. The obtained results are listed in Table II, III, IV, V
under different rule conditions (3, 10, 58 and 100).

TABLE I: Tuning Parameters List

Rule ξ1 ξ2 ξ3
3 0.65 0.85 0.25
10 0.99 0.15 0.25
58 0.99 0.40 0.25
100 0.99 0.10 0.25

TABLE II: Results on IT2RFCM based TSFM with 3 rules by
varying two different fuzzifiers

m1 m2 Rules NDEI

1.95 2.05 3 0.5172

1.90 2.10 3 0.5070

1.85 2.15 3 0.4855

1.80 2.20 3 0.5071

1.5 2.5 3 0.5349

1.3 2.7 3 0.5332

1.1 2.9 3 0.5096

2 3 3 0.5282

3 4 3 0.5415

The best NDEI value has been obtained for fuzziness
parameters set at m1 = 1.85 and m2 = 2.15 for rules 3,
10, 58. However, for 100 rules, the best NDEI value has
been achieved for fuzziness parameters set at m1 = 1.1 and
m2 = 2.9. The actual model and IT2RFCM based TSFM with
100 clusters performances are shown in Fig. 2. The perfor-
mance of IT2RFCM based TSFM and existing in literature
model [23] results are listed in Table VI. It is observed that
IT2RFCM based TSFM gives reasonable accuracy with less
number of rules (or nodes) as compared to other existing model
in literature. For setting 3 rules, rFCM [23] based fuzzy model
gives better performance compared to IT2RFCM algorithm
based TSFM. Gaussian noise with variance of a 0.01 has been
added to M-G time series prediction model for checking the
robustness capability of IT2RFCM based TSFM. The obtained
performance is depicted in Fig. 3. The obtained NDEI value
was 0.4731 for noisy M-G time series data while the rules

TABLE III: Results on IT2RFCM based TSFM with 10 rules
by varying two different fuzzifiers

m1 m2 Rules NDEI

1.95 2.05 10 0.4545

1.90 2.10 10 0.4559

1.85 2.15 10 0.4543

1.80 2.20 10 0.4562

1.5 2.5 10 0.4745

1.3 2.7 10 0.4637

1.1 2.9 10 0.4760

2 3 10 0.4670

3 4 10 0.4996

TABLE IV: Results on IT2RFCM based TSFM with 58 rules
by varying two different fuzzifiers

m1 m2 Rules NDEI

1.95 2.05 58 0.2711

1.90 2.10 58 0.2668

1.85 2.15 58 0.2644

1.80 2.20 58 0.2666

1.5 2.5 58 0.2679

1.3 2.7 58 0.2917

1.1 2.9 58 0.2848

2 3 58 0.2875

3 4 58 0.5063

TABLE V: Results on IT2RFCM based TSFM with 100 rules
by varying two different fuzzifiers

m1 m2 Rules NDEI

1.95 2.05 100 0.1280

1.90 2.10 100 0.1285

1.85 2.15 100 0.1277

1.80 2.20 100 0.1252

1.5 2.5 100 0.1237

1.3 2.7 100 0.1192

1.1 2.9 100 0.1175

2 3 100 0.3594

3 4 100 0.4291

were set to 100 with fuzziness parameters (m1 = 1.1 and
m2 = 2.9).
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Fig. 2: (a) 85 step ahead prediction of M-G time series
data (t = 101 to 600 samples). Red line defines IT2RFCM
based TSFM. (b) Approximation error between real model and
predicted model.
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Fig. 3: (a) 85 step ahead prediction of noisy M-G time series
data (t = 101 to 600 samples). Red line defines IT2RFCM
based TSFM. (b) Approximation error between real model and
predicted model.

VII. CONCLUSION

In this paper, a recursive fuzzy c-means clustering algo-
rithm has been modified by using an interval type-2 fuzzy
set i.e. IT2RFCM. IT2RFCM clustering algorithm has been
used to classify the streaming data to identify the structure of
TSFM. Premise variable parameters are also obtained by using
IT2RFCM algorithm and WRLS has been used to estimate the
coefficients of each local linear model of TSFM. The proposed
algorithm has been validated on M-G time series prediction
under different fuzzifiers and obtained results show competitive
accuracy to other evolving processes. The recursive nature of
IT2RFCM algorithm can be performed well in noisy environ-
ment. The algorithm parameters are easy to tune for achieving
model accuracy, but it does not require complete data at a time
to estimate parameters. In the future, adaptive technique can be
considered in the proposed IT2RFCM based TSFM to obtain

TABLE VI: Comparison of IT2RFCM based TSFM with
existing algorithms in literature on 85 step ahead M-G time’s
series data.

Methods Rules NDEI Change Parameters
DENFIS [23] 58 0.276 N.A. 58× 13
eTS [23] 113 0.0954 N.A 113× 13
rFCM [23] 3 0.4849 N.A. 3× 13
rFCM [23] 10 0.4562 N.A. 10× 13
rFCM [23] 58 0.3085 N.A. 58× 13
rFCM [23] 100 0.1250 N.A. 100× 13
IT2RFCM 3 0.4855 -0.6 (%) 3× 13
IT2RFCM 10 0.4543 0.2 (%) 10× 13
IT2RFCM 58 0.2644 14.2 (%) 58× 13
IT2RFCM 100 0.1175 6.4(%) 100× 13

optimal number of clusters.
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