
Conversion of Decision Tree
Into Deterministic Finite Automaton

for High Accuracy Online SYN Flood Detection

Marcin Luckner
Warsaw University of Technology

Faculty of Mathematics and Information Science

00–662 Warszawa, ul. Koszykowa 75, Poland

Email: mluckner@mini.pw.edu.pl

Abstract—While collecting data from network traffic, one
can create classifiers that recognize threats, anomalies, or other
events. The set of labelled NetFlow records collecting traffic
statistics is a very useful source of decision rules that classify
the records. These rules can be created automatically using
machine learning techniques. However, the classifiers learned
on such records may recognise only past events and cannot
recognise current events, because not all data were collected. A
deterministic finite automaton is a classifier that can recognise
events online. However, the automaton is hard to project in case of
complex issues. The paper proposes how to convert a decision tree
into a deterministic finite automaton. The decision tree learns how
to recognise threats using the collected data. Consequently, the set
of decision rules is transformed into a finite automaton that can
detect events before the full complement of data is collected. The
method is limited to small trees, but can solve real problems.
As an example, the detection of the TCP SYN flood attack is
presented. For that example, the created automaton has the same
high accuracy ratio as the decision tree, but can take decisions
over three times faster.

I. INTRODUCTION

One of the modern issues is a quick detection of events
in huge flows of data such as network traffic. The events
that we want to detect among network traffic are commonly
connected with cyber–threats. Therefore, it is extremely im-
portant to detect the threats when they are present to allow the
administrators to counteract.

A typical approach in machine learning assumes that the
classifier is trained and tested on the static data sets. Such a
classifier can effectively handle events with a stable measure of
observed features, but when connected to a dynamical stream,
it can misclassify arising events.

One of possible solutions is a classifier dedicated to a
stream analysis, such as a finite automaton. This classifier
changes its state on the base of observed features. When the
automaton reaches the final state, it alarms about the detected
even. A common approach to design the finite automaton uses
expert knowledge.

This papers proposes how to convert a decision tree into
a deterministic finite automaton automatically. This allows us
to replace expert knowledge by machine learning techniques.

This approach also changes the method of a network traffic
analysis from offline classification into an online detection.

To be more specific, the method converts a decision tree –
trained on static data set – into a deterministic finite automaton
(DFA). The automaton can work on data stream and detect the
events classified by the tree. That allows the model to detect the
ensuing threats. Moreover, when the decision tree faces events
not included in the set of recognised events, it must misclassify
the event. On the other hand, the automaton recognises only
one event, but other events – different than neutral traffic – are
not misclassified. They are ignored instead.

The proposed method uses the decision tree to generate a
set of rules that detects the recognised event. Next, the rules are
used to create the transition function for the nondeterministic
finite automaton. Finally, the automaton is transformed into
the deterministic finite automaton.

The proposed method solves real problems. In this paper,
we present the problem of the detection of a TCP SYN flood
attack. The SYN flood attack is a common cyber–threat when
attackers flood a victim with synchronisation requests. From
the decision tree that recognises threats with a high accuracy –
less than 1 percent of false positives and zero false negatives
– the method creates the deterministic finite automaton that
repeats the tree decisions but works directly on data stream.
That allows the automaton to take decisions over three times
faster than the decision tree.

The rest of the paper has the following structure. After a
short presentation of previous work in Section II, Section III
describes the presented method. Section IV presents the ap-
plication of the method for the TCP SYN floods detection.
Finally, Section V summarises the results and describes future
work.

II. PREVIOUS WORK

Several propositions how to detect TCP SYN flood attacks
using machine learning techniques can be found in [1], [2], [3],
[4], [5], [6], [7]. The methods used to detect TCP SYN flood
attacks include: Kononen self–organising maps, deterministic
finite automata, time automata, and decision trees.

The decision tree is one of common and well working
techniques among all the examined approaches. Moreover, the

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.21

75



decision tree gives a clear set of decision rules. Therefore, we
focused on this technique in our work.

A very useful form of a learning set for the decision
tree that recognises cyber–threats is a labelled set of NetFlow
records. The NetFlow record contains statistics that describe
features typical for the recognised threat. The very wide set
of features was proposed in [8]. However, we decided to limit
a set of observed features to the standard template offered by
nProbe [9], which is an open source NetFlow probe that can
works with gigabit networks.

The decision tree trained on real data that describe both
neutral network traffic and attacks can recognise threats with
high accuracy. However, the reaction of the system that uses
the tree learned on NetFlow records will depend on the period
that was used to collect statistics. Therefore, if the records
describe the whole attacks then the tree will recognise only
attacks that have already been finished.

For that reason, a method that changes the state with each
new part of data can be preferred to detect the threats. Such
a method can alarm the operator during the attack. In this
group, there are the methods based on finite automata [10],
[11], [12] or the Hidden Markov Model [13]. Both can be
easily implemented on hardware devices to create fast detectors
that work directly on data steam. However, in this solution it
is often assumed that the events are already described by the
regular expressions.

Our method builds a bridge between those two approaches.
One can create the decision tree that works with a very
high accuracy and then transform the decision rules to the
deterministic finite automaton that can apply the rules to create
online detection system.

III. METHOD

This section describes the conversion from a decision tree
through a nondeterministic finite automaton into a determinis-
tic finite automaton. First, the notation is proposed. Next details
on the conversion are given.

A. Decision tree

A binary decision tree G = (V,E) is described by the set
of vertices V and the set of edges E. The tree contains two
types of vertices. Leaves describe classes, while other vertices
contain decision rules R.

The rule ρ ∈ R is defined as the function

ρ : F × TF → V (1)

Where F is a set of features and TF describes the set of
thresholds created for the given feature.

When the values of the features are given by real numbers
or by an ordered set, the rules chose the next vertices in the
tree using the following formula:

ρj(fi, ti) =

{
vs if f̆i < tji
vt if f̆i ≥ tji

(2)

Where fi ∈ F is a feature, f̆i is an observed value of
the feature, ti ∈ T is a set of threshold for the feature fi
and tji is the threshold for the feature fi used in the rule ρj .
Additionally, vs ∈ V is the vertex selected when the rule is
fulfilled and the vertex vt ∈ V is selected in the other case.

When an observation is classified a string of rules
ρ1, ρ2, . . . , ρn is examined. The final rule ρn reaches one of the
leaves connected with classes. The reached class is returned
as the classification result.

B. Finite automaton

The proposed method uses two types of finite automata. A
non–deterministic finite automaton is created from the decision
three. Next, the non–deterministic finite automaton is trans-
formed into a deterministic finite automaton. The classifier in
this form can be easily implemented as software or hardware.
A detailed description of the finite automata is given in [14].

1) Deterministic finite automaton: A deterministic finite
automaton (DFA)

M = (Q,Σ, δ, q0, F ) (3)

has the following components:

Q a finite set of states
Σ a finite input alphabet
q0 the start state q0 ∈ Q
F the set of final states F ⊂ Q
δ the transition function.

The transition function is defined as

δ : Q× Σ → Q (4)

The deterministic finite automaton starts in the start state
q0. Next, the automaton changes the states on the base of the
state and the input symbols. If one of the final states is reached
the input word is accepted.

2) Nondeterministic finite automaton: A nondeterministic
finite automaton (NFA)

M = (Q,Σ, δ, q0, F ) (5)

has the identical components as DFA except the transition
function, which is defined as

δ : Q× Σ → 2Q (6)

The nondeterministic finite automaton works in the same
way as the deterministic finite automaton, but in the same state
and with the same input symbols the automaton can reach
various states.

A nondeterministic finite automaton can be converted into a
deterministic finite automaton. We assumed that the nondeter-
ministic finite automaton has not ε-movements (the movements
without reading data).

76



For each state qi we examine the results of the transition
function. If the result for each symbol s ∈ Σ is the empty set
or the single state qj then the transition function for the state
qi stays the same. If the result for any symbol s is a set of
two or more states then we create a new state labelled by the
states reached by the transition function.

For example, the nondeterministic transition from the state
qi may reach the states {qj , qk}, when the symbol s is read

δ(qi, s) = {qj , qk}. (7)

The transition is transformed into a deterministic one
defined as

δ(qi, s) = [qj , qk] (8)

where [qj , qk] ∈ Q is a new created state.

For the new state, the transition function must be defined.
The function is defined for each symbol s from the alphabet
Σ separately. For each state that was used to create the state
label, we look for all sets that can be reached directly with the
symbol s. The union of the states creates a label for the new
state.

For example if

δ(qj , s) = {qs, qt} ∧ δ(qk, s) = {qs, qr} (9)

where s ∈ Σ is a symbol from the alphabet, and
qj , qk, qs, qt, qr ∈ Q are states then

δ([qj , qk], s) = [qs, qt, qr] (10)

where [qs, qt, qr] ∈ Q is a new created state.

For each new state the procedure must be repeated. More
detailed information about the transformation from nondeter-
ministic finite automata into deterministic finite automata can
be found in [14].

C. Conversion of decision tree into finite automaton

The transformation proposed in this section – from a
decision tree to a deterministic finite automaton – converts an
offline classifier into an online classifier. However, the process
has several limitations.

First, the created finite automaton detects only one class.
For this class we must find all strings of rules that reached the
leaves with the detected events.

A second limitation is the size of the transformed tree. The
details of this problem are given in the next section.

The algorithm has three steps. In the first step, the strings
of rules are generated from the tree. Next, the strings of rules
are used to create a nondeterministic finite automaton. In the
last step, the nondeterministic finite automaton is transformed
into a deterministic finite automaton.

1) Generation of strings of rules: The algorithm observes
each path that goes from the root to a leaf labelled with the
detected event. Each node on the path was achieved because
one case of the formula (2) had been fulfilled. When we
write down all fulfilled rules we will obtain the string of rules
ρ1, ρ2, . . . , ρn.

The order in the string depends on the detection tree struc-
ture. However, the finite automaton can collect data observed
by the rules in various orders. That shows the next limitation
of the method because all string must be permuted.

As the result of the permutation process, we have n! strings
of rules instead of one. Therefore, the method can be not
effective for the complex decision tree. However, when the
observed feature is described by a monotonic function, the
number of permutation can be limited by the following steps.

Let us define a family of rules as

Λ(ρj(fi, ti)) = {ρl(fk, tk) : k = i} (11)

where ρi, ρl ∈ R are rules defined for the same feature
fi ∈ F . The rules, defined as (2) must base on various values
of the thresholds tji , t

l
i ∈ TF .

From the structure of the rules (2) it is clear that in the same
string of rules all rules from the family Λ(ρj(fi, ti)) must be
ordered by the thresholds. When for the thresholds tki , t

l
i, t

m
i

we have the relations tki < tli < tmi then the rules in the
string can be only localised as ρk(fi, ti), ρl(fi, ti), ρm(fi, ti)
or ρm(fi, ti), ρl(fi, ti), ρk(fi, ti). Moreover, an observation of
the feature fi influences all rules from the family Λ(ρj(fi, ti)).
Therefore, the rules from the same family should not be
separated by rules from other families.

The introduction of a family of rules allows us to reduce
the permutation problem. It is enough to create a permutation
of families instead of a permutation of rules.

2) Creation of finite automaton: To create a finite automa-
ton we must define the alphabet Σ, the states Q, and the
transition function δ. The alphabet Σ is created from the set
of rules R that should be fulfilled on the decision path. Each
symbol ri from the alphabet represents one rule ρi. The special
states: the initial state q0 and the final state qA ∈ F are added
to the Q.

Next, for each path of the rules r1, . . . , rk+1 the line of
states is created q0, q1, q2 . . . , qk, qA. The number of states is
equal to the number of rules plus one. The following transitions
are added to the automaton ρ(q0, r1) = q1, ρ(q1, r2) =
q2 . . . , ρ(qk, rk+1) = qA.

The states from the next paths have no connection with
the created path except the states q0 and qA. Different paths
can start with the same rule. Therefore, the created automaton
is nondeterministic and in the next step it is converted into a
deterministic automaton using the algorithm described before.

IV. SYN FLOODING ATTACKS DETECTION

To illustrate that the proposed conversion can be used
to solve real problems we created a detector of TCP SYN
flooding attacks.

77



Fig. 1: TCP SYN flood attack compared with neutral session

The TCP SYN flooding attacks use the handshake mecha-
nism of Transmission Control Protocol (TCP) and its limitation
in maintaining connections. The traffic between a sender and a
receiver is labelled with special flags according to the protocol.
The attack uses the flags to confuse the receiving server.

A conversation based on the TCP starts when a sender
sends a SYN request. As a response, the receiver sends a
SYN/ACK packet. In normal cases, the sender responses with
an ACK packet. However, the attacker sends a next SYN
request instead. Until the SYN/ACK packet is acknowledged
by the sender, the connection remains in a half–open state for
a period of up to a TCP connection time out limit. The receiver
tries to manage all half–open connections that can finish
with exhaustion of resources. Eventually, all later connection
requests will be dropped.

Figure 1 presents the differences between a conversation
with an attacker and a neutral user.

A. Data

The described detectors were created using data from the
WiSNet laboratory [15]. The data contain both neutral traffic
and TCP SYN flood attacks. They are labelled according to
the types.

Three different hosts preformed the attacks. Each host
launched attacks at various rates including three low–rate
(0.1, 1, 10 pkts/sec) and two high-rate (100, 1000 pkts/sec)
instances. Each instance covered a period of two minutes. Neu-
tral traffic was collected from the edge router of a medium–
sized Internet Service Provider for about 10 minutes [15].

The data were described by NetFlow [16] records. Such
a record contains the following information: the source IP
address, the destination IP address, the IP protocol, the source
port, the destination port, and the IP type of service.

The NetFlow version 9 can collect additional features.
To detect the SYN flooding attacks we collected the fol-
lowing features: the incoming flow bytes (IN BY TES),
the incoming flow packets (IN PKTS), the IP protocol
(PROTOCOL), the cumulative value of all flow TCP
flags (TCP FLAGS), the longest packet of the flow
(LONGEST FLOW PKT ), and the shortest packet of
the flow (SHORTEST FLOW PKT ). The features are
defined by nProbe templates [9].

The NetFlow records were limited to the six given features
for two reasons. First, information about the TCP flags and
the number of packets seems to be essential in the SYN flood
detection. Second, to add additional features that are not listed
in the nProbe templates it is necessary to create nProbe plug-
ins, which is not an easy task.

The NetFlow records collected by nProbe were split into
the learning set and the testing set. The learning set contains
312342 NetFlow records that describe attacks and 208639
records of neutral traffic. The testing set contains 624684
records of attacks and 190067 of with neutral traffic.

B. Decision tree

Discrimination rules that separate TCP SYN flood attacks
from the rest of the traffic were created for the learning sets.
This task was done using a C&RT tree [17], which creates
clear decision rules.

Figure 2 presents the obtained tree. Four leaves contain
neutral traffic. Only one leaf contains TCP SYN flood records.

Fig. 2: TCP SYN flood detection tree

Only three features were selected to create the
tree: SHORTEST FLOW PKT , IN BY TES, and
LONGEST FLOW PKT . The IN BY TES feature was
used twice in the decision results.

The created tree recognised all attacks. Among the neutral
traffic 287 and 59 NetFlow records were recognised as attacks
in the learning set and the testing set respectively. In both
cases, that is less than one percent of the NetFlow records.

However, the attacks were labelled when the whole Net-
Flow record had already been calculated. A finite automaton
can detect attacks during the calculation of the features.

For that, the path to the tcpflood leaf must be defined. The
following rules lead to the tcpflood leaf:

¬ρ1 : LONGEST FLOW PKT >= 40.5, (12)

¬ρ2 : IN BY TES >= 100, (13)

ρ3 : IN BY TES < 540, (14)

¬ρ4 : SHORTEST FLOW PKT < 39.5. (15)

78



C. Nondeterministic finite automaton

There is only one path in the decision tree that goes to the
tcpflood leaf. To create a finite automaton we need to create all
permutations of the decision rules from the tree. However, the
rules ρ2 and ρ3 are connected by the feature IN BY TES.
Therefore, we do not have to change their order. The created
automaton is presented in Figure 5.

Formally, the automaton according to the formula (5) is
defined as

MNFA = (

18⋃
i=0

qi ∪{qA}, {¬1,¬2, 3,¬4}, δ1, q0, {qA}). (16)

Table I describes the transition function δ1.

The symbols {¬1,¬2, 3,¬4} describe the rules from the
decision tree. The symbol i means that the rule ρi was fulfilled
and the symbol �= i means that the negation of the rule ρi was
fulfilled. The construction of the automaton causes that the
automaton accepts only words that describe the sequence of
rules leading to the tcpflood leaf.

TABLE I: Nondeterministic finite automaton

δ1 ¬1 ¬2 3 ¬4
q0 {q1, q2} {q3, q4} - {q5, q6}
q1 - - - q7
q2 - q8 - -
q3 - - q9 -
q4 - - q10 -
q5 - q11 - -
q6 q12 - - -
q7 - q13 - -
q8 - - q14 -
q9 q15 - - -
q10 - - - q16
q11 - - q17 -
q12 - q18 - -
q13 - - qA -
q14 - - - qA
q15 - - qA
q16 qA - - -
q17 qA - - -
q18 - - qA -
q→A - - - -

The first row in Table I shows us that the automaton is
nondeterministic. From the initial state q0 we can go to more
than one state using the same symbol. In the next step, a
deterministic automaton will be created.

D. Deterministic finite automaton

The created nondeterministic finite automaton was trans-
ferred into the deterministic finite automaton. For that, each
set of the states was grouped as a single state. This approach
creates the smallest automaton.

Figure 6 presents the deterministic finite automaton. The
automaton – according to the formula (3) – is defined as

MDEF = (Q, {¬1,¬2, 3,¬4}, δ2, q0, {qA}) (17)

where,

Q =

18⋃
i=11

qi∪{q0, [q1, q2], [q3, q4], [q5, q6], q7, q8, [q9, q10]}∪{qA}.

(18)

Table II presents the transition function δ2 for the automa-
ton MDEF .

TABLE II: Deterministic finite automaton

δ2 ¬1 ¬2 3 ¬4
q0 [q1, q2] [q3, q4] - [q5, q6]
[q1, q2] - q8 - q7
[q3, q4] - - [q9, q10] -
[q5, q6] q12 q11 - -
q7 - q13 - -
q8 - - q14 -
[q9, q10] q15 - - q16
q11 - - q17 -
q12 - q18 - -
q13 - - qA -
q14 - - - qA
q15 - - qA
q16 qA - - -
q17 qA - - -
q18 - - qA -
q→A - - - -

The automaton detects an attack when the state qA is
reached. When another state is reached then traffic cannot be
classified as an attack. The automaton detects all attacks form
the WiSNet data set.

E. DFA Versus Tree

The automaton implements exactly the same decision rules
as the decision tree. Therefore, the classification accuracy is the
same about 100 percent. However, the automaton can change
a state with each new packet and reject an input before the
whole NetFlow record is calculated.

We used data from the WiSNet laboratory [15] to simulate
network traffic observed by the automaton. The same data,
which were used to train and test the decision tree, were
examined packet by packet to detect when the automaton
recognised the final class of the flow between two IP addresses.

Fig. 3: The number of the packets used to classify traffic by
the automaton and the tree. The detailed numbers are given
for mean, median, and 80 percent of the records.

Figure 3 compares the number of packets necessary to
take the final classification decision for the tree and the

79



deterministic finite automaton. The mean number of packets
that have to be analysed to recognise the class of a flow
is nearly ten times bigger for the decision tree than for the
deterministic automaton. However, the mean for the tree is so
big because of NetFlows with very big number of packets (over
several thousand). A better measure to compare both methods
is the median. The median for the decision tree is four times
bigger than for the automaton.

Moreover, the automaton needs to analyse only the first
packet to decide about the classification of the NetFlow in
over 80 percent of cases.

Figure 4 presents a relative reduction of the number of
analysed packets. We see that in most cases the automaton
needs to analyse no more that 33 percent of all packets
summarised in the NetFlow to recognise the class of the record.

Fig. 4: The percent of the packets used to classify traffic. The
number of packets necessary to recognise the class by the
automaton to the number of all packets in the NetFlow. The
detailed numbers are given for mean, median, and 80 percent
of the records.

V. CONCLUSION

In the paper, we presented how to convert a decision tree
into a deterministic finite automaton. In the result, an offline
classifier is replaced by an online detector. The process works
on one of the classes recognised by the tree. The other classes
as well as other events that are not considered by the decision
tree are ignored.

In the current form, the method has several limitations.
First, only one class is detected by the automaton. On the
other hand, the automaton can ignore the events that must be
misclassified by the decision tree.

Second, the method uses permutations of the decision rules
generated by the tree. That is the most costly part of the
algorithm that may limit the method to small decision trees.
However, the number of the permutations can be reduced when
the observed features are monotonic functions.

Even with the described limitations, the method can solve
real problems. In the paper we presented the online TCP SYN
flood detector that can raise an alarm during an attack.

This work focused on the conversion algorithm that re-
places a decision tree with a deterministic finite automaton.
However, we presented the real application. The method can
be used to detect the TCP SYN flood attacks. Moreover, the
automaton analysed less data than the decision tree. As the
result, decisions about classification of traffic can be taken
over three times faster.

The presented results are the results of the simulation on
data from the repository. The method must be verified online
on real traffic. It has to be done in the future.

Additionally, we want to circumvent the limitation of the
method and test the method against a wider spectrum of cyber–
treats, that can be detected using a decision tree [18].

ACKNOWLEDGMENT

The research is supported by the National Science Cen-
ter, grant No 2012/07/B/ST6/01501, decision no UMO–
2012/07/B/ST6/01501.

REFERENCES

[1] J. Haggerty, T. Berry, Q. Shi, and M. Merabti, “Diddem: a system for
early detection of tcp syn flood attacks,” in Global Telecommunications
Conference, 2004. GLOBECOM ’04. IEEE, vol. 4, Nov 2004, pp. 2037–
2042 Vol.4.

[2] H.-R. Tang, R.-L. Sun, and W.-Q. Kong, “Wireless intrusion detection
for defending against tcp syn flooding attack and man-in-the-middle
attack,” in Machine Learning and Cybernetics, 2009 International
Conference on, vol. 3, July 2009, pp. 1464–1470.

[3] S. Haris, R. Ahmad, and M. Ghani, “Detecting tcp syn flood attack
based on anomaly detection,” in Network Applications Protocols and
Services (NETAPPS), 2010 Second International Conference on, Sept
2010, pp. 240–244.

[4] S. Haris, R. Ahmad, M. Ghani, and G. Waleed, “Tcp syn flood detection
based on payload analysis,” in Research and Development (SCOReD),
2010 IEEE Student Conference on, Dec 2010, pp. 149–153.

[5] P. Sangmee, N. Thanon, and N. Elz, “Anomaly detection using new
mib traffic parameters based on profile,” in Computing Technology and
Information Management (ICCM), 2012 8th International Conference
on, vol. 2, April 2012, pp. 648–653.

[6] T. Arai and S.-y. Nishizaki, “Model checking approach to real-time
aspects of denial-of-service attack,” in Communications and Information
Processing, ser. Communications in Computer and Information Science,
M. Zhao and J. Sha, Eds. Springer Berlin Heidelberg, 2012, vol. 288,
pp. 86–94.

[7] M. del Pino, P. Bez, P. Lpez, and C. Araujo, “Self-organizing maps
for early detection of denial of service attacks,” in Recent Advances in
Intelligent Engineering Systems, ser. Studies in Computational Intelli-
gence, J. Fodor, R. Klempous, and C. Surez Araujo, Eds. Springer
Berlin Heidelberg, 2012, vol. 378, pp. 195–219.

[8] A. W. Moore and D. Zuev, “Internet traffic classification using
bayesian analysis techniques,” SIGMETRICS Perform. Eval. Rev.,
vol. 33, no. 1, pp. 50–60, Jun. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1071690.1064220

[9] L. Deri, “nprobe: an open source netflow probe for gigabit networks,”
in In Proc. of Terena TNC 2003, 2003.

[10] T. Liu, Y. Sun, and L. Guo, “Fast and memory-efficient traffic classifi-
cation with deep packet inspection in cmp architecture,” in Networking,
Architecture and Storage (NAS), 2010 IEEE Fifth International Confer-
ence on, July 2010, pp. 208–217.

80



Fig. 5: Nondeterministic finite automaton

Fig. 6: Deterministic finite automaton

81



[11] Y. Liu, L. Guo, M. Guo, and P. Liu, “Accelerating dfa construction
by hierarchical merging,” in Parallel and Distributed Processing with
Applications (ISPA), 2011 IEEE 9th International Symposium on, May
2011, pp. 1–6.

[12] A. Khalid, R. Sen, and A. Chattopadhyay, “Si-dfa: Sub-expression
integrated deterministic finite automata for deep packet inspection,” in
High Performance Switching and Routing (HPSR), 2013 IEEE 14th
International Conference on, July 2013, pp. 164–170.

[13] R. Rangadurai Karthick, V. Hattiwale, and B. Ravindran, “Adaptive net-
work intrusion detection system using a hybrid approach,” in Communi-
cation Systems and Networks (COMSNETS), 2012 Fourth International
Conference on, Jan 2012, pp. 1–7.

[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[15] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Proceedings of the 14th
International Conference on Recent Advances in Intrusion Detection,
ser. RAID’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 161–
180.

[16] B. Claise, Cisco systems NetFlow services export version 9, 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3954.txt

[17] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[18] N. Wattanapongsakorn and C. Charnsripinyo, “Web-based monitoring
approach for network-based intrusion detection and prevention,”
Multimedia Tools and Applications, pp. 1–21, 2014. [Online].
Available: http://dx.doi.org/10.1007/s11042-014-2097-9

82


