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Abstract—This paper presents a team-search based decentral-
ized task allocation scheme for multiple homogeneous unmanned
aerial vehicles (UAVs) to provide protection to static convoys of
ground vehicles. The UAVs, during operation, protect the ground
convoy by searching their vicinity for imminent threat, analyz-
ing/confirming threat level, attacking it and finally assessing the
damage to confirm if the threat has been nullified. The proposed
approach utilizes search maps to form a common information
base for intelligent decision making. A decentralized scheme is
developed based on team theory, wherein the best course of action
for each UAV is selected to minimize resource use of the team.
This scheme is generic enough to handle different types of UAVs
and control technique and caters to a dynamic environment.

The proposed convoy protection scheme is evaluated by soft-
ware simulation with multi-UAV-multi-targets. Different experi-
ments were performed to analyze the efficacy of this approach.
The performance comparison with greedy task allocation high-
lights the advantage of the proposed scheme.

I. INTRODUCTION

Unmanned vehicles are expected to play a more important

role in future civilian and military applications. In particular,

recent trends indicate that unmanned ground vehicles would

be used in transportation of convoys, and their protection.

Although these ground vehicles would be capable of protect-

ing the convoys, Unmanned Aerial Vehicles (UAVs) possess

the dynamic ability to provide coverage, surveillance, and

protection to the ground vehicles [3]. As a result, various

research works are being conducted in the domain of UAVs,

such as maneuvering, decision control, and path calculation. A

natural problem that occurs during the use of UAVs is that of

coordination among UAVs. This is especially true when UAVs

are required to protect the ground convoy while satisfying

multiple kinematics as well as resource constraints. Hence,

various UAV coordination techniques have been formulated

for efficient decision control [5].

Numerous generic task allocation schemes have been de-

veloped under the domains of Mobile Robot Systems (MRS),

Multi-Agent Systems (MAS) and Distributed Artificial-

Intelligence (DAI). MAS and DAI typically deal with dis-

tributed computers and software agents respectively, while

MRS focuses on applications in physical robot systems. Within
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MRS, Multiple Mobile Robot Systems (MMRS) has been

studied extensively for similar-skilled homogeneous robots as

well specialized heterogeneous robots .The task assigned to the

robots can be competitive, as in the case of a soccer playing

robot teams, or cooperative, as in the case of search&rescue

robots [2]. For unknown operating environments with limited

knowledge of it, calls for a dynamic task allocation scheme.

Popular schemes include free market architecture [9], auction

based schemes [6] and trade based schemes [11]. These meth-

ods elegantly simplify the assignment problem by considering

costs and/or benefit of every action for every agent and assign

tasks to maximize the individual profits. However, they do

not explicitly discuss how dropped tasks (tasks that are not

performed by any agent due to a negative profit margin)

are handled. In a dynamic environment, tasks that may be

unproductive to perform at a specific point in time may

become attractive at a later point. Use of certainty maps for

maintaining history of the environment is popularly used by

localization & mapping robot teams and is employed in this

work.

In the context of convoy protection considered in this work,

an early attempt employed traveling salesperson (assignment

problem) [4] based approach to solve this problem. Due to

the time-complexity of this approach, an alternative is an

auction based game-theory approach [1], where each UAV

is considered as an agent who bid on the task they like to

be assigned. In [8], a decentralized approach is proposed

where the solution feasibility is optimized rather than cost

function. However, the above solutions assume that the number

of threats are pre-specified. However in real-world convoy

protection problem, the number of threats are unknown and

the environment is dynamic.

In [7], search maps were used and a dynamic task allocation

scheme was proposed for a team of UAVs applied to a search

& destroy mission. However, this method like many others,

employs a centralized task allocation scheme. For convoy

protection, centralized allocation imposes non-line-of-sight

communication, longer information loop time and difficult

coordination. This highly bolsters the need for a decentralized

approach, where coordination can be done directly by convoy.

In this work, we develop a decentralized decision control

mechanism for multiple UAVs using team-theory inspired
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approach [10]. Team-theory deals with problems where several

agents have different yet correlated observations about a given

state. Each agent uses predetermined strategies to make a de-

cision based on their observations. Depending on the decision

taken, the team incurs a common cost.
It is assumed that each UAV has limited communication

capability restricted to a communication radius. Also, each

UAV has a limited sensing radius. The aim of a team of

multiple-UAVs (UAV team) is to search a given area for

possible threats, detect the threats in real-time basis and

destroy it, such that the convoy is protected. To achieve this,

each UAV consists of four actions: search a given region,

confirm the presence of target, attack a target and assess battle

damage. During the operation time, each UAV senses the

environment and stores the information in its database. It uses

this database to assess the information and chooses the best

strategy for itself such that individual and hence the total cost

is optimized.
The proposed approach has been evaluated on an area of

10m × 10m with varying number of UAVs, threats and UAV

database size. The performance is compared with a variant

of greedy algorithm in a similar setting. The performance

comparison indicates the advantage of the proposed approach

over greedy algorithm.
The rest of the paper is organized as follows. In Section

II, we present the dynamic task allocation framework and

explain in detail how each of the action and their benefit

is calculated. The performance of the proposed scheme is

evaluated in Section III. The paper is concluded and future

work outlined in Section IV

II. TEAM BASED TASK ALLOCATION FOR CONVOY

PROTECTION

Bulk transport convoys, unit convoys for brigade support

and other special purpose convoys need protection in haz-

ardous terrains. UAVs have been increasingly used in this

context due to their aerial surveillance capability and ability to

quickly neutralize threats. When multiple UAVs are deployed

in such a mission, we propose a scheme to facilitate self

regulation and coordination with only high level commands

from the ground convoy. We employ team-theoretic approach

to decentralize decision making and utilize search maps to

store and share environmental information for effective search

and attack. The convoy protection mechanism employed here

is annihilation of the threats. Other protection mechanisms

such as rerouting the convoys are also possible but are not

investigated here.
Each UAV considered in this work is capable of performing

four different actions: search, confirm, attack and battle dam-

age assessment. To integrate the four actions, a finite state

machine is employed. We shall now describe each of the four

actions in detail. Finally, this section concludes by describing

the finite state machine for the mission.

A. Search Action
In this work it is assumed that the UAVs do not possess

any information about the number and location of the threats.

Fig. 1: Zoning of search area (certainty map)

As a result, each UAV during operation does proactive search

of its vicinity for any threats. The search mechanism in each

UAV zones a given search area into multiple grid of equal

size, as shown in the Fig. 1. Associated with each grid is a

threat certainty value in the range [0, 1] with 0 indicating that

UAV is confident about the absence of a threat in a given

grid, while 1 represents complete confidence in its presence.

At each point in time, the UAV updates this certainty value

based on a certain criteria. Let the threat presence certainty

of a UAV u about a grid (x, y) at time t be represented as

CertMat
(x,y,t)
u . This certainty is calculated and updated as,

CertMat(x,y,t)u = CertCx,y
u (1)

if threat is detected within the UAV’s sensor radius with a

sensor certainty of CertC, and

CertMat(x,y,t)u = 0.5× CertMat(x,y,t−1)
u (2)

otherwise. It should be noted that the threat certainty value is

initialized with 1, i.e., it is assumed that each grid has equally

high probability of the threat occurring. As the UAV searches

the given grid, this certainty is either reinforced or reduced.

It should also be noted that the certainty score for a given

grid will never reach zero. These two criteria help the UAV

in conducting efficient search of a given space while allowing

for uncertainties due to erroneous sensing or mobility of the

targets.

At each time step, UAVs update their local certainty map

and broadcast this information using a publish/subscribe com-

munication model. UAVs listen to other UAVs within their

communication range and update their map based on other

team members. This sets up a common information base on

the environment, within the team. Since a continuous exchange

of the certainty information between agents may impose high

overheads in communication, members within a team can be

made to exchange information on updates done to their maps

rather than the entire data. Bulk information exchange will

then be limited to the event when a new member joins the

team. Based on the communication radius, multiple groups

organize themselves to exchange information. Due to the

independent mobility of the team members, information is also

shared across groups.
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Each UAV then computes the benefit function for traversing

in a particular direction. Based on the calculated benefit, the

direction that maximizes the benefit is chosen by the UAV for

path planning. This path planning has been simplified to 2D in

the current work and the UAV is assumed to be single point

in space. The benefit of searching a particular region (x, y)
for a UAV u at time t is BSearch calculated as

BSearcht
u =

∑
∀x,y

KS ×Fuelu×CertMat(x,y,t)× f(x, y, u)

(3)

where, f(x, y, u) is the distance of the UAV u from the grid

encompassing (x, y), given as

f(x, y, u) = exp
(− (

(x− ux)
2 + (y − uy)

2
))

, (4)

Fuelu is the percentage of fuel available with UAV u and

KS is a scaling factor associated with search operation. It is

assumed that there is only fuel constraint on the UAV during

search operation. The above given search benefit accounts for

three aspects of search:

• Benefit decreases with distance of target

• Benefit increases with certainty of target presence

• Benefit decreases with amount of fuel remaining

This formulation also automatically ensures open areas are

favored over corners since the direction will span more grids,

maximizing the summation.

B. Confirm Action

The UAV can employ any technique to detect a threat,

such as computer vision based techniques. In this study,

the modality of threat detection is not explored. A threat is

discovered if it is within the sensor radius ru of the UAV

u. In the simulation study conducted in this work, the target

certainty is assumed to be radially diminishing as the distance

to the target increases, while within the sensor radius. The

threat presence certainty CertC for a UAV u, at grid (x, y)
is given as,

CertCx,y
u = exp

(
−
(
(x− ux)

2 + (y − uy)
2
)

r2u

)
(5)

When approaching the target, if the certainty of target

presence increases above a particular confirm-threshold TC ,

the UAV confirms the presence of a threat. Upon confirmation

of the threat, there are multiple options available to the UAV-

convoy system. It can either engage the threat or it can avoid

the threat without confrontation by requiring the convoy to

change the path. These decisions are made upon perceiving

the strength of the threat. However, in this work, the UAV can

only attack the threat. It moves in the direction of the threat in

order to increase its confidence and to bring the threat within

its attack radius.

C. Attack Action

Once it is confirmed which UAV u would attack a given

target T , the UAV progress to attacking the target. During

attack, a benefit function BAttack is calculated to decide who

should attack the target and whether to continue attacking or

not. The attack benefit is given by

BAttackTu = KA×IT×exp
(
1− ‖T − u‖

ru

)
∗(100− Fuelu)

(6)

where, KA is a scaling factor associated with attack. IT

denotes the UAV’s perceived intensity or strength of the target

with 0 indicating target is fully annihilated and 1 indicating

its full strength. This is a subjective quantity and different

techniques could be employed to gauge the target intensity. In

the simulation study presented in this work, the target intensity

is calculated as

IT =
N(0, 1)

#attacks on the target
(7)

where N(0, 1) denotes a random value in standard normal

distribution. The above benefit function captures three aspects.

The attack benefit,

• Increases with the amount of fuel remaining

• Increases with target strength

• Decreases with distance of the UAV from the threat

When a UAV confirms target presence in its vicinity, the

team is updated on this. The team keeps track of the list

of targets and their perceived strength. The individual deci-

sion making on which team member to attack which target

uses team theory principles [10]. Each UAV solves a simple

optimization problem to maximize the benefit of the team

rather than its own. This ensures the UAVs are not greedy and

unnecessarily expend energy in attacking targets when some

other member can perform the same action more efficiently.

Further, constraining that not more than one UAV should be

assigned to a particular target ensures conflict resolution.

D. Battle Damage Assessment Action

The UAV, upon attacking, assesses the damage inflicted

upon the target. Based on its assessment, it estimates whether

the threat has been nullified or if it should continue with the

attack. A threat is assumed to be destroyed if its target intensity

is below a given threshold.

E. Finite State Machine

In the above subsections, different UAV actions were de-

scribed and the benefit associated with each were calculated.

In this subsection, technique for combining these four actions

would be detailed. A finite state machine is designed as

shown in Fig. 2. The use of the finite state machine enables

decentralized decision making by the UAVs based on the

benefits calculated.

It could be observed from the figure that a UAV is initialized

with search action. The UAV continues to perform search and

confirm actions until it encounters a threat. Upon encountering

the threat and confirming its presence beyond doubt, it moves

to attack action with the aim of annihilating the threat. Once

the threat is confirmed and the UAV that would engage the

threat is decided, the chosen UAV changes its action to

attack. Upon attacking the target, the UAV moves to battle
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Fig. 2: Finite state machine realization

damage assessment state, to assess the amount of damage

done to the threat. During damage assessment, the UAV will

recalculate the attack benefit as well as search benefit, to

decide whether to continue with the attack or return to search

mode. It will continue to attack the threat until the threat

is minimized or the search benefit calculated is higher than

that of attack benefit. This will help in balancing exploration

and exploitation, minimizing the effect of the threat while

optimizing the amount of resource available (primarily fuel).

Next, we shall evaluate the performance of the proposed

method for convoy protection.

III. PERFORMANCE EVALUATION

In this section, we shall first describe the experimen-

tal/environment setup, followed by the type of experiments

conducted and the performance measures employed. Then we

shall discuss each of the experiments in detail and provide a

comparison with a well-known greedy algorithm that forms

the basis of popular schemes such as free market architecture,

auction based approach and trade based approach.

A. Experiment Setup

The environment considered in this study is a 10m ×
10m area at the center of which is located the convoy. The

environment is planar with no obstacles and the UAVs and

the threats are initialized at random location. The aim of the

UAVs is to search the given area for any threats and protect

the convoy from them. Each UAV in this region is set to have

a search grid of size 0.5m × 0.5m. Its target sensing radius is

set as 0.5m and its communication radius is set as 2.5m. It is

assumed that each UAV can take a decision on its own action

10 times (iterations) in one second.

B. Simulation Settings

The proposed convoy protection mechanism is simulated

on Matlab(R) R2014b. To study the effect of the mechanism,

a monte-carlo simulation study was conducted where each

experiment was repeated 1000 times. At each repetition, the

threats and the UAVs were initialized at different locations.

C. Performance Measures

In this study, two performance measures are employed:

• Percentage Threat Destroyed:
#Targets Destroyed

#Targets
• Percentage Target Strength Reduced:∑

∀Targets Strength After Attack
∑

∀Targets Initial Strength .

Both the performance measures are calculated for a given

period of time. Since targets may be mobile, the time for

complete neutralization of targets may vary significantly and

hence not used as the performance measure for the monte-

carlo simulation. The percentage targets destroyed is done in

comparison to ground truth. It should be noted that percentage

targets destroyed is given only for the sake of comparison

and in the UAVs do not have information about the number

or the location of the threats. Also, in some scenarios, it is

not required to fully annihilate the threats and incapacitating

them would be sufficient. This would help in decreasing the

threat while conserving resources. To ascertain this, the second

performance measure of the percentage reduction in target

strength is used.

D. Performance Comparison - Time to Task Completion

In the first study, the number of UAVs and the number

of threats were assumed to be 4 each. The two algorithmic

settings were simulated, greedy algorithm and the proposed

decentralized team algorithm. The target strength, number of

targets destroyed and the search map during this period for

one simulation is given in Fig. 3.

From the figure, it can be observed that the team based task

allocation algorithm attained better performance than greedy

algorithm. Team search destroyed all targets within 80sec

whereas the greedy algorithm took 150sec. Further, the total

target strength was reduced to a minimal value within 60sec

by team search as opposed to 140sec by the greedy algorithm.

These observations were consistent across multiple simulation

studies. Thus, the team based task allocation approach is able

to achieve the team’s objective of destroying maximum threats

while balancing resource usage.

E. Performance Comparison - Varying Number of UAVs

In order to analyze the effect of varying the number of

UAVs, their number was varied from 1 to 10, keeping the

number of targets fixed at 4. The simulation time was kept

short at 50sec to challenge the algorithms. A search grid

of size 0.5m × 0.5m was used for the certainty map. The

result of monte-carlo simulation of varying the number of

UAVs is given in Fig. 4. The result was averaged over 1000

simulations. The figure plots the number of UAVs versus %

threats annihilated and % target strength reduced.

It can be seen from the figure that the performance of the

team-search is better than greedy algorithm in both perfor-

mance measures by a range of 10 to 35%. This is consistent

across different team sizes. Also, as expected, performance

of both algorithms improve with team size. However, the

difference in performance between the two algorithms is
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Fig. 3: Performance comparison of (a) Greedy Algorithm

and (b) Decentralized Team-based Algorithm (time to task

completion)

higher for larger teams. This directly relates to the fact that

larger teams will have better information hopping in team-

search since communication radius is restricted. Thus the team

members will be equipped with more accurate information of

their environment.

F. Performance Comparison - Varying Number of Targets

In this study, number of threats is varied from 1 to 10

and are randomly initialized at every study. The number of

UAVs is fixed at 4. The simulation time was kept short at

50sec. A search grid of size 0.5m × 0.5m was used for the

certainty map. The result of monte-carlo simulation of varying

the number of UAVs is given in Fig. 5. The result was averaged

over 1000 simulations. The figure plots the number of targets

versus % threats annihilated and % target strength reduced.

Once again, the figure illustrates that team-search is better

than greedy algorithm in both performance measures by a

range of 20 to 25%. This is consistent across different number

of targets. Also, as expected, performance of both algorithms

show a small reduction when larger number of targets are

present.

Fig. 4: Performance comparison of greedy and team-based task

allocation algorithms : Effect of varying the number of UAVs

(averaged metric over 1000 simulations)

Fig. 5: Performance comparison of greedy and team-based task

allocation algorithms : Effect of varying the number of targets

(averaged metric over 1000 simulations)

G. Performance Comparison - Varying Grid Size

The final study conducted is to analyze the performance of

the proposed approach on varying the grid size. The number

of UAVs and targets are fixed at 4 each. The simulation time

was kept short at 50sec. The grid size is varied such that

different granularity of the environment is achieved, i.e., from

0.05m × 0.05m to 2m × 2m (4*104 grids to 25 grids). This

influences the memory required for maintaining the database,

the computation for path planning and communication over-

head in sharing the information between UAVs. The result

of monte-carlo simulation of varying the number of UAVs is

given in Fig. 6. The result was averaged over 1000 simulations.

The figure plots the variation in grid size versus % threats

annihilated and % target strength reduced.

The figure illustrates an interesting aspect of varying the

grid size. For grid sizes below 0.2m × 0.2m, the greedy
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Fig. 6: Performance comparison of greedy and team-based task

allocation algorithms : Effect of varying the grid size (averaged

metric over 1000 simulations)

algorithm performs better than the team search. This may be

counter-intuitive since more granularity of information should

mean better performance. However, smaller grid size means

the UAV updates the certainty map with information of a

smaller area every iteration. This causes slower information

update on the environment. Since the UAV’s sensing radius

is 0.5m, there is no advantage of having a granular infor-

mation beyond 0.2m grids. For grid sizes between 0.2m and

1m, the team search outperforms greedy algorithm in both

performance criteria by a range of 7 to 22%. But beyond

this, as expected, with lesser granularity of information about

the environment, the performance of team search deteriorates.

Thus, it is optimal to keep the grid size small but not smaller

than half the sensing radius of the UAV.

IV. CONCLUSION

In this paper, a decentralized team based task allocation

algorithm inspired by team-theory was proposed for convoy

protection. The algorithm utilizes a search certainty map to

historize information, ensuring no dropped tasks of eliminating

known targets. Further, decision making by the UAV ensures

minimum resource requirement for team rather than itself.

The performance of the proposed approach was analyzed

by simulating a search space with unknown number and

location of targets and UAVs. Various studies were conducted

to understand the effect of varying the number of UAVs, the

number of targets and the grid size, on the performance of

the algorithm. It could be concluded that, larger the team,

more the information exchange and better the performance.

Further, the algorithm eliminates threats effectively within a

given time, irrespective of the number of targets. Also, it was

observed that the grid size setting for the search map should be

close to the sensing radius for most optimal performance. The

algorithm was compared with a decentralized greedy algorithm

that forms the basis of popular schemes such as free market

architecture, auction based approach and trade based approach.

Results indicated significant performance improvement in con-

voy protection problem.

In the future, we aim to explore other methodologies of

convoy protection such as re-routing. We intend to improve

the benefit formulation and introduce adaptation and learning

into it. This will help to make the algorithm versatile to

different scenarios. Further, it will provide a better handle

to balancing exploration versus exploitation. Another area for

improvement is optimizing search through better path planning

and extending this to 3D. This technology could be employed

in multiple arenas of search and destroy, autonomous robots

for verification, etc.
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