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Abstract—Support vector machines (SVM) have been con-
sidered for real-life machine learning applications in various
fields. Security concerns in modern industrial networks, also used
in critical infrastructures, require novel monitoring techniques
applicable for these constrained, real-time environments. Char-
acteristics of these networks’ traffic indicate that SVM can be
a powerful tool for realizing a self-configuring monitoring for
industrial infrastructures regarding attacks as kind of anomalies.
This paper presents the experimental results of applying one-
class SVM (OCSVM) on a number of real-world industrial
traffic traces from very different industrial control systems (ICS).
Initially focusing on a few network packet attributes, the results
are discussed in terms of f-score, precision, and recall for different
mappings of the features. The results demonstrate the high
potential of using one-class SVM for monitoring packets and
packet sequences in these networks.

I. MOTIVATION

Industrial networks have undergone some crucial trends that
lead to a rising exposition of these networks to common IT
vulnerabilities and indirect connections to public networks. At
the same time, open standards on control and field level have
been introduced to allow interoperability between industrial
devices among vendors and system layers. Industrial Ethernet
(IE), for instance, is meanwhile also widely used in industrial
networks, although it lacks essential security features, such as
authentication and encryption.

Security measures in this field did not keep pace with these
trends. Usually, only firewalls are deployed to protect the
industrial networks from external threats. A security mon-
itoring within these networks, regarding internal misuse or
attacks that have already circumvented the firewall protection,
is rare. Recent incidents [1] prove both the vulnerability of
industrial installations as well as the presence of parties eager
to seriously harm these infrastructures. In case of a critical
infrastructure, this may affect even larger parts of society.

Therefore, in crucial environments access control by fire-
walls should be complemented by a continuous monitoring
within the industrial network segments. The configuration of
a convenient monitoring system for these constrained networks
is a challenging task. So far, this issue prevents the integration
of monitoring techniques in productive environments. We
are investigating suitable methods for implementing a self-
learning, i.e., self-configuring anomaly detection for industrial
network data. Industrial networks are predestined for machine

learning applications due to the homogeneity of industrial
traffic compared to standard IT networks [2], which is a key
issue for the learnability of network data.

We identify one-class support vector machines (OCSVM)
[3] as the most promising machine learning concept for this
task. For this reason, we investigate in the application of
OCSVM in order to implement a feasible self-configuring
anomaly detection. The main contributions of this paper are:
(1) We measure the quality of OCSVM models that can be
constructed from industrial traffic traces by use of only a few
packet attributes to show the learnability of industrial traffic
for a self-configuring anomaly detection using OCSVM. (2)
We compare the detection results using different mappings of
packet sequences to OCSVM feature vectors for identifying
the most promising modeling for practical use.

The remainder of the paper is organized as follows: In
Section II we reason the choice of OCSVM for anomaly detec-
tion in industrial networks and emphasize the main questions
towards an efficient mapping of industrial traffic to OCSVM
feature vectors. After a presentation of the datasets used for
the experiments in Section III, we explain in Section IV the
different types of mappings applied for training and validation
of several OCSVM models as well as the evaluation criteria
used. These criteria are measured in a series of experiments,
whose results are presented in Section V. After putting our
work in the context of other research in Section VI, we
conclude with an outlook on future research in this field.

II. APPROACH AND EXPERIMENTAL QUESTIONS

In this section, we reason the choice of OCSVM as machine
learning concept and introduce our approach for an anomaly
detection in industrial networks. We then work out associated
questions that shall be answered by experiments.

A. OCSVM for Network Anomaly Detection
The concept of OCSVM is an important machine learning

approach for one-class classification. We have chosen it for
practical and theoretical concerns.

1) Practical Concerns: One-class classification is used for
two-class problems in which only one of the two classes can
be described well. The aim is to distinguish between a set of
training objects, in our case instances of normal traffic, and
all other possible instances as outliers, in our case anomalous
traffic samples. The resulting outlier detection (or novelty
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detection) is in our context used for anomaly detection. From
a practical perspective we look for a one-class classification
method, since we aim to develop an intrusion detection method
for which no sample of attacks or other anomalous traffic is
needed. This characteristic is crucial for a feasible intrusion
detection in industrial networks, where both almost no attack
data is available and experiments with artificial malicious
traffic in these constrained installations are unimaginable.

2) Theoretical Concerns: One-class classification methods
can be categorized according to the use of one of the fol-
lowing principles: density estimation, reconstruction, or direct
boundary estimation.

Density Methods. These methods depend on an estimation
of the target class to be learned, i.e., in our case instances
describing normal network traffic. This requires both a density
estimate for the complete feature space and the training set
to be a typical sample from the true data distribution. Our
approach shall work well without extensive knowledge about
the normal traffic’s characteristics and especially in absence
of examples of concrete attacks or other anomalous traffic.
Consequently, the application of density methods, such as the
Gaussian model [4] or a Parzen density estimator [5], is not
suitable for our approach.

Reconstruction Methods. They rely on the assumption that
outlier objects do not satisfy the distribution characteristics of
the training objects. The compression methods applied to a
test object involve a reconstruction error. This error is used
as a distance to the trained class and test objects with high
reconstruction error are classified as outliers. Reconstruction
methods usually depend on a comparatively high number of
user-defined parameters that are not intuitive beforehand. For
instance, a poor choice of the number of hidden units and
learning rates in auto-encoder [6] and diabolo networks [7]
can lead to a large bias for a certain problem causing the
methods to become useless. Consequently, we initially look for
a method with less configuration effort. Additionally, another
important criterion that many reconstruction methods do not
fulfill is the robustness against outliers in the training data.
Among these methods are the principal component analy-
sis (PCA) [4], k-means clustering [4], self-organizing maps
(SOM) [8], and learning vector quantization (LVQ) [9].

Boundary Methods. The aforementioned methods model
various characteristics of the training data in order to derive
distance or resemblance measures for outlier identification. For
our purpose, however, we just need a clear distinction between
normal and anomalous traffic samples without the need (and
effort) for accurately modeling the normal traffic itself. Fortu-
nately, there are methods that can directly calculate a boundary
around the training set, i.e., the normal traffic samples. Among
these boundary methods are the k-centers method [10], the
data description based on nearest neighbor distances (NN-d)
[11], the support vector data description (SVDD) [11], and
one-class support vector machines (OCSVM, ν-SVM) [12].
Whereas SVDD finds a boundary around the training set,
OCSVM determines a hyperplane that separates the training
set from the origin with maximal margin. Both approaches
give similar results. If the data is preprocessed to have unit
norm, they are even identical [11]. For our approach, we need a
method that is robust against outliers in the training set since

we cannot completely preclude the existence of anomalous
packets and packet sequences in the learning traffic captured
from an industrial site. OCSVM and SVDD are the most
promising methods, because they show this robustness more
than other boundary methods, such as the k-centers method
and the NN-d [11]. Due to the similarities of OCSVM and
SVDD results, we decided for one of the methods. We chose
OCSVM because powerful implementations are available [13].

B. Our Approach

The idea of using OCSVM for learning normal traffic of
an industrial network is depicted in Figure 1. Listening on
a network interface, such as the mirror port of a switch,
relevant features of each packet k are extracted by a so-
called deep packet inspection (DPI) module and converted to
a numerical representation, i.e., the feature vector of packet k.
For modeling sequences of packets, this single-packet vector
is used to form a larger vector describing the features and
the sequence of multiple packets. These n-packets vectors,
in case of monitoring sequences of n packets, can then be
used as feature vectors for the construction of an OCSVM
model describing normal traffic of the monitored industrial
network segment. After learning normal traffic in the training
phase, the trained OCSVM model is then used in the anomaly
detection phase for the decision whether packet sequences seen
are normal or anomalous. Since we aim at a protocol-specific
monitoring, our approach requires an analysis of the intended
industrial protocols regarding packet structure and common
packet sequences. However, the more effort is put into this
aspect of the learning, the less tuning of the learning is later
required when the detector shall be deployed in real networks.
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Fig. 1: Schematic depiction of the learning approach

C. Experimental Questions

As with all learning-based methods, the success of our
detection approach is heavily dependent on the adequate
representation of training and validation data. Thus, the main
questions regarding the appropriate modeling of industrial
network traffic shall be answered by the help of a set of
experiments. One objective of the experiments is to find an
adequate representation of sequences of packets. The smallest
context of a network communication can be modeled by a
previous and a next packet. Since in other machine learning
applications 4-grams have outperformed 3-grams [14], like-
wise the modeling of sequences of four packets may result
in better detection accuracy than learning sequences of three
packets. Another experimental objective is the modeling of
communication relations between network devices. Usually, a
network’s traffic involves numerous of such communication
relations. According to the idea of flow analysis in the field

84



of network security, one can assume that a communication-
specific mapping of packet sequences allows a more precise
modeling of the traffic seen. The experiments shall help to
measure a positive effect, if present. Finally, two remaining
techniques to distinguish are time-independent versus tem-
poral mapping. Whereas packet sequences can be mapped
to n-packets vectors without any time constraints, temporal
mappings only consider packet sequences whose duration (i.e.,
timestamp of first packet to timestamp of last packet) is within
a certain time limit. To sum up, the main three questions
answered in this paper are the following:

• Does learning sequences with different network packet
counts result in a better/worse detection capability?

• Is the detection capability higher if packet sequences are
learned separately for each communication relation or is
a learning among all relations sufficient?

• Is there a significant difference in learning the sequences
with and without temporal limits?

III. DATASETS

The network traffic we have used for our experiments is
taken from three network segments of two industrial sites.
Each network segment consists of human-machine interfaces
(HMI), programmable logic controllers (PLC), and peripheral
devices cooperating for monitoring and controlling a complex
and permanent automation process. The three datasets have
the following characteristics:

MoveA. The first trace of network data origins from a
movable system consisting of 104 network devices. 1

MoveB. The second trace is taken from another segment
of the same industrial site. This is similar in size but has,
compared to the first segment, only half the packet rate, i.e.,
the number of packets transmitted within a second. Both traces
serve as examples for complex industrial network segments
that significantly differ in the packet rate.

Carrier. The last dataset is taken from a system which
is, compared to the previous traces, very different in size
(18 network devices) and purpose. The source is a flexible
lignite conveyer system situated in an open-face mine used
for bridging the way between the excavator and long-distance
vehicles transporting the lignite out of the mine. That trace
is used to show that a self-configuring anomaly detection is
suitable even for small industrial networks.

For a consistent analysis the same industrial protocol is
monitored in each trace, namely PROFINET IO. This pro-
tocol serves as an example for a standardized, Ethernet-
based industrial control protocol that is the first choice for
important automation vendors. Another argument for using
this protocol is the existence of known vulnerabilities and
protocol-level attacks, such as Man-in-the-Middle and Denial-
of-Service attacks [15], [16], [17]. These can be used for
future evaluation of the detection approach towards real-world
attacks. The characteristics of the PROFINET IO (PN) traffic
in the datasets are listed in Table I.

1Due to demands of the vendors and network owners we cannot provide
more information here. Since the abstract automation task has low influence
on the traffic characteristics at protocol level in general, it is also not relevant
for the results of this paper.

TABLE I: Characteristics of the datasets

MoveA MoveB Carrier

size [MB] 6,765 2,800 3,300
duration [min] 98.56 40.13 47.27

# PN packets [103] 70,988 14,890 13,959
# PN packet rate [pkts/s] 12,005 6,186 4,922

# PN devices 104 107 18
# PN comm. relations 111 107 18

# PN message types 5 5 4

IV. METHODOLOGY

This section explains the mapping types applied for trans-
ferring network data to feature vectors, the criteria used to
evaluate the learning success, and the composition of the
validation sets.

A. Mapping Types
For answering the questions posed in Section II-C, each

dataset is mapped to OCSVM feature vectors in multiple ways.
Each mapping is characterized by the choice of three mapping
attributes: (1) the number of packets mapped together; (2)
whether communication relations are regarded; (3) the applied
time limit while mapping, if defined. These attributes with
chosen values are explained in the following.

1) 3-Packets Vectors versus 4-Packets Vectors: As moti-
vated in Section II-C, sequences of three and four packets
are investigated. A vector describing a sequence of n packets
is built by concatenating n subvectors built from the n single
network packets. The mapped data of each network packet are
the addresses of the sending and the receiving device and the
PROFINET IO message type. Defining a maximum number of
devices and by matching addresses to device IDs, all packet
data can be treated as categorical features. Thus, each of
the three packet attributes can be mapped to a numerical
representation by constructing a k-dimensional vector v whose
values at position i ∈ {1 . . . k} are defined as

v(i) =

{
1, feature value is of the i-th category

0, otherwise
. (1)

Given a maximum number of d ∈ N network devices
in the monitored segment and t ∈ N different PROFINET

IO message types, a sequence of n ∈ N packets, each
described by the 3-tuple (source device ID, destination de-
vice ID, message type ID) is mapped to a binary feature
vector of dimension n × (2d + t) ∈ N. In terms of dataset
MoveA, for instance, with 104 network devices and 5 different
message types 4-packets feature vectors require a dimension
of 4× (2× 104 + 5) = 852. This kind of vector construction
takes both the packet content and the packet order into account.
More information of mapping categorical features can be
found in [18].

2) Global Vectors versus Communication Vectors: The de-
cision whether packet sequences are considered separately for
each communication relation determines the choice of the
context that is mapped with each network packet. Without
distinction of communication relations, each n-packets vector
is built from the last n packets seen in the network segment
without regard to the source or destination device of the
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packets. These n-packets vectors describe packet sequences
across all communication relations and are further referred to
as global vectors. If packet sequences are mapped separately
for each communication relation, in contrast, each n-packets
vector is built from the last n packets exchanged between
the respective pair of network devices. This kind of vectors
are onwards named communication vectors. Investigating the
global mapping is eligible, because industrial communication
on field level is highly cyclic with mainly deterministic proto-
col behaviour among predefined sets of devices compared to
communication on higher industrial levels or standard IT net-
works. In contrast, communication vectors may better model
the individual characteristics of communication relations.

3) Time-independent Vectors versus Period Vectors: Except
for the packet order, the construction of multi-packets vec-
tors does not take any temporal characteristics into account.
The idea of enriching the training of OCSVM models by
temporal traffic aspects led to the idea of period vectors. A
period vector contains information about all packet sequences
seen in a defined interval, e.g., three seconds. Given the set
S = {v1, v2, . . . vm},m ∈ N of n-packets vectors derived
from all the sequences of n packets seen while analyzing a
dataset, each period vector p is of dimension |S| = m and
each position i ∈ {1 . . .m} is defined as follows:

p(i) =

{
1, vector vi has been seen in the current period

0, otherwise
(2)

The intervals for composing period vectors are one and three
seconds. The aim is to find out whether the use of OCSVM
with period vectors results in better models and whether
the choice of the period duration significantly influences the
learning success. The combination of these criteria for each
trace results in twelve mapping types applied to the network
data to build feature vectors. For example, one mapping con-
structs period vectors by mapping all communication-specific
3-packets vectors seen in an interval of three seconds, another
mapping just maps all sequences of four packets across all
communication relations and without any time limits.

B. Evaluation Criteria

In order to evaluate the quality of the OCSVM models
constructed by the several mapping types we measured various
criteria. These are explained in the following by use of the
following terms. The training set (T ) consists of 50% of the
vectors constructed from the respective normal dataset and is
used for training the OCSVM model. The validation set (V )
is a set with the other half of normal vectors complemented
by vectors derived from the related anomalous dataset.

1) Cross Validation Rate: The measure of k-fold cross
validation denotes the partitioning of a training set into k ∈ N

complementary subsets of an equal number of vectors and k
rounds of validating each subset by an OCSVM model that
has been trained beforehand using the k − 1 other subsets.
The resulting cross validation rate is the mean of all k results
of the k cross validation rounds. The cross validation rate is a
procedure to assess the ability of a model to extrapolate from
the training set to unseen data without the need of a validation
set. It answers the following question: Can the mapping type
applied to the respective dataset produce vectors that prevent
an overfitting of the OCSVM model while learning?

2) True-negative Rate: In our context of network intrusion
detection the focus is on finding intrusion instances, i.e.,
anomalous network data. Consequently, anomalous data is re-
ferred to as positives while normal network data is interpreted
as negatives. The true-negative rate (nt), the ratio of normal
vectors that are classified as such by the learned model to
the number of all normal vectors, are determined for both
the training and the validation set. This measure has to be
sufficiently high, because the higher the true-negative rate the
lower the false-positive rate pf = 1−nt and so the lower the
rate of false alarms for our intrusion detection approach.

3) True-positive Rate (Recall): This measure is determined
for the validation set only and represents the ratio of anoma-
lous vectors that are classified as anomalous by the learned
model to the number of all indeed anomalous vectors in
the validation set. This measure is associated to the concept
of false negatives, i.e., anomalous packet sequences that are
classified as normal using the OCSVM model: the higher the
recall the lower the false-negative rate and so the amount of
undetected anomalous traffic.

Based on these basic numbers, we finally calculated the
more complex measures precision and balanced f-score for
each model in order to identify the best models.

C. Validation Sets
Each validation set is a composition of half of the normal

vectors derived from a normal dataset and all anomalous vec-
tors derived from anomalous traffic. A drawback of using real-
world network traffic from productive industrial installations
is the lack of possibilities to produce malicious network data,
such as packets containing anomalous data or Man-in-the-
Middle and Denial-of-Service attacks. Especially in highly
tailored industrial sites, like the data sources of this work,
slightly altered traffic can cause the outage of industrial
devices that may lead to physical damages in the network.

While for dataset MoveB the operators explicitly performed
unusual actions to provoke anomalous network traffic, the
datasets MoveA and Carrier do not contain anomalous
traffic. Here, anomalous vectors are derived from foreign
traffic. Due to the equal device number and purpose of the
source segments of MoveA and MoveB, the OCSVM model
learned from dataset MoveA is validated with the help of all
vectors derived from MoveB, that have not been constructed
before from the normal dataset. (If two networks N1 and N2

use a similar local address space, it is possible that a packet se-
quence from network N1 results in the same vector as a packet
sequence from network N2. The applied procedure eliminates
these vectors from the designated anomalous vector set V2

constructed from N2, since as part of the normal dataset N1

these vectors are already defined as normal.) In the same way,
the model constructed from the dataset Carrier is tested
with data from a foreign, completely different installation.

We argue that this procedure is legitimate to assess the learn-
ability of normal traffic in industrial sites. If the ability is high
to recognize foreign traffic (packets and packet sequences) as
not normal for the local network, this also indicates a good
anomaly detection capability (recall) of the learned model
regarding the attacks presented in [17], especially if this meets
a high true-negative rate and precision of the model.
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V. EXPERIMENTAL RESULTS

In this section, we describe the composition of our experi-
ments and discuss the results of the application of several
learned OCSVM models to the datasets.

A. Experimental Procedure
We set up three main experiments, each representing a

different scenario. In each experiment one of the datasets
introduced in Section III is used as normal industrial network
traffic for deriving a set of normal vectors (N ) for the training
and validation set. The validation set is enriched with a set
of anomalous vectors (A) derived from another dataset, as
explained in Section IV-C.

Experiment 1: In the first experiment, the set of normal
vectors N is derived from MoveA. For the generation of the
set of anomalous vectors A the dataset MoveB is used, that is
taken from the same industrial installation but from a different
network segment. The traffic of both segments mainly differ
in the packet rate. This experiment is to demonstrate how well
strongly related network traffic can be recognized as foreign
traffic in a monitored network segment.

Experiment 2: This experiment takes one part of MoveB
as normal traffic for composing set N and another part of
MoveB containing anomalous network traffic from the same
segment for derivation of set A. Hence, this setting is the one
with the most fine-grained anomalies. It serves as example
for a scenario, in which the success of the anomaly detection
is measured on network data from the same segment with
identical, but anomalously operating devices.

Experiment 3: In the last experiment, set N is derived from
dataset Carrier. The set of anomalous vectors is generated
from a simulated PROFINET IO network of equal size and
similar PROFINET IO cycle time. Aim of this experiment is to
prove that a self-configuring anomaly detection using OCSVM
is also applicable for small industrial networks.

We applied the mapping types, explained in Section IV-A,
to the datasets of each experiment. In each case, this led to
twelve different sets of training and test vectors: four sets
of time-independent multi-packets vectors (communication-
specific as well as global 3- and 4-packets vectors), four sets
of period vectors for a period of three seconds and another
four sets for a period of one second. The resulting numbers
of OCSVM vectors can be found in Table II. As described
in Section IV-C, half of the normal OCSVM feature vectors
are used for training and the other half for validation together
with all anomalous vectors.

In order to perform a systematic search for an expres-
sive model in each experiment, the vectors of each map-
ping have been used to train various OCSVM models. We
used four different kernels: linear, polynomial, radial ba-
sis function (RBF), and sigmoid with kernel parameters
γ = ((1/n), 2−15, 2−13, . . . 23) with n as the number of train-
ing vectors and ν = (0.01, 0.02 . . . 0.09, 0.1, 0.2 . . . 0.9, 1).
This resulted in 646 different OCSVM models tested in each
experiment for each of the twelve mapping types. Next, the
cross validation rates for two and five complementary subsets
of the training set, the true-negative rates for the training and
validation set as well as recall, precision, and balanced f-score
have been calculated for every model (cf. Section IV-B).

B. Discussion

The application of the described mapping types on a high
number of monitored packets leads in general to a compara-
tively very low number of different OCSVM feature vectors
(cf. Table II). This fact proves the expected homogeneity of
industrial traffic that can be explained as follows: Compared
to standard IT networks, industrial networks are characterized
by a strict setup of devices, communication relations, and
data exchanged. This leads to constantly recurring packet
sequences between devices transferring data in a well-defined
range. Hence, a small number of different packet sequences
is seen compared to the number of packets in each dataset.
For a communication relation, the homogeneity is particularly
high because mapping the datasets to communication vectors
generally produces even smaller sets of vectors compared to
the global mapping. In case of experiment 1, the number
of global 3-packets vectors is higher by factor 232 and the
number of 4-packets vectors by factor 317 than the commu-
nication vectors. From the homogeneity of the traffic traces is
concluded that a longer training over larger datasets would be
unlikely to lead to better models, i.e., the necessary duration of
a training phase is usually well bounded by the homogenous
nature of the traffic. Due to the construction of period vectors
(cf. Section IV-A), the dimension of each period vector is the
total number (Σ) of the n-packets vectors of the mapping type.

The outcome of the experiments is summarized in Table III.
For each experiment, the best model learned for each mapping
is indicated. On the upper half of the table, the results for
the direct mappings of three and four packets to feature
vectors are listed, i.e., communication (com 3 and com 4) and
global vectors (global 3 and global 4). On the bottom half,
the results using period vectors summarizing the n-packets
vectors seen in a time frame of three seconds are shown
analogously. The presentation of the results of period vectors
for one second is omitted since no noteworthy differences can
be observed to the three-seconds equivalent. We define the best
model as the one with a good precision as first priority and
a comparatively good recall (both combined in the f-score),
because a low false-positive rate is the absolute prerequisite for
a real-word detector regardless of its quality in terms of recall.
The provided cross validation rate is the minimum reached
with two and five groups. The results of the best model are
provided with information about the used OCSVM parameters.
We discuss the results by means of the initial questions of
Section II-C.

Length of Packet Sequences: The results show that the
mapping of sequences of four packets (time-independent as
well as period vectors) does not necessarily lead to better
models, i.e., models with significantly higher precision and
f-score. In one case (s–t), precision and recall are even about
6% respectively 11% lower for n = 4 than for the 3-packets
equivalent. Thus, we probably will not further investigate in
the mapping of four network packets. Instead, we will focus on
the modelling of the minimal context of packets as 3-packets
vectors in next refinements of our protocol-specific detection.

Benefit of Communication-specific Learning: Noteworthy
differences between global and communication-specific map-
pings can only be observed for experiment 2 (e–h,q–t).
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TABLE II: Vector sets

experiment 1 experiment 2 experiment 3

normal anomal. Σ normal anomal. Σ normal anomal. Σ

# packets 71573687 29785627 101359314 14950136 14835491 29785627 14112831 3691633 17804464
# PN packets 70988226 29668927 100657153 14890492 14778435 29668927 13959719 3599837 17559556

n-packets vectors

com 3 3998 584 4582 810 1853 2663 393 157 550
com 4 7218 1280 8498 1592 2505 4097 619 215 834

global 3 920469 146449 1066918 154322 120813 275135 11415 757 12172
global 4 2236125 463113 2699238 271129 243729 514858 39907 1602 41509

period vectors (3 seconds)

com 3 1860 580 2440 284 298 582 846 38 884
com 4 1864 588 2452 290 299 589 871 69 940

global 3 1869 671 2540 321 352 673 929 508 1437
global 4 1869 673 2542 321 352 673 929 529 1458

period vectors (1 second)

com 3 5278 888 6166 471 419 890 1199 46 1245
com 4 5303 853 6156 448 406 854 1286 89 1375

global 3 5327 1921 7248 942 980 1922 2821 1233 4054
global 4 5326 1920 7246 942 979 1921 2821 1373 4194

TABLE III: Experimental results

training set validation set model parameters

experiment mapping %precision %f-score %crossval %true neg. %true neg. %recall kernel ν γ

n-packets vectors

1

com 3 75.05 44.55 89.55 90.30 88.64 31.68 sigmoid 0.1 0.5 (a)
com 4 73.62 42.87 70.13 99.72 78.61 30.23 polynomial 0.04 8 (b)

global 3 69.45 33.42 90.06 90.38 90.26 22.00 polynomial 0.1 0.01 (c)
global 4 69.25 34.45 85.20 92.15 87.48 22.93 RBF 0.01 0.5 (d)

2

com 3 91.23 94.89 81.73 94.57 86.42 98.87 sigmoid 0.01 0.125 (e)
com 4 91.71 95.36 87.56 95.23 86.81 99.32 sigmoid 0.1 0.125 (f)

global 3 61.53 64.97 35.97 72.46 41.51 68.81 RBF 0.03 0.5 (g)
global 4 61.40 64.98 35.32 71.81 41.45 69.00 RBF 0.3 0.5 (h)

3

com 3 99.74 97.93 94.92 99.49 100 96.18 sigmoid 0.01 2 (i)
com 4 99.04 99.52 96.45 98.71 99.35 100 sigmoid 0.03 2 (j)

global 3 99.20 99.60 98.79 99.19 99.19 100 sigmoid 0.01 2 (k)
global 4 99.09 99.54 99.09 98.98 99.18 100 sigmoid 0.01 0.125 (l)

period vectors (3 seconds)

1

com 3 98.83 99.41 98.17 99.25 98.39 100 RBF 0.01 1/|T | (m)
com 4 98.52 99.26 98.07 98.28 98.71 100 RBF 0.01 2−11 (n)

global 3 98.32 99.15 97.97 97.97 98.61 100 sigmoid 0.02 2−5 (o)
global 4 98.31 99.08 95.62 98.29 98.29 99.85 sigmoid 0.01 2−7 (p)

2

com 3 85.12 58.27 58.45 100 84.51 44.30 polynomial 0.02 8 (q)
com 4 86.58 58.77 66.21 99.31 86.90 44.48 polynomial 0.04 2−5 (r)

global 3 82.53 46.52 77.64 93.17 93.13 32.39 sigmoid 0.03 2−7 (s)
global 4 76.51 33.33 82.61 93.17 93.75 21.31 sigmoid 0.02 2−7 (t)

3

com 3 97.69 98.83 92.91 98.35 96.93 100 RBF 0.01 2−13 (u)
com 4 96.56 98.25 94.50 97.48 95.40 100 RBF 0.01 2−13 (v)

global 3 99.36 99.68 98.93 98.71 100 100 sigmoid 0.01 2−5 (w)
global 4 99.25 99.63 99.79 98.93 99.57 100 sigmoid 0.01 0.125 (x)
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Here, the precision, recall and f-score for time-independent
communication-specific learning (e,f) are each about 30%
higher than for global learning (g,h). Concerning the period
vectors of experiment 2, the difference is less and most obvious
for recall and f-score for four packets (r,t) being 23-25%
higher for the communication-specific vectors. In the other two
experiments, communication-specific and global learning lead
to similar results. Here, a distinction on communication level
does not enhance the quality of the learned model. Only the
less number of communication vectors may be an advantage.

Temporal Learning: In experiment 1, in which the training
and the validation dataset mainly differ in the packet rate,
period vectors clearly outperform the time-independent multi-
packets vectors in all measured criteria. Thus, period vectors
seem to be powerful for detecting attacks that lead to a change
in the number of different packet sequences seen in a time
frame. We will further investigate this issue. The choice of
one or three seconds as a period has no observable effect to
the quality of the found models. The less number of three-
seconds period vectors compared to the one-second equivalent
militates for the application of the longer period.

OCSVM Configuration: It is obvious that three of the four
tested kernel types provide the best model for at least four
mappings. The linear kernel is not present. In over half of
the cases (13/24), a model constructed with a sigmoid kernel
is the best. However, one can also conclude that if the kernel
parameters are well chosen, OCSVM-based anomaly detection
in industrial networks can work with several kernels. For our
monitoring data, i.e., sequences of packets with source and
destination address and the PROFINET IO message type, the
choice of the OCSVM kernel obviously plays a minor role for
finding models of good quality. Mapping further payload data
in future investigations in order to monitor application data
may emerge the explicit suitability of a kernel.

In general, the quality of the constructed OCSVM models
(expressed by the balanced f-score) is in 12 of 24 cases over
97%. In ten of these cases the recall is 100% with over
96% precision and a true-negative rate of more than 95%.
We conclude from the combination of these high values that
a model is found with high detection accuracy not being
overfitted to the training data and that is at the same time
capable to recognize the training data itself as normal (true-
negative rate for the training set). This fact is crucial for
industrial networks because a good capability to reason from
learned normal traffic to unseen normal traffic is worth little if
normal traffic of the training phase is not recognized as normal
anymore in the detection phase (indicated by a low true-
negative rate for the training set). We consider the mentioned
twelve cases as evidence of the good learnability of industrial
traffic for a self-configuring anomaly detection using OCSVM.
Nevertheless, in industrial networks with huge packet rates,
the missing of only 1% in the true-negative rate can result in
an unacceptably high number of false positives (false alarms).
Here, combining multiple models by a voting algorithm could
further reduce false-positive rates.

VI. RELATED WORK

Due to their homogenous traffic, industrial control networks
are predestined for the use of anomaly detection methods,

which is subject of a few related approaches. They can be
categorized based on the source of data used for feature ex-
traction: process-based, packet-based, and hybrid approaches.

Process-based anomaly detection does not analyze packet
data and relies only on process data. The detection process
in [19] applies pattern matching. It combines Autoassociative
Kernel Regression for model generation with a binary hypoth-
esis technique, called Sequential Probability Ratio Test, during
detection. The proposed kind of model generation, however,
relies on the assumption that security violations are reflected
by a change in the system usage, which is subject of the
monitoring. This obviously limits the detection capability. In
[20] and [21] contributions to a state-based IDS are presented.
The system performs anomaly detection based on a decision
whether the monitored system enters a critical state. For this
purpose, a central virtual image of the physical state of the
whole system is set up and periodically updated. Another
approach [22] also considers process data. Here, fuzzy C means
are used to find process data anomalies caused by sensor
failures, communication interruption, or storage exception.

Packet-based approaches rely on packet data. The authors
of [23] also focus on n-gram anomaly detection, in which
each gram refers to the attribute extraction from a network
packet. In [24] a back-propagation algorithm is used to build
the neural network for a network-based intrusion detection
system. Although these approaches provide relevant contribu-
tions, both are based on supervised learning that depends on
labeled input data, i.e., requires normal as well as attack data.
A further machine learning algorithm (Self-Organizing Maps)
is used in [25]. Although application-payload-based features
are seen to be an accurate mean to monitor the sanity of
industrial environments [26], the approach only uses features
extracted from traffic up to the transport layer (e.g., number
of TCP and UDP connections, duration of connections, sent
and received amount of data). The multi-agent IDS presented
in [27] also relies on transport layer features. Unfortunately,
general datasets not referring to industrial traffic are used for
evaluating the detection accuracy.

Hybrid approaches use packet data and other process or
system data. The algorithm in [28] uses deep packet inspection
and estimates if a network packet has anomalous effect on
a memory variable of an industrial device. This approach,
however, requires both detailed understanding of the industrial
protocol and extensive knowledge about the RAM variables
of all PLC of the ICS. The approach presented in [29] uses
Dempster-Shafer’s Theory of Evidence for data-fusion-based
anomaly detection. The authors aim to extract features from
different sources of information, such as control hardware and
physical sensors as well as signature-based and other intrusion
detection programs. Thus, an operation seems at first level of
detection to rely on data provided by extern sensors.

All of the aforementioned approaches are to some extent
highly process-specific, but in the same time leave out any
details about the used application protocols. Malware, such as
Stuxnet [1], indicates that attacks on industrial environments
are targeted, i.e., specially tailored to the target system.
We doubt that the suggested methods can detect misuse of
application protocols as described for PROFINET IO [15], [16],
[17] or Modbus [30], [31], [32].
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VII. CONCLUSION AND FUTURE WORK

The use of machine learning techniques for monitoring
industrial installations is a very promising field. Many papers
only discuss the application of methods. However, learning
methods have to be evaluated on real-world data from early
stage in order to successfully identify suitable methods. We
focus on the development of a self-configuring, network-based
and protocol-specific anomaly detection for industrial environ-
ments. Since we have identified OCSVM as a promising learn-
ing method, we measured in this work the quality of numerous
OCSVM models trained by various mappings of multiple real-
world industrial traffic traces. In contrast to existing methods,
we discussed and evaluated different methods of mapping
packet sequences of industrial traffic to machine learning
vectors. Although the monitored packet data is limited to a few
data of the example industrial protocol, OCSVM models with
high quality in terms of balanced f-score, precision, and recall
have been identified. After these promising preliminary results
of our protocol-specific anomaly detection approach, we plan
to extend the learned features by further payload information
in order to guarantee an acceptable false-positive rate even in
industrial sites with high data load.
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