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Abstract— Many computer vision tasks require the 
implementation of robust and efficient target tracking 
algorithms. Furthermore, in robotic applications these 
algorithms must perform whilst on a moving platform 
(egomotion). Despite the increase in computational processing 
power, many engineering algorithms are still challenged by real-
time applications. In contrast, lightweight and low-power flying 
insects, such as dragonflies, can readily chase prey and mates 
within cluttered natural environments, deftly selecting their 
target amidst distractors (swarms). In our laboratory, we record 
from ‘target-detecting’ neurons in the dragonfly brain that 
underlie this pursuit behavior. We recently developed a closed-
loop target detection and tracking algorithm based on key 
properties of these neurons. Here we test our insect-inspired 
tracking model in open-loop against a set of naturalistic 
sequences and compare its efficacy and efficiency with other 
state-of-the-art engineering models. In terms of tracking 
robustness, our model performs similarly to many of these 
trackers, yet is at least 3 times more efficient in terms of 
processing speed.  

I. INTRODUCTION  
Many target tracking algorithms have been developed over 

the last decade for a diverse range of applications, e.g. 
surveillance, human assistance robots, wildlife monitoring and 
smart cars. An ideal visual tracker accounts for different 
problems such as illumination changes, rapid changes in target 
appearance, non-smooth target trajectories, occlusion and 
background clutter. Many engineering methods developed for 
target tracking simplify these scenarios, ensuring a more 
tractable tracking problem. Moreover, these methods involve 
complex computation (e.g. particle filters), that require large, 
high-powered processors. Consequently, these solutions are 
often impractical in real-time applications, particularly where 
probability is desirable. These issues highlight the need for an 
alternative and more efficient approach to solving at least a 
subset of the target tracking problems.  

Studies of insect visual systems suggest there is a solution 
contained within a ‘simple’ neuronal architecture (~ 1 million 
neurons). For example, the dragonfly is a remarkable aerial 
predator which detects, selects and then chases prey or mates 
within a visually cluttered surround even in the presence of 
other distracting stimuli, such as swarms of prey and 
conspecifics [1], [2]. The dragonfly performs this task despite 

its light-weight and low-power brain and its low-resolution 
visual system (acuity of ~1°). The neuronal algorithms behind 
such a robust and efficient target tracking behaviour (the envy 
of engineers) is currently being elucidated by our lab and other 
neuroscientists in the field.  

Our approach to engineering a solution to this target 
tracking problem is to model the neuronal pathway that 
underlies the dragonfly pursuit behaviour. We record from 
‘small target motion detector’ (STMD) neurons of the insect 
lobula in response to different visual stimuli. These neurons are 
size selective, velocity tuned, contrast sensitive, and respond 
robustly to small moving targets even in the presence of 
background motion [3-6]. Inspired by such 
electrophysiological recordings from STMD neurons, we 
previously developed an algorithm for local target 
discrimination [7]. This ‘elementary’ small target motion 
detector (ESTMD) model provides nonlinear spatiotemporal 
matched filtering for small moving targets embedded in natural 
scenery [7]. Recently, we elaborated this model to include the 
recent observations of response ‘facilitation’ [8,9] (a slow 
build-up of response to targets that move on long, continuous 
trajectories) [10-14]. We implemented this elaborated model in 
a closed-loop target tracking system that uses an active 
saccadic gaze fixation strategy inspired by insect pursuit 
behaviour [10-14]. Using this closed-loop model we showed 
that facilitation improves the robustness of pursuit [14]. We 
also investigated the effect of different environmental variables 
(background clutter, target contrast, target velocity) and model 
parameters (spatial and temporal components of facilitation) on 
pursuit success. Our model predicted an optimal, dynamic 
behaviour for a temporal component of facilitation that was 
dependent on background clutter [14]. 

Although our model showed robust performance in a 
constrained virtual-reality environment, natural conditions 
such as illumination changes, local flicker and target occlusion 
could affect model behaviour. In this paper we test the 
robustness of our model in open-loop, using videos recorded 
from natural scenes [15]. This allows us to compare the 
processing speed and tracking performance of our insect-
inspired model with several state-of-the-art engineering 
algorithms. 
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Figure 1 A single frame ‘snapshot’ of the videos [15] used to test both the performance of our insect-inspired model as well as other previously published 
tracking models [23-28]. 
 

II. METHODS 

A. Dataset 
We used 15 different image sequences downloaded from a 

publicly available dataset [15]. These sequences had different 
lengths ranging from 80 to 3000 frames (with an average of 
558 frames). Fig. 1 shows a snapshot of these videos at the 
midpoint of each sequence. All of these videos included 
camera motion. 

B. Insect-Inspired Target Tracking Model 
Fig. 2 shows an overview of the insect inspired target 

tracking model implemented in MATLAB. The optics of insect 
compound eyes are limited by diffraction of the facet lenses 
[16]. We modelled this optical blur with a Gaussian function of 
full-width at half maximum of 1.4° [16]. We selected only the 
green channel of the RGB input to simulate the sensitivity of 
typical insect motion sensitive pathways to green light [17]. 
Further sub-sampling was applied to the blurred image to 
model the average inter-receptor angle between photoreceptors 
[18]. In biological systems, early visual processing by the 
photoreceptors themselves and 1st order interneurons remove 
redundant information in space and time, using neuronal 
adaptation and center-surround antagonism. These properties 
of visual system were simulated with spatiotemporal bandpass 
filtering matched to properties observed in insect vision [19]. 

The ESTMD subsystem starts with modelling the response 
properties of rectifying, transient cells as observed in several 
insect species [20, 21] by separating the ON and OFF contrasts 
via temporal high pass filtering (�=40 ms) and half-wave 
rectification [7]. These independent ON and OFF channels 
were further processed through a fast adaptive mechanism. The 
state of adaptation was determined by a nonlinear filter which 
switches its time constant [7, 11]. Time constants are ‘fast’ 
(�=3 ms) when channel input is increasing and ‘slow’ (�=70 
ms) when decreasing. This adaptation state causes subtractive 
inhibition of the unaltered ‘pass-through’ signal. Additionally, 
we implemented strong spatial centre-surround antagonism, 
with each channel surround inhibiting its next-nearest 

neighbours. This strong surround antagonism conveys 
selectivity for local edge features. Sensitivity to both dark and 
light targets was provided by multiplying each contrast channel 
(ON or OFF) with a delayed version of the opposite polarity 
(via a low-pass filter, �=25 ms) and then summing the outputs 
[12-14]. The neuron-like soft saturation of each resulting 
ESTMD was modeled with a non-linear saturation using a 
hyperbolic tangent function. This serves to ensure all signals lie 
between 0 and 1. A simple form of the competitive selection 
observed in dragonflies [2] was modeled by choosing the 
maximum ESTMD output as the target location. 

The slow build-up of facilitation as observed in several 
dragonfly STMD neurons [8,9] permits the extraction of the 
target signal from noisy (cluttered) environments. This 
facilitation mechanism was modeled by building a weighted 
‘map’ dependent on the location of the winning feature but 
shifted by the target velocity vector [14]. The directional 
component of this velocity vector was provided using a 
traditional bio-inspired direction selective model; the 
Hassenstein-Reichardt elementary motion detector (HR-EMD) 
[23]. The HR-EMD uses two spatially separated contrast 
signals and correlates them after a delay (via a low-pass filter). 
Additionally, the output of the HR-EMD was segmented into 
three equal intervals to estimate the range of the spatial 
component of the target velocity [14]. We multiplied the 
ESTMD model output with a low-pass filtered version of this 
‘facilitation map’ (Fig. 2). The time constant of this filter 
controls the duration of the enhancement around the predicted 
location of the winning feature. 

C. Benchmarking Algorithms 
To establish the computational efficiency of our insect-

inspired tracker (IIT) model, we compared its performance 
with six recent highly-cited algorithms for which code is 
publicly available. For a fair comparison with respect to 
processing speed we chose MATLAB implementations of 
these algorithms.  
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Figure 2 The overview of the insect-inspired target tracking algorithm. This model is composed of three main subsystems: i) early visual processing, ii) target 
matched filtering (ESTMD) and iii) integration and facilitation of ESTMD outputs. 
 

1- Incremental visual tracker (IVT) [24] proposes an 
adaptive appearance model which stores the latest 
eigenvectors of the target image and deletes the old 
observations. 

2- L1-minimization Tracker (L1T) [25] employs sparse 
representation by L1 to provide an occlusion 
insensitive method. This method ignores the target 
image samples with small probabilities to reduce the 
cost of computation associated with L1 minimization.  

3- Locally Orderless Tracker (LOT) [26] proposes a 
joint spatial-appearance adaptive mechanism to 
calculate the extent of local disorder in the target. This 
allows the algorithm to track both rigid and non-rigid 
targets. 

4- Super Pixel Tracker (SPT)  [27] embeds a 
discriminative classifier in super pixel (group of pixels 
which have similar characteristics) clustering to handle 
changes in scale, motion and occlusion. 

5- Tracking, Learning and Detection (TLD) [28] is 
ranked as one of the most resilient available trackers. It 
combines a discriminative learning method with a 
detector and an optical flow tracker.   

6- Compressive Tracking (CT) [29] proposes an 
appearance model based on features extracted in the 
compressed domain.  

All models were tested in Matlab (R2012b) on the same PC 
with an Intel i7 3770 CPU (3.4 GHz) and 16 GB RAM. The 
location of a target bounding box in the initial frame was 
provided for the benchmark algorithms. Likewise, in the initial 

frame, we biased our IIT model toward the location of the 
target by allowing the facilitation to build up in the target 
region for 40 ms prior to the start of the experiment. 

III. RESULTS 
Comparing the robustness of different target tracking 

algorithms is a challenging task since different metrics could 
be analysed (e.g. scale, shape representation). Here we limit 
our measure of tracking robustness to correctly locating the 
target position in each frame. We used different metrics to 
compare the robustness of the algorithms as well as the 
processing speed of the trackers. 

A. Success Plot 
The engineering algorithms represent the target with a 

bounding box. Therefore, we scored each frame as a successful 
detection of the target if the center of the bounding box was 
within the ground truth box. Similarly, for our IIT algorithm, if 
the location of the winning feature was within the ground truth 
box it was considered a successful detection of the target.  

Fig. 3 shows the box-and-whiskers plots summarizing the 
success of all 7 trackers for the 15 different test sequences. On 
each box, the central mark is the median success rate, the 
edges of the box are the 25th and 75th percentiles, and the 
whiskers extend to the most extreme data points that are not 
considered outliers (n=15). The IVT algorithm has the highest 
median which shows it was capable of correctly locating the 
target in all frames in half of the sequences. However, the 25 
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percentile and lowest value are at 30% and 5% respectively, 
indicating a lack of flexibility of this model under certain 
circumstances. 

Among all algorithms, TLD performs more reliably under 
different conditions (i.e. it has the highest 25th percentile). 
Unlike our ‘simple’ feed-forward computations, these trackers 
contain several complexities (as described in the method 
section). Despite this difference, the median of our algorithm 
(IIT) indicates a performance on par with these other 
algorithms. Additionally, our model has the lowest inter-
quartile range (distance between the 25th and 75th percentiles) 
showing that our model can perform as robustly as the state-
of-the-art engineering algorithms under different natural 
conditions. 

B. Precision Plot 
The Precision plot is an evaluation method recently adopted 

to measure the robustness of tracking [15, 30, 31]. It shows the 
percentage of the frames where the Euclidean distance between 
the center of the tracked target and the ground truth is within a 
given ‘location error’ threshold. Fig. 4 shows the precision plot 
for all trackers. A higher precision at low thresholds means the 
tracker is more accurate. 

Fig. 4 shows that our algorithm (IIT) has the best precision at 
the threshold of zero. Between thresholds of 0 and 10 pixels its 
precision increases rapidly, however is still below the ultimate 
precision of TLD, L1T and IVT. The main reason behind this 
behavior is likely the size selectivity of our model; i.e., it is 
tuned to small sized objects. Large objects are composed of 
small parts allowing our model to lock on to these sub-features 
of the larger object. The result is effective target tracking, but 
with the location offset from the center of the object. Our 
model’s precision increases, catching up to those of other 
algorithms in the threshold range of 10 and 20 pixels. By a 
location error threshold of 20, our IIT exceeds the precision of 
all trackers except TLD. The precisions at the 20 pixel 
threshold widely used as a performance benchmark in the 
computer vision literature [15], [30], [31] are given as the 
representative precision score in Table I. 

C. Overall Performance 
Table I provides a descriptive summary of performance 

averaged across all 15 videos. In addition to the average 
success rate of the 15 sequences, we also calculated the 
weighted success which shows the percentage of the successful 
frames out of all the 8374 tested frames. This normalization 
accounted for the difficulty of ‘long term’ tracking, where it is 
easier for the trackers to lock on to the target in a short 
sequence than a long one.  

Table I shows that the average success for our model is 
below that of TLD and IVT and close to LOT and L1T. 
However, when it comes to weighted success, our model takes 
second place, indicating very good long term tracking 
performance. Our facilitation mechanism (based on the 
recently observed facilitatory behavior of target-detecting 
neurons [8,9]) builds up slowly in response to targets that move  

Figure 3 Box and whiskers plot for successful target tracking of different 
algorithm for all 15 different image sequences. 

in long continuous trajectories, thus improves target detection 
as tracking progresses. 

D. Processing Speed 
Although comparable in tracking performance, our model 

excels in processing efficiency, a critical concern in target 
tracking applications. Indeed, many trackers are considered 
impractical in real-time scenarios due to their long processing 
duration. Fig. 5 shows the processing speed of the tested 
algorithms, with the IIT exceeding all other trackers (note the 
logarithmic scale). Our model performs approximately 12 
times faster than IVT and TLD and 3 times faster than CT. 

IV. CONCLUSION 
We have demonstrated the robustness and efficiency of a 

target tracking algorithm inspired directly by insect 
neurophysiology. Our data clearly shows that this model can 
perform robustly under natural conditions. Despite the 
relatively simple mechanism we implemented, the robustness  

 

 
Figure 4 Precision plot for all 15 sequences. 
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TABLE I.  SUMMARY OF EXPERIMENAL RESULTS ON THE 15 VIDEO 
DATASET 

Performance 

Measure 

Algorithm 

IIT IVT L1T LOT SPT TLD
CT

Average 
Success (%) 62.7 74.0 63.8 62.2 55.6 74.5 56.6 

Weighted 
Success (%) 73.0 62.3 57.6 34.4 24.6 86.9 48.7 

Precision    
(20 px) 0.53 0.46 0.53 0.01 0.21 0.70 0.50 

  

of our model can compete with the state-of-the-art engineering 
trackers. A limitation of our model is that it was primarily 
designed to detect and track small moving targets. Therefore, it 
only tracks larger objects composed of smaller moving parts 
(within the size tuning range of our model). This limits its 
overall performance robustness compared with the best of the 
engineered trackers (such as TLD). Nevertheless, in terms of 
processing speed, our model outperforms all of the engineering 
trackers, mimicking the remarkable efficiency of the insect 
visual system upon which it is based. As such, it may be well 
suited to applications where efficiency is paramount. 

Here, we tested our algorithm in open-loop, however, 
active vision may be a key to exploiting visual information by 
the simple insect brain for complex tasks such as target 
tracking. Future research will attempt to implement this model 
along with insect active vision system in a robotic platform to 
test the performance of them together under real-world 
conditions.  
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