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Abstract—Language vector space models (VSMs) have re-

cently proven to be effective across a variety of tasks. In VSMs,
each word in a corpus is represented as a real-valued vector. These
vectors can be used as features in many applications in machine
learning and natural language processing. In this paper, we study
the effect of vector space representations in cyber security. In
particular, we consider a passive traffic analysis attack (Website
Fingerprinting) that threatens users’ navigation privacy on the
web. By using anonymous communication, Internet users (such
as online activists) may wish to hide the destination of web pages
they access for different reasons such as avoiding tyrannical
governments. Traditional website fingerprinting studies collect
packets from the users’ network and extract features that are
used by machine learning techniques to reveal the destination of
certain web pages. In this work, we propose the packet to vector
(P2V) approach where we model website fingerprinting attack
using word vector representations. We show how the suggested
model outperforms previous website fingerprinting works.

I. INTRODUCTION

Technological advances have resulted in tremendous growth
in information access with the expansion of the world wide web.
Recently, web navigation privacy has gained increasing interest
from both attackers seeking identification and defenders seeking
anonymity [1]. The attacker such as a repressive government tries
to reveal web page destinations of online activists, journalists,
or bloggers in order to censor. This is known as a Website
Fingerprinting (WF) attack. The defender such as Tor anonymity
network [2] uses defenses to try to fool the attacker by changing
the characteristics of the network traffic.

To protect user’s privacy, various techniques such as SSL,
IPSec, and VPN have been developed by defenders to hide the
web access traffic [3]. These privacy protection techniques are
particularly valuable for users who may wish to be anonymous
especially in countries where strict censorship on the Internet is
imposed. This has led to attackers (or adversaries) utilizing all
the means of traffic analysis to identify the web pages visited by
the Internet users.

The competition between attackers and defenders is contin-
ually evolving. On one hand, the attacker collects the packets
exchanged between the client and server, extracting patterns and
features and performs various traffic analysis through statistical
or machine learning methods (e.g., [4], [5], [6], [7], [8]) and
attempts to predict the particular website an Internet user is
trying to access. On the other hand, defenders have been devel-
oping various means to thwart such attempts by disguising and
encrypting network packets bound for a particular destination.

The fundamental concept of website fingerprinting is that
every website can be assumed to have unique content. The content
of a web page is typically downloaded to a client browser as a
sequence of multiple packets, depending on the network protocol.
These packets (assumed encrypted) exhibit various structural
properties, such as packet length, that can be used to identify
the website.

In semantic vector space models (VSMs) of language, each
word is represented as a real-valued vector. These vectors can be
utilized as features in a variety of natural language processing
and machine learning tasks [9], [10], [11]. The constructed word
vectors exhibit interesting semantic and syntactic regularities. For
example, in word vector space, the sentence “king to queen is as
man to woman” was proven to be represented as king − queen
= man − woman [11]. There are many proposed methods for
VSMs. They take a text corpus as input and give us word vectors.
Initially, a vocabulary or dictionary is built from the training data
and then based on the followed approach, the vectors are learned
for each word. Mikolov et al. [12] introduced a word to vector
algorithm that focuses on representations of words learned by
neural networks. Most recently, Pennington et al. [9] proposed
“GloVe”, a global vector log-bilinear regression model that uses
global matrix factorization and local context window methods.

Existing website fingerprinting studies focus on collecting
packets from the user’s network and extract statistical features
which are used by machine learning techniques to predict the
destination of web pages. In this paper, we propose the packet
to vector (P2V) approach. We model the website fingerprinting
attack using the Global Vector space representation (GloVe) [9]
as one of the most recent word vectors methods. We construct
a corpus from network packets and represent these packets as
real-valued vectors. We show how global log-bilinear regression
models are appropriate to improve the website fingerprinting
attack. We demonstrate how the suggested model outperforms
previous website fingerprinting works.

The intuition behind P2V is as follows. Communication
between client and server is stacked over the TCP protocol.
Based on connection measures like network congestion, the TCP
protocol uses flow control mechanisms such as window size and
scaling, acknowledgement and sequence numbers, and others
to ensure a certain understanding between client and server.
Accordingly, the number of bytes (packet lengths) and hence time
of transmitted packets in each direction are decided based on this
fact. This means each packet flow affects the subsequent packet
flow. This mechanism continues until communicating parties flag
to finalize the connection. We view this understanding between
client and server as a language or dialogue between two parties.

Moreover, the GloVe model leverages statistical information
by training on elements in a word-word co-occurrence matrix.
In this matrix, based on a sliding context window, each element
Xij tabulates the number of times word i occurs in the context
of word j. As described above, in TCP, each packet flow affects
the next packet flow. This means there is a dependence between
consecutive packet flows in a TCP connection. Hence, we build
a packet-packet co-occurrence matrix which gives us meaningful
counts for each trace (or website download).

Previous website fingerprinting studies ignored the TCP flow
control packets (like the ACK packets) as they decrease accuracy
and do not provide distinguishing statistical benefits between
websites. In this paper, it is the first time that the TCP flow
control packets are utilized. We show how the ACK packets
are essential to build the corpus as they enrich the vocabulary.
Compared to NLP, the ACK packets may act as filter or stop
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words in English. Although some applications tend to eliminate
these words as they are considered noise, there are other domains
such as Author Attribution where these words are considered
important as they provide distinguishing writing styles [13]. In
website fingerprinting, the ACK packets are important as they
provide accurate fingerprints for each website. In addition, as
mentioned earlier, the GloVe model depends mainly on the co-
occurrences of words (context-counting). It does not neglect stop
words from the corpus. Instead, it assigns different weights for
frequent co-occurrences.

In short, the main contributions of this paper are summarized
as follows.

1) We propose a packet to vector (P2V) model for the
website fingerprinting attack. We build a corpus from
network packets and represent these packets as real-
valued vectors.

2) Unlike previous website fingerprinting works, we con-
sider the TCP ACK packets as essential elements to
build the corpus as they enrich the vocabulary and
hence increase the accuracy of the website fingerprinting
attack.

3) We show how P2V can remarkably increase the ac-
curacy of website fingerprinting when compared to
previous approaches.

4) We also show that our P2V technique is more immune
and resilient to website fingerprinting countermeasures
(defenses) than previous classifiers.

The rest of the paper is organized as follows. In Section II, we
present relevant background information and related studies. We
then present our approach in Section III. The model is evaluated
in Section IV. Here, we also compare our results with previous
studies. The assumptions and consequences of the new attack
are discussed in Section V. Finally, we conclude our paper in
Section VI.

II. BACKGROUND

In this section, we present relevant background. We start
by explaining the Global Vector for word representation model
(GloVe) [9]. We then give an overview on the website fingerprint-
ing attacks, and finally discuss the defense mechanisms in website
fingerprinting.

A. GloVe

Vector space models (VSMs) of language have proven to be
very useful in many NLP and machine learning tasks. In VSMs,
each word in a corpus is represented as a real-valued vector.
These vectors can be used as features in many applications.
Word to vector [12] and GloVe [9] are two of the most recent
algorithms used for building word vectors. Mikolov et al. [12]
presented a word to vector algorithm that uses neural networks to
learn representations of words. Most recently, Pennington et al.
[9] proposed Global Vectors for Word Representations (GloVe
in short). GloVe was shown by authors to outperform many
VSMs including the word to vector [12] method mentioned above.
Hence, in this paper, we use GloVe as one of the newest methods,
to model the website fingerprinting attack.

Given a text corpus as input, GloVe builds word vectors in
an unsupervised learning manner. The basic idea is to use word
statistics as the primary source of information by examining word
co-occurrences in the corpus. In a high level overview, we can
summarize the GloVe algorithm as follows. Before training the
model, we first construct the word-word co-occurrences matrix.
Then considering word pairs, GloVe finds a log-bilinear regression

model that includes word vectors as parameters. Finally, using
any gradient descent algorithm, the model parameters (word
vectors) are computed. We now present the GloVe algorithm in
more details.

• The Matrix. GloVe starts off by running through the
corpus once to build the global word-word co-occurrence
matrix X . Based on a sliding context window, each entry
Xij tabulates the number of times word i occurs in the
context of word j. The result is a sparse matrix with a
lot of zero entries. If the corpus is large, this counting
step may be expensive. However, it is just a single pass
that happens only once. The advantage about GloVe is
that it trains the model on the non-zero entries of X
which makes the training iterations much faster. Now
that X is ready, we will use it in place of our corpus.

• The Model. Generally speaking, given a sample data on
two variables x and y, the equation y = β1x + β0 is
considered one of the simplest linear models, where β1 is
the slope and β0 represents the intercept with the y-axis.
Learning the optimal parameters β0 and β1 gives the best
line (predictor) that ties variables x and y. One of the
techniques used is to minimize a loss or objective function
by using the gradient descent iterative algorithm.

GloVe follows a similar approach. It constructs a model
for the variable Xij in the co-occurrence matrix X .
The model has parameters (word vectors) to be learned
by minimizing an objective function using a gradient
descent-like algorithm. GloVe’s concept revolves around
the notion that word vector spaces have substructure that
should be considered when designing algorithms to build
word vectors. Typically, for nearest neighbor tasks, the
existing similarity metrics such as Euclidean distance (or
Cosine similarity) produce a single scalar value that may
not capture intricate relationships between words. The
GloVe model suggests using the vector difference between
the two word vectors as this captures more interesting
and useful meanings. The word vector learning model
has been built considering the ratios of co-occurrence
probabilities between words which can be calculated
directly from X . The result is the log-bilinear regression
model in Eqn. 1 for each word pair of word i and word
j.

wT
i wj + bi + bj = logXij , (1)

where the d-dimensional word vectors wi, wj ∈ R
d and

bi, bj are scalar bias terms associated with words i and
j. The model in Eqn. 1 constructs word vectors that
are guaranteed to retain useful information about co-
occurrence of words i and j.

• The Objective Function. To learn the parameters
wi, wj , bi, and bj , we need to minimize an objective
or cost function that considers the model in Eqn. 1.
However, the problem with this model is that it produces
equal weights for all word-word co-occurrences in X . As
some words may co-occur rarely, their co-occurrences
are noisy and can be neglected. To eliminates the noise
effect, the following weighted least squares model is
introduced.

J =
V∑

i=1

V∑
j=1

f(Xij) (wT
i wj + bi + bj − logXij)

2, (2)

where V is the vocabulary size and f(Xij) is a weighting
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function to eliminate noise. In order for f(Xij) to work
as such, it should satisfy some properties. It should
be non-decreasing to deal with rare co-occurrences.
Also, for large values of Xij , f(Xij) should return 1
so frequent co-occurrences are not overweighted. The
following equation shows how f(Xij) satisfies the prop-
erties mentioned above.

f(Xij) =

{
(

Xij

xmax
)α, if Xij < xmax

1, otherwise.
(3)

The weighting function simply returns 1 if Xij ≥ xmax.
For all other co-occurrences, a value between 0 and 1,
controlled by α, will be returned. The authors have found
the model performs best with xmax = 100 and α = 3/4.

Running gradient descent on Eqn. 2 learns the values of
the word vectors which can be used as features in many
NLP and machine learning tasks.

B. Website Fingerprinting

Typically, the content of web pages are protected by encrypt-
ing network packets in transit, and destination IP addresses are
hidden using proxy servers. Due to uncertainty and noise in data,
machine learning algorithms are used to learn a probabilistic
model that can capture various characteristics of a website from
encrypted network packets. In this paper, we use the term
“website” and “webpage” interchangeably. Website fingerprinting
is essentially the traffic analysis of network packets, exchanged
between a client browser and a server to load the main page of
a website on the client’s browser, with the goal of predicting the
website destination.

Encryption methods such as SSL are used over HTTP to
protect web content against traffic surveillance, to form HTTPS.
However, studies [14], [15] have found that such encryption
methods are insufficient to protect user identity from traffic
analysis. Web proxies are used, along with data encryption, to
form an anonymous network. The Tor anonymity network [2] is
developed on this notion, to hide the information and activities of
its users by providing a low latency and pipeline randomization
to counter passive traffic analysis. A circuit of three relay nodes
is formed within the Tor network consisting of an entry node, exit
node, and a randomly selected relay node. Circuit connections are
reestablished approximately after every 10 minutes of usage [16].
Figure 1 depicts an example of a client (desktop browser or
mobile device) connecting to a server using the Tor network.

1) Classification: Various traffic analysis techniques [5], [17]
have been proposed to perform website fingerprinting on the Tor
network. Since the primary problem in website fingerprinting is
to determine the website accessed by a user, this can be treated
as a classification problem where a class label is the website
name. A network trace is a sequence of packets exchanged by
the server and client in order to load a webpage on the client’s
browser. A classifier is built using traces from multiple websites.
The information present from network packets in each trace is
typically summarized to form a histogram feature vector, where
the features [4] include packet length and direction with respect to
the client browser. In addition to using packet length histograms,
Panchenko et al. [18] introduced Size Markers or Bursts. A burst is
a sequence of consecutive packet flows in the same direction. Burst
size is the summation of its packet lengths. A burst histogram
is then built from the bursts of the trace. Panchenko used
other features such as unique packet sizes, HTML markers, and
percentage of incoming and outgoing packets. Dyer et al. [17]
used bandwidth, website upload time, and bursts as features.

Client (User)

Attacker

Encrypted Website Content 
and Destination.

Machine Learning
To reveal destination

Website
Server

Entry 
Guard

Middle 
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Exit
Node
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Fig. 1: An example of Tor. A client or user connects to the
Internet (server) using Tor network. The three Tor nodes are
shown. The website fingerprinting attack occurs between the
user and the Tor entry guard.

Wang and Goldberg [19] used Tor cell traces to improve website
fingerprinting on Tor.

The classification techniques used in these studies include
Naive Bayes, SVM, Decision trees and K-NN. These algorithms
are trained using training data, and are used for predicting the
class label of a test trace. In order to train a classification model
(or a classifier), sufficient number of traces from every website is
required. Due to the existence of a large number of web pages in
the world, two scenarios are typically considered for classification.
These are called open-world and closed-world [7], [18]. A Closed-
world attack assumes a finite number of websites. Traces are
collected from these websites for training. For testing, the client
is assumed to access these websites only. Multi-class classification
is then used. In an Open-world scenario, the attacker monitors
a small set of websites. These are called “monitored” websites.
Traces are collected from monitored and non-monitored websites
for training. The prediction becomes a binary classification
problem. This paper focuses on the closed-world scenario.

C. Defenses

The topic of website fingerprinting defense has been an active
area of research. Several defenses have been proposed to resist
website fingerprinting attacks. All of the defenses aim to obfuscate
the pattern of the packets of the loaded website. These defenses
vary from padding packets with extra bytes to morphing the
website packet length distribution and make it appear to come
from another target distribution (i.e., a different website) [17].
In packet padding, each packet size in the trace is increased to
a certain value depending on the padding method used.

Padding techniques come with the overhead of appending
large number of bytes to packets. Therefore, several other smart
padding defenses have been introduced. We describe three of the
most effective website fingerprinting defenses that we consider
when evaluating our approach later when we discuss results.

• Pad to MTU. MTU (Maximum Transmission Unit) deter-
mines the maximum size of each packet in a communi-
cation between two ends. In a Pad to MTU defense [17],
each packet is padded to the maximum size (MTU).
This technique prevents the attacker from extracting
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detailed packet lengths distribution information which
help machine learning classifiers to identify webpages.
There is a tradeoff, however, when using this defense as
it comes with a high cost of appending bytes to every
packet of size less than MTU.

• Direct Target Sampling (DTS). DTS was proposed
by [20]. It is considered as a distribution-based defense
which makes the packet length distribution of a certain
website appear as coming from a different website
distribution. It has an advantage over the pre-packet
padding techniques, like Pad to MTU, in that it requires
less overhead by appending less bytes depending on the
distribution of the target webpage. Furthermore, as a
distribution-based technique, DTS defense proves to be
more effective than the traditional packet padding.

As an example, lets consider two webpages S and T
where S is the source and T is the target. We derive
two distributions DS and DT from their packet length
histograms. From DT probabilities, we build the target
Cumulative Distribution Function (CDFT ) to sample
random variables (packet lengths) for each packet in
S by running a pseudorandom number generator to get
a number between zero and one inclusive. So for every
Pi (packet of length i in S) , we sample Pj (a packet
of length j using CDFT ). If j > i, we pad Pi to length
j and send, otherwise, we send Pi as is. We continue
random sampling from DT until all S packets have been
consumed. The result is a new distribution DN .

In addition, we continue sampling from DT until the
L1 distance between the new distribution DN and the
target distribution DT is less than a predefined threshold,
which empirically was determined to be 0.3 [20].

• Traffic Morphing (TM). TM [20] is similar to DTS
but reduces the cost or overhead by using Convex
Optimization methods. Wright et al. [20] introduced
the cost function as the objective function that we like
to minimize. The convex optimization parameters are
probabilities in an m×m two dimensional array A where
m is the MTU in TCP/IP transmission.

Figure 2 depicts this process. Each column in A is a
Probability Mass Function (PMF ) whose values sum
up to 1. Similar to DTS, from each column’s PMF , we
generate the corresponding CDF . We do that in DTS,
but we do it once for the target website distribution DT .

As an example, to morph the source website S to the
target website T , we need to learn the parameters in
A such that T = AS. For each packet of length i
in S, Pi, we go to the ith column in A and run a
pseudorandom number generator over its cumulative
distribution function (CDFi) to sample Pj (a packet of
length j from T ). If j > i, then we pad Pi to length j,
otherwise, we split packet Pi and send. Wright et al. [20]
introduced other constraints in the convex optimization
method as i < j so there is no need to split packets
from the source website as this affects the quality of
some applications like streaming data as in audio or
video. The result is a new distribution DN .

Similar to DTS, we continue sampling from DT until
the L1 distance between DN and the target distribution
DT is less than 0.3.

There are other defenses that have been proposed. Authors

PMFi

a1i a1i + a2i ... a1i + … + ami

1 2 j m

...

...

a1i + … + aji

...

CDFi

1

2

34

Fig. 2: Traffic Morphing.

in [17] introduced another defense that not only incurs a packet
size overhead, but also requires a packet transmission delay. The
defense has been experimentally proven to be inefficient by the
authors in their paper. Cai et al. [8] improved the defense
in [17] by optimizing size and delay parameters. Trying to change
packets sending and arrival times by delaying transmission may
not be practical as this increases network latency. Furthermore,
TCP packet retransmission may be a result of packet delay.
According to RFC 2988 [21], TCP retransmission occurs if the
RTO (Retransmission Timeout) is exceeded.

III. P2V APPROACH

In this section, we present the details of our Packet to
Vector (P2V) approach and explain how we utilize word vector
representations to improve the website fingerprinting attack.

A. Concept

Previous studies [7], [15], [17], [18] on website fingerprinting
used features such as time taken to load the webpage, packet
size with direction of data transmission, packet order, and the
length of combined sequential packets in the same direction,
called burst (for instance, see Uplink burst in Figure 3). These
features are extracted from a trace of network traffic belonging
to a single website. New features are then created by bucketizing
the transmission length and counting the frequencies within each
bucket [18]. Therefore, each trace of a webpage would have a
large number of features. If m is the total number of features,
then each trace can be seen as an m-dimensional vector. We
will see how this dimensionality issue is to be solved by the P2V
model where a low d-dimensional vector is produced and used
for classification. A class label (i.e. webpage name) is assigned to
this trace.

In this work, we take a new packet to vector (P2V) approach
to improve this attack. We show how we model website fin-
gerprinting using word vector representations. More specifically,
we use the GloVe model described in Section II-A. The GloVe
model uses the context-counting model which leverages statistical
counts by training on elements in a word-word co-occurrence
matrix. Each element in this matrix tabulates the number of
times word i co-occurs in the context of word j. In the TCP
protocol, each packet transmission affects the following packet
transmission. TCP uses flow control mechanisms such as window
size and scaling, ACK packets and other methods to ensure
safe arrivals of packets in both directions. This means there
is a dependence between consecutive packet flows in a TCP
connection. We will shortly explain how we construct the corpus
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by going through packets in sequence in order to build a
packet-packet co-occurrence matrix which guarantees to give us
meaningful counts for each trace.

B. PORDs

The GloVe model takes a text corpus as input and produces a
vector for each word in the vocabulary. In website fingerprinting,
as depicted in Figure 3, all we have is just trace packets collected
while downloading websites. We need a mechanism to translate
these packets into text tokens. We call these tokens PORDs (for
Packet wORDs). PORDs are extracted from the sequences of
packets. Unlike previous studies on website fingerprinting which
ignored the ACK packets as they were considered noise, our P2V
model does use the ACK packets to generate PORDs. In the
evaluation section, we show how the ACK packets enrich the
vocabulary and produce better results. For ease of analysis, we
organize generating PORDs into the following categories.

1) Packet Length PORDs: For each packet, we take the
packet length in bytes and construct the packet PORDs. We
consider both uplink and downlink directions. An uplink (or Tx)
packet PORD with a length l is different than a downlink (or
Rx) packet PORD with the same length l.

2) Uni-Burst Size PORDs: Burst (or Uni-Burst) consists
of consecutive packets in the same direction. As illustrated in
Figure 3, we call the burst going from user to a server an uplink
or Tx burst and the burst coming from a server to user a downlink
or Rx burst. Burst size is the summation of all of its packet sizes.
We take each uni-burst size as a PORD. We also consider the
direction in this category as well. We bucketize as this gives us
best results as to be shown in the evaluation.

3) Uni-Burst Time PORDs: Packet time is the depar-
ture/arrival timestamp in uplink/downlink direction. This is mea-
sured at the client side by the eavesdropper (attacker). Burst time
is the difference between the last packet and first packet times
(the time it takes the burst packets to get transmitted/received
by the client in any direction). A PORD is constructed here from
each Tx/Rx uni-burst time.

4) Uni-Burst Count PORDs: Uni-Burst count is the total
number of packets contributing in the burst. We take each Tx/Rx
uni-burst count as a PORD.

5) Bi-Burst Size PORDs: Bi-Burst is the sequence of two
adjacent bursts. As shown in Figure 3, Rx-Tx-Burst is the
combination of downlink and uplink consecutive bursts. We take
the two sizes of each of the two bursts as a new PORD. Direction
is considered here as well. Tx-Rx-Burst size is different than
Rx-Tx-Burst size. We use bucketizing as above.

6) Bi-Burst Time PORDs: This set of PORDs is similar to
the Bi-Burst size PORDs approach described above but we take
the two time differences in each of the adjacent bursts.

Table I summarizes how we generate PORDs from packets,
uni-bursts, and bi-bursts sequences.

C. POCUMENTs

As described in Section II-A, the primary source of informa-
tion is the word co-occurrences matrix. Running through words
(or PORDs) in the documents, we build statistical counts of the
number of times any two words co-occur together in a context
window. In Section III-B, we discussed how to generate PORDs.
In this section, we show how to organize these PORDs in POC-
UMENTs (short for Packet dOCUMENTs). The juxtaposition of
the PORDs in our POCUMENTs is important as GloVe captures

TABLE I: Generating PORDs from Packets, Uni-Bursts, and
Bi-Bursts.

Category No PORDs

Packet (Tx/Rx) 1 Packet length

Uni-Burst (Tx/Rx) 2 Uni-Burst size
3 Uni-Burst time
4 Uni-Burst count

Bi-Burst (Tx-Rx/Rx-Tx) 5 Bi-Burst size
6 Bi-Burst time

Uplink 
or TX 
Burst  

Bi-Burst 
(Rx-Tx-Burst)

Bi-Burst 
(Tx-Rx-Burst)

Client (Tx) Server (Rx)

Fig. 3: Sequence Diagram between Client (Tx) and Server
(Rx). Packet, uni-burst and bi-burst transmissions between two
ends are illustrated.

useful statistics specified by that. Each trace (webpage load) is
considered as a POCUMENT.

For a single pass in each trace used to train the model, we run
through packets in order of departure/arrival from/to client side
to construct the POCUMENT. For the purpose of illustration,
in Figure 3, we run through packets from top to bottom and
buffer all PORDs we will use. We insert the PORDs in each
POCUMENT in an order described as follows (Notice that this
is the best order after trying multiple combinations).

• We first insert all Packet Length PORDs.

• Second, we consider all Uni-Burst Size PORDs.

• Third, Uni-Burst Time PORDs are inserted.

• Then, we put all Uni-Burst Count PORDs.

• Next, we take all Bi-Burst Size PORDs.

• Finally, Bi-Burst Time PORDs are considered.

We insert the above PORDs in the order of their appearances
in the trace.

D. Example

We give an example to clarify our approach. Figure 4 depicts
a website trace where packet sequences between Tx and Rx are
shown. Each packet in the figure has size s in bytes and time t.
Time t is the number of seconds since Epoch (1 January, 1970).
Times shown in this example are for illustration purposes only.
We set the time for the first packet in the trace to zero to have
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Client (Tx) Server (Rx)

Uni-Burst 
Size = 500 Bytes

Time Difference = 10
Uni-Burst Size PORD = US-Tx-500
Uni-Burst Time PORD = UT-Tx-10
Uni-Burst Count PORD = UC-Tx-2

Bi-Burst or Rx-Tx-Burst
Rx Burst size = 2300 Bytes
Tx Burst size = 400 Bytes

Bi-Burst Size PORD = 
BiS-Rx-Tx_2300_400

Rx Burst Time Difference = 20
Tx Burst Time Difference = 5

Bi-Burst Time PORD = BiT-Rx-Tx_20_5

Tx Packet 
Size = 300 Bytes

Departure Time Stamp = 10
Packet PORD = P-Tx-300

Bi-Burst or Tx-Rx-Burst
Tx Burst size = 500 Bytes

Rx Burst size = 2300 Bytes
Bi-Burst Size PORD = 
BiS-Tx-Rx_500_2300

Tx Burst Time Difference = 10
Rx Burst Time Difference = 20

Bi-Burst Time Difference PORD = 
BiT-Tx-Rx_10_20

Fig. 4: Example of how P2V generates PORDs (Packet Words)
from a trace.

it as a reference. Figure 4 shows a uni-burst example of size 500
(200 plus 300) and time difference of 10 (10 minus 0). Figure 4
illustrates some PORDs constructed by the P2V model.

E. Classification

The input to GloVe is the PORPUS (for Packet cORPUS)
which is a collection of POCUMENTS used for training the GloVe
model. GloVe produces word (PORD) real-valued vectors. Now we
can use these PORD vectors as features in website fingerprinting
classification. For each trace (from training set or testing set),
we construct a Trace Vector by averaging all PORD vectors in
that trace. It is worth mentioning that the testing set traces are
not used to train the GloVe model to avoid overfitting. Notice
that the trace vector is a fixed-length (d-dimensional) vector as
every PORD is originally a d-dimensional vector. These trace
vectors are used for the regular machine learning classification
task where we classify using the naı̈ve-bayes (NB) algorithm.
In our evaluation, we show how the trace vectors improve the
website fingerprinting attack.

IV. EVALUATION

In this section, we present our evaluation of the proposed
approach to perform the website fingerprinting attack. We first
discuss the dataset used and then the experimental results.

A. Dataset

We use a dataset collected by Liberatore and Levine [4].
We call it the HTTPS dataset. The traces were collected while
browsing websites using HTTPS protocol. As this dataset has
been widely used in previous studies, this enables us to compare
the results of our approach with other techniques. The traces
have been collected for over two months using 2000 websites.

B. Experimental Results

We now present the results of our experiments. For each
experiment, we varied the number of selected websites between
20, 40, 60, 80, and 100. To train GloVe, we use 64 randomly
selected traces from each website to build the model. We use the
P2V approach described in Section III to produce PORD vectors.

The GloVe word vector size we use is 300. We experiment with a
context window of 8. For the gradient descent algorithm, GloVe
trains the model using AdaGrad [22]. We use an initial learning
rate of 0.05.

For the machine learning classification task, we use 16
randomly selected traces per website (class) for training the
classifier, and 4 randomly selected traces per class for testing.
We generate trace vectors as described in Section III-E. To avoid
overfitting, none of the testing set traces is used to build the
GloVe model. Each experiment has been run ten times with the
websites randomly selected from the pool of websites in each run.
Then the average accuracy has been obtained.

In order to evaluate the performance of our approach, we
considered three of the most effective defense mechanisms as
well as no applied defense. These defenses are (1) Pad To MTU.
(2) Direct Target Sampling. (3) Traffic Morphing. The reason
we choose these defenses over other packet delay defenses was
justified in Section II-C.

We compare our results with state-of-the-art website fin-
gerprinting classifiers. These classifiers are VNG++ [17] and
Panchenko [18]. There are other classifiers in the website fin-
gerprinting literature such as LL [4], OSAD [19] and others.
However, recent studies concluded that VNG++ and Panchenko
are two of the most accurate classifiers. As indicated in [17],
VNG++ performs better than LL. Also, a recent study [23]
shows that Panchenko outperforms the OSAD classifier. VNG++
classifier uses total website upload time, uplink and downlink
bandwidth, and uni-bursts as features. It applies the naı̈ve-bayes
(NB) classifier to get the prediction. Panchenko classifier uses a
large collection of features like packet order, HTML markers, uni-
bursts, and others. Panchenko utilizes the support vector machine
(SVM) classifier. Our P2V approach produces fixed-length trace
vectors that are used in classification. We apply our approach
against the two classification methods (VNG++ and Panchenko)
using naı̈ve-bayes. We use the Weka [24] implementation of these
classifiers.

We now present the evaluation by running the experiments
against the HTTPS dataset. Figure 5a shows the average accuracy
when evaluating HTTPS with no defense considered. The X-
axis represents the number of websites where we evaluate the
experiments against 20, 40, 60, 80, and 100 websites. The Y-
axis represents the ten-experiment average accuracy for each
classifier including our P2V one. For example, with 20 websites,
the accuracies for VNG++, Panchenko, and P2V are 87.75, 92.6,
and 96.1 respectively. Our approach proves to perform well even
with large number of classes where it achieves accuracies above
90 %. VNG++ does not perform well even when there is no
defense applied.

On the other hand, applying defense techniques to the
transmitted packets changes the characteristics of the website
traffic distribution. This makes classification harder and more
sophisticated methods should be used to extract the right patterns.

This concept is clearly illustrated in Figure 5b. We can see
the overall accuracies drop for all classifiers, including P2V, in
this figure as compared to Figure 5a where there is no defense
applied. As discussed in Section II-C, Pad to MTU defense pads
each packet to the maximum size (MTU) which is 1500 bytes. This
defense is less used in practice as it incurs more overhead. When
every packet is padded to 1500 bytes, the vocabulary for the P2V
model is not rich and hence the statistics will not build an accurate
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Fig. 5: No Defense and Pad To MTU - HTTPS data:
VNG++, Panchenko, P2V.

model. More training data and possibly a more sophisticated
model may be required to handle this padding case.

To show our approach resists advanced distribution-based
defenses, we run the experiments with Direct Target Sampling
and Traffic Morphing. Figures 6a and 6b show the HTTPS dataset
results when considering these distribution-based defenses. The
figures show the superior performance of the P2V model over
the other methods. In DTS, for example, when running the
experiments with 60 randomly selected websites, the accuracy for
P2V is 71.5 % while for VNG++ and Panchenko, the accuracies
are 57.88 and 57.9% respectively.
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Fig. 6: Direct Target Sampling and Traffic Morphing - HTTPS
data: VNG++, Panchenko, P2V.

As discussed throughout the paper, the fact that packet
flows in the TCP protocol affect subsequent packet flows helps
construct meaningful statistics in the co-occurrence matrix which
is the primary source of information to the GloVe model. P2V
produces trace vectors that capture the characteristics of the
website even though the defender tries to disguise the network
packets actual distribution. We notice that Panchenko classifier
preforms worse than previous experiments in Figures 5a and 5b.
This may be due to the fact that some features used in Panchenko
classifier such as HTML Markers do not capture the actual
characteristics of morphed packets. When comparing DTS and
TM in Figures 6a and 6b, we can see that DTS defense is better
than TM as it fools the attacker’s classifiers and causes the
accuracy to be less. There is a trade-off though. DTS incurs more
overhead as it generates more bytes to be padded. In contrast,
TM uses convex optimization to lower this cost.

C. Model Analysis

Figure 7 shows the effect of varying context size, vector length,
and initial learning rate. We run these experiments when no

defense is applied. Varying the context size does not improve the
results significantly as compared to the other two parameters,
vector length and initial learning rate. Small vector lengths result
in low-dimensional trace vectors that do not help the machine
learning classifier much. On the contrary, large initial learning
rates give extremely bad results. This is because the gradient
descent algorithm does not learn the word vectors well which
will make the P2V model produce bad trace vectors.
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(c) Initial Learning Rate:
0.001, 0.01, 0.05,
0.1, 0.5.

Fig. 7: P2V Model Analysis - HTTPS data - No defense.

V. DISCUSSION

Website fingerprinting is the ability for the attackers to iden-
tify the websites accessed by users. Attackers may be tyrannical
governments who try to suppress freedom. However, attackers
may be organizations or even governments who try to track
malicious activities. Defenders such as Tor anonymity network
apply countermeasures (or defenses) to hinder the attackers
ability to threaten web navigation privacy.

Previous studies on website fingerprinting used features such
as packet size with direction of data transmission, the length
of combined sequential packets in the same direction, called
burst, and time taken to load the webpage. These features
are extracted from a trace of network traffic belonging to a
single website. Moreover, previous studies assumed independence
between features extracted. In this paper, we model the website
fingerprinting attack using GloVe (a word vector representation
model). Communication between ends is stacked over the TCP
protocol. TCP uses flow control mechanism to ensure certain
understanding between client and server. We view this under-
standing as a dialogue between two ends. In TCP, each packet
flow affects the subsequent packet flow. This means there is a
dependence between consecutive packet flows. We use this fact
to build a packet-packet co-occurrence matrix which is the main
source of information used by the GloVe model.

Figure 8 shows the effect of fewer vocabulary (PORDs) with
DTS and TM defenses. (1) uses Packet Length, Uni-Burst Size,
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and Uni-Burst Time PORDs only. (2) uses Packet Length, Uni-
Burst Size, Uni-Burst Time, Uni-Burst Count, and Bi-Burst Size
PORDs. It is clear from the results how enriching the vocabulary
improves the P2V classifier. (3) uses the same PORDs as in (2)
but with the ACK packets included. We can see how the ACK
packets improve the P2V model. These packets can be viewed as
filter or stop words in NLP where they are considered crucial for
some tasks like Author Attribution as they retain signatures of
author style [13]. Furthermore, GloVe uses the context-counting
approach where the stop words are considered with a weighting
function that limits the effect of frequent co-occurrences. This
is the first time study which considers the ACK packets in the
website fingerprinting attack design.
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Fig. 8: DTS and TM when increasing the vocabulary and
considering the ACK packets - HTTPS data.

VI. CONCLUSION

To advance the defense in website fingerprinting, we propose
the P2V model which views network packets as words. We showed
how the proposed model can be used to improve the website
fingerprinting accuracy and defeat the existing defenses. Our
experimental results show that our proposed attack can achieve
higher accuracy in identifying a website from a given trace,
than claimed in previous studies. The experimental results show
also our new approach is more resilient to website fingerprinting
defenses than previous works.
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