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Abstract—In aging nation such as Japan, elderly people belong
to the vulnerable group that constantly need healthcare and
monitoring for their well-being. Therefore, an early warning
system for detecting abnormality in their daily activities could
save their life (e.g. heart attack, stroke and etc.). However, such
early warning system must not trigger any false warning signals
in order to robustly operate in real world applications. Robot
interactions with human are useful to prevent false warning
signals from sending out to healthcare worker. Next, the system
should be able to detect short-term abnormal and also long-
term abnormal behaviors of the elderly people within their
normal daily life routine. Therefore, it is important to integrate
informationally structured space with cognitive robot to confirm
the elderly’s abnormal situation with human-robot interactions
before sending out warning signals to healthcare workers. In this
work, we proposed an evolutionary computation based approach
to optimize fuzzy spiking neural network for detecting abnormal
activities in the elderly people’s daily activities.

I. INTRODUCTION

In aging nation such as Japan, according to statistical

research [1], elderly people population percentage will reach

23.8% out of the total population in Tokyo in the year 2015.

Therefore, elderly people’s well-being is a major concern

in such developed nation because large percentage of the

population’s lives are at stake. It is absolute essential to

detect any health-related abnormal symptoms in advance to

inform the healthcare personnel for their further actions. The

reason is, that early warning signals could save the elderly

people’s life. However, such early warning signals should

be accurate and precise so that healthcare personnel can act

correspondingly without wasting their resources. The main

reason is the emergency healthcare personnel resources are

very vital therefore any false warning signals triggered are

not tolerated. It is important not to dispatch any emergency

healthcare personnel resources to false warning signals. The

reason behind is other real emergency need of healthcare

resources may happen at the same period of time. Hence, it is

ideal to have a robot partner to confirm the elderly people’s

health status with human-robot interaction before sending out

Fig. 1. The robot on the left is iPhonoid and the robot on the right is iPadrone.

any warning signals. The human-robot interaction is also

needed to prevent noise intervention from the environment

that influences the sensor readings that could cause the false

warning signal.

The number of smart phone and tablet PC devices is be-

coming more ubiquitous in recent years. These smart devices

are equipped with multiple sensors, wireless communication

system, fast CPU and they are available at consumer affordable

price. The processing power of these smart devices consists of

multiple cores CPU with consumer affordable power consump-

tion capability. Therefore, it is strategic to use smart devices

as a robot partner processing unit to support the human-robot

communication with elderly people. Hence, we started the

robot application project on small sized tabletop robot partners

called iPadrone and iPhonoid based on smart devices for

information support for the elderly people (See Fig. 1).

Modern network technologies enable ubiquitous network ac-

cess to wireless sensors, so that useful and timely information

is available through wireless sensor networks. It is important to

leverage such information from the sensor network in an early

warning system. Sensor network information service is used

for data mining and structuralization of information on user’s

daily activities based on machine learning techniques. Then,

the information gathered on the user should be handled without

the load of the user’s effort. Hence, the ideal information

service overhead processing should be kept to minimum as

possible. Therefore, the human behaviors and location in-

formation can be timely extracted from the sensor network
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information service. Sensor network information service ac-

cess to information resources is essential for both people and

robots. Thus, the environment should be able to provide timely

information for the elderly people and robots to facilitate

their conversation. Sensor network information service is a

structured platform for gathering, storing, transforming, and

providing information. The information gathered will form a

virtual environment known as informationally structured space
[2], [3].

The informationally structured space is an environment that

formats the information into structures, provides information

visualization, and timely modification and access of essential

information for elderly people early warning system. There-

fore, the informationally structured space will provide vital

information for detecting any difficulties faced by the elderly

people.

II. ENVIRONMENT AWARE COGNITIVE ROBOT LIFE

SUPPORTING SYSTEM

Previously, abnormality detection sensor systems were pro-

posed, for example by Van Laerhoven et al. [4] and by John

Kemp et al. [5]. These approaches were used to measure

abnormal activities in the environment but noise could cause

these systems to create false warning signal. Therefore, it is

important to have human-robot communication before iden-

tifying the situation as abnormal situation. In our proposed

abnormality detection system, the system will detect two

different types of abnormal conditions in the elderly people’s

daily activities: 1) The system will detect the short-term

abnormal activities. For example, if an elderly person get a

heart attack or stroke, he or she needs immediate healthcare

for stabilizing his or her condition. 2) The system also will

detect long-term abnormal activities where the elderly people

daily activities pattern changes. For example, the elderly

people frequently sleep in late hours. The long-term abnormal

activities are important information for early prevention of any

major health problem. Medical health consultant can act on the

early warning on elderly people daily life activities pattern

changes.

After an abnormal activity is detected, our proposed abnor-

mality detection system will trigger the robot partner to ask

questions to the elderly people. For example, the robot will

ask the elderly people questions such as “Are you okay?”,

“Do you need to call for help?”.

A. Fuzzy Spiking Neural Network for Abnormality Detection

Our model predicts the abnormal activity of the elderly

people by fuzzy spiking neurons. One of the vital properties of

spiking neurons is the temporal coding feature. In addition to

that, many different types of spiking neural networks (SNN)

have been applied for remembering temporal and spatial con-

text [6]–[8]. In order to reduce the computational cost, a simple

spike response model is used. The SSN is composed of fuzzy

inputs values: it is a fuzzy spiking neural network (FSNN)

[9]–[11]. For this research, we will detect the abnormal elderly

people activities. Fig. 2 illustrates the FSNN model. Evolution

Fig. 2. Fuzzy spiking neural network model

Fig. 3. Structure of the FSNN

TABLE I
HUMAN BEHAVIOR

No. Human behavior

0 sleep
1 get up
2 rest
3 go to toilet
4 have breakfast
5 have lunch
6 have dinner
7 get home
8 out home

TABLE II
LOCATION

No. Location

0 outdoor
1 bedroom
2 living room
3 kitchen
4 toilet
5 entrance
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TABLE III
HUMAN-ROBOT INTERACTION

No. Interaction

0 no interaction
1 OK
2 not good

strategy (ES) is used to adapt the parameters of the fuzzy

membership functions applied as inputs to the spiking neural

network. Furthermore, Hebbian learning [12] is used to modify

the weights between the spiking neurons. The structure of the

model is depicted in Fig. 3. In this proposed FSNN model, the

model has two different spiking neural network modules. One

is applied for the short-term abnormal activities detection (the

upper boxes) and the other one is applied for the long-term

abnormal activities detection (the lower boxes). The inputs of

the model are presented in Tables I, II, and III.

The input fuzzy inference sensory information from the

informationally structured space will be performed by:

μAi,j (xj) = exp

(
− (xj − ai,j)

2

bi,j

)
(1)

yi =
m∏
j=1

vi,j · μAi,j
(xj) (2)

Where ai,j is the middle value and bi,j is the width of the

membership function. Next, vi,j and Ai,j is the part of the

j-th input to the estimation of the i-th human state. The yi is

the product of fuzzy inference and it is also the input of the

spiking neurons. The internal state hi(t) of the i-th spiking

neuron (also known as membrane potential) at the discrete

time t is defined by:

hi(t) = tanh(hsyn
i (t) + hext

i (t) + href
i (t)), (3)

where, hext
i (t) (computed by Eq. (4) is from the exter-

nal environment input influences to the i-th neuron, hsyn
i (t)

(calculated in Eq. (5) incorporated the pulses from the other

fully connected neurons outputs, href
i (t) (shown in Eq. (7))

is used for representing the refractoriness of the neuron. The

hyperbolic tangent function is used to avoid the bursting of

neuronal fires.

hext
i (t) =

m∏
j=1

vi,j · exp
(
− (xj − ai,j)

2

bi,j

)
(4)

In Fig. 3, hsyn
i (t) is presented by dashed arrows.

hsyn
i (t) = γsyn · hi(t− 1) +

n∑
j=1,j �=i

wj,i · hPSP
j (t− 1), (5)

where γsyn is a temporal discount rate, n is the number

of spiking neurons, and m in Eq. (4) is the total number of

inputs.

When the internal state of the i-th neuron reaches a prede-

fined threshold level, a pulse is outputted as follows:

TABLE IV
CONFUSION MATRIX FOR A TWO-CLASS PROBLEM

Positive prediction Negative prediction

Positive class true positive false negative
(abnormal data) (TP) (FN)
Negative class false positive true negative
(normal data) (FP) (TN)

pi(t) =

{
1 if hi(t) ≥ θ,

0 otherwise,
(6)

where θ is a threshold for firing. In case of firing, R is

subtracted from the href
i (t) value of neuron i as follows:

href
i (t) =

{
γref · href

i (t− 1)−R if pi(t− 1) = 1,

γref · href
i (t− 1) otherwise,

(7)

where γref is a discount rate of href
i and R > 0. The

presynaptic spike output is transmitted to the connected neuron

through the weight connection. The PSP is calculated as

follows:

hPSP
i (t) =

{
1 if pi(t) = 1,

γPSP · hPSP
i (t− 1) otherwise,

(8)

where γPSP is a discount rate of hPSP
i .

B. Evolution Strategy for Optimizing the Parameters of FSNN

In this work, we incorporate (μ+λ)-Evolution Strategy (ES)

to optimize the fuzzy spiking neural network parameters in

fuzzy membership functions. In (μ + λ)-ES μ and λ then

state the number of parents and the number of offspring

produced in an evolution generation correspondingly [13].

We apply (μ + 1)-ES for improving the local hill-climbing

search as a continuous model of generations, which terminates

and initializes one individual in one evolution generation.

The (μ + 1)-ES can be considered as a steady-state genetic

algorithm (SSGA) [14].

A candidate solution contains the parameters of the fuzzy

membership functions:

gk =
[
gk,1 gk,2 gk,3 . . . gk,l

]
(9)

=
[
ak,1,1 bk,1,1 vk,1,1 . . . vk,n,m

]
(10)

Where n is the number of spiking neurons; m is the total

number of inputs; l = n ·m is the chromosome length of the

k-th candidate solution.

The amount of abnormal data is much smaller than the

amount of normal data in general. It is imbalanced data. In this

scenario, if we only use the accuracy information to evaluate

the GA result, then it would not provide good information. The

reason is that we also have to consider comprehensiveness for

the evaluation of the result. Therefore we apply F-measure

metric for the fitness value evaluation. Table IV shows the
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confusion matrix for a two-class problem. The fitness value

of the k-th candidate solution is calculated as:

fk =
2PkRk

(Pk +Rk)
(11)

where Pk, Rk are precision and recall of the k-th candidate

solution.

Precision is calculated as:

Pk =
TP

(TP + FP )
(12)

Recall is calculated as:

Rk =
TP

(TP + FN)
(13)

where TP , FP and FN is the total number of true positive,

false positive, and false negative cases in the k-th candidate

solution, respectively.

The number of correct estimation rates is calculated as:

ck =
n∑

i=1

ck,i (14)

where ck,i is the number of correct estimation rates of the

i-th neuron. We compare each output of the FSNN in the

time sequence with the corresponding desired output. If the

FSNN’s output is the same as the desired output, then we

count this as a matching condition. The number of matchings

for the i-th neuron is ck,i. In (μ + 1)-ES, only one existing

solution is replaced with the candidate solution generated by

crossover and mutation. We use elitist crossover and adaptive

mutation. Elitist crossover randomly selects one individual,

and generates one individual by combining genetic information

between the selected individual and the best individual in

order to obtain feasible solutions from the previous estimation

result rapidly. The newly generated individual replaces the

worst individual in the population after applying adaptive

mutation on the newly generated individual. The inheritance

probability of the genes corresponding to the i-th rule (i-th
spiking neuron) of the best individual is calculated by:

pi =
1

2
· (1 + cbest,i − ck,i) (15)

where cbest,i and ck,i are the number of correct estimation

rates of the best individual and the randomly selected k-

th individuals, respectively. With Eq. (15) we can bias the

selection probability of the i-th genes from 0.5 to the direction

of the better individual’s i-th genes between the best individual

and the k-th individual. Thus, the newly generated individual

can inherit the i-th genes (i-th rule) from that individual which

the better i-th gene has. After the crossover operation, an

adaptive mutation is performed on the generated individual:

gk,h ← gk,h + αh · (1− t/T ) ·N(0, 1) (16)

where N(0, 1) indicates a normal random value; αh is a

parameter of the mutation operator (h stands for identifying

the three subgroups in the individual related to a, b, and v);

t is the current generation; and T is the maximum number of

generations. The computational cost of ES is generation size

+ population size, T + P .

C. Hebbian Learning

As illustrated in Fig. 2, besides optimizing the parameters

of the fuzzy membership functions by evolution strategy, the

weights between the spiking neurons are modified by Hebbian

learning. The weights can be adjusted dynamically in the sim-

ulation process. If the condition 0 < hPSP
j (t− 1) < hPSP

i (t)
is satisfied, the weight parameter, wj,i is trained based on the

Hebbian learning rule [12]:

wj,i ← tanh
(
γwgtwj,i + ξwgthPSP

j (t− 1)hPSP
i (t)

)
, (17)

where γwgt is a discount rate of the weights and ξwgt is a

learning rate.

III. EXPERIMENTS

This section shows comparison results and analyzes the

performance of the proposed method. The graph in Fig. 4 is the

input data description; there are 18 inputs: 9 human behavior

inputs, 6 human location inputs, and 3 human interaction

inputs. In the proposed structure there are 2 SNN modules:

the short- and the long-term modules. In the output layer there

are 4 outputs: the short-term normal, short-term abnormal,

long-term normal and the long-term abnormal output. 22

days training data set and 2 days test data set were used in

the experiments. The parameters of the neural network are

presented in Table V, where S stands for short-term and L

stands for long-term. Figure 4 shows a simulation window of

the experiment. The upper window shows 3 different kinds of

input data: the human behavior, the human location and the

human interaction input data. The blue line is the input data

from life log; the red line is the PSP output for the SNN’s input

layer. The lower window shows the human state estimation

process by the SNN module. The blue line is the input data of

each neuron node; the red line is the internal state; the green

line is the training data; the purple line is the estimation result.

TABLE V
PARAMETERS OF THE NEURAL NETWORK

M N γsyn γref γpsp R θ γwgt ξwgt

S 18 2 0.59 0.95 0.40 1 0.80 1.0 0.05
L 18 2 0.70 0.90 0.90 1 0.99 1.0 0.8

In the long-term data experiment, we use adapted param-

eters from the training experiments in order to estimate the

test data. Table VI shows the experimental result for training

datasets and test datasets. In this case, we calculate the average

based on 10 simulation experiments for each data. For training

data we also calculated the standard deviation. The number of

total training data is 31680, with 2059 abnormal and 29621

normal data. The number of total test data is 2880, with 108

abnormal and 2772 normal data. The test data experiment is

as follows. Figure 5 illustrates the input of long-term test data

133



Fig. 4. Simulation window of the experiment

in one-day human activity. There is one abnormal state when

the human spends quite a long time in the toilet after lunch,

and during lunch time the interaction is “not good”.

Figure 6 shows the estimated result by using SNN. We can

understand, that the estimation result (purple line) is nearly

at dose moreover, it does not match the teaching data (green

line), and the F-measure, accuracy and fitting rate are not good

as well. The reason is, that the feature of SNN’s input data

does not fit the output state. Figures 7 and 9 show the result

by using GA to update the SNN parameters, where T is the

number of generations and P is the population size. According

to the many times experiment by applying GA, we knew that

the experimental result does not change when T = 20000
and P = 500. Because of this, we present experiment result

here when T = 2000 P = 200 (Figure 7) and T = 20000,

P = 500 (Figure 9). We can see, that the estimation result

(purple line) is almost matching the teaching data (green line),

when the number of generations and the population size are

increasing. The F-measure, accuracy and fitting rate became

better than applying only SNN. With the use of GA, we are

able to optimize the parameter of membership function for

SNN’s input data, and it follows, that the feature of SNN’s

input data fits the output state. Figures 8 and 10 show the

application of GA and Hebbian learning. F-measure, accuracy

and fitting rate have not improved that much and the result is

not as better as applying SNN and GA. We will explain the

reason in short-term result.

In the experiment for short-term test data, we use adapted

Fig. 5. Input for long-term test data

Fig. 6. Experimental result by using SNN for long-term test data

Fig. 7. Experimental result after using GA for long-term test data (T=2000,
P=200)
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TABLE VI
LONG-TERM EXPERIMENTAL RESULT

Fitting rate of Fitting rate of
F-Measure Accuracy Fitting rate Fitting rate F-Measure Accuracy abnormal normal

(abnormal) (normal) (Hebbian) (Hebbian) (Hebbian) (Hebbian)
Training data

SNN only 0.251 0.694 0.835 0.685 0.115 0.081 0.970 0.023
(21987/31680) (1719/2059) (20285/29621) (2567/31680) (1997/2059) (677/29621)

After GA
T=2000 0.679 0.965 ±0.080 0.636 ±0.200 0.987 ±0.088 0.683 0.977 ±0.253 0.697 ±0.183 0.978 ±0.275
P=200 ±0.148 (30583/31680) (1310/2059) (2923/29621) ±0.183 (30951/31680) (1434/2059) (28960/29621)

After GA
T=8000 0.713 0.977 ±0.008 0.692 ±0.215 0.987 ±0.010 0.773 0.977 ±0.010 0.837 ±0.156 0.981 ±0.007
P=200 ±0.105 (30951/31680) (1424/2059) (29226/29621) ±0.079 (30951/31680) (1724/2059) (29063/29621)

After GA
T=20000 0.792 0.977 ±0.007 0.816 ±0.182 0.984 ±0.006 0.958 0.989 ±0.004 0.923 ±0.058 0.991 ±0.002

P=500 ±0.112 (30951/31680) (1680/2059) (29133/29621) ±0.075 (30951/31680) (1839/2059) (29040/29621)
Test data

SNN only 0 0.583 0 0.606 0 0.583 0 0.606
(1679/2880 (0/108) (1679/2772) (1679/2880 (0/108) (1679/2772)

After GA
T=2000 0.512 0.993 0.861 0.996 0.868 0.990 0.852 0.996
P=200 (2589/2880 (93/108) (2760/2772) (2852/2880 (92/108) (2760/2772)

After GA
T=8000 0.835 0.988 0.796 0.996 0.874 0.991 0.870 0.995
P=200 (2846/2880 (86/108) (2760/2772) (2853/2880 (94/108) (2759/2772)

After GA
T=20000 0.869 0.990 0.861 0.995 0.883 0.991 0.870 0.996

P=500 (2852/2880 (93/108) (2759/2772) (2855/2880 (94/108) (2761/2772)

TABLE VII
SHORT-TERM EXPERIMENTAL RESULT

Fitting rate of Fitting rate of
F-Measure Accuracy Fitting rate Fitting rate F-Measure Accuracy abnormal normal

of abnormal of normal (Hebbian) (Hebbian) (Hebbian) (Hebbian)
Training data

SNN only 0.167 0.984 0.510 0.985 0.167 0.984 0.510 0.985
(31161/31680) (52/102) (31109/31578) (31161/31680) (52/102) (31109/31578)

After GA
T=2000 0.818 0.999 ±0.004 0.870 ±0.123 0.999 ±0.004 0.827 0.999 ±0.0004 0.844 ±0.166 0.999 ±0.004
P=200 ±0.206 (31639/31680) (89/102) (31550/31578) ±0.206 (31646/31680) (86/102) (31560/31578)

After GA
T=8000 0.847 0.999 ±0.001 0.888 ±0.026 0.999 ±0.001 0.869 0.999 ±0.004 0.892 ±0.123 0.999 ±0.004
P=200 ±0.053 (31646/31680) (91/102) (31556/31578) ±0.206 (31653/31680) (91/102) (31562/31578)

After GA
T=20000 0.855 0.999 ±0.000 0.883 ±0.017 0.999 ±0.000 0.877 0.999 ±0.000 0.912 ±0.020 0.999 ±0.000

P=500 ±0.044 (31649/31680) (90/102) (31559/31578) ±0.011 (31654/31680) (93/102) (31561/31578)
Test data

SNN only 0.051 0.974 0.143 0.978 0.051 0.974 0.143 0.978
(2806/2880) (2/14) (2804/2866) (2806/2880) (2/14) (2804/2866)

After GA
T=2000 0.373 0.987 0.786 0.988 0.595 0.995 0.786 0.996
P=200 (2843/2880) (11/14) (2832/2866) (2865/2880) (11/14) (2854/2866)

After GA
T=8000 0.512 0.993 0.786 0.994 0.629 0.995 0.786 0.997
P=200 (2859/2880) (11/14) (2848/2866) (2867/2880) (11/14) (2856/2866)

After GA
T=20000 0.647 0.996 0.786 0.997 0.846 0.999 0.786 1.000

P=500 (2868/2880) (11/14) (2857/2866) (2876/2880) (11/14) (2865/2866)
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Fig. 8. Experimental result after using Hebbian learning and GA for long-term
test data (T=2000, P=200)

Fig. 9. Experimental result after using GA for long-term test data (T=20000,
P=500)

Fig. 10. Experimental result after using Hebbian learning and GA for long-
term test data (T=20000, P=500)

Fig. 11. Input for short-term test data

Fig. 12. Experimental result by using SNN for short-term test data

Fig. 13. Experimental result after using GA for short-term test data (T=2000,
P=200)

Fig. 14. Experimental result after using Hebbian learning and GA for short-
term test data (T=2000, P=200)

Fig. 15. Experimental result after using GA for short-term test data (T=20000,
P=500)

Fig. 16. Experimental result after using Hebbian learning and GA for short-
term test data (T=20000, P=500)

parameters from training experiments in order to estimate the

test data. Table VII shows the experimental result for training

and test datasets. In this case, we calculate the average based

on 10 simulation experiments for each data, and for training

data we also calculated the standard deviation. The number

of total training data is 31680, with 102 abnormal and 31578

normal data. The number of total test data is 2880, with 14

abnormal and 2866 normal data. Figure 11 illustrates the input

of short-term test data in one-day human activity. The test

data experiment is as follows. Figure 12 shows the estimated

result by using SNN. Estimation result is similar to long-term

result, which means that, the F-measure, accuracy and fitting

rate are not good. The reason is, that feature of SNN’s input

data does not fit the output state. Figures 13 and 15 show

the estimation result by using GA in order to update the SNN

parameters. Estimation result is similar to the long-term result,

we can see, that the estimation result (purple line) is nearly

matching the teaching data (green line), when the number of

generations and the size of population are increasing. The F-

measure, accuracy and fitting rate became better than applying

only SNN. To optimize the parameter of membership function

for SNN’s input data we use GA, and the feature of SNN’s

input data is going to fit the output state. Furthermore, the

estimation result converges when T = 20000 and P = 500.

Figures 14 and 16 show the application of Hebbian learning

and GA. Estimation result has a different value with long-

term result. In this case we can see, that Hebbian learning

is effective. Estimation result (purple line) is nearly matching

the teaching data (green line), and the F-measure, accuracy

and fitting rate became better than applying GA and SNN,

when the number of generations and the population size are

increasing. It is because, we use Hebbian learning in order

to influence the learning mechanism of neurons in a short

period of time. The Hebbian learning is only effective in a

short period of time, but as the time has passed PSP value

was forgotten. This is why Hebbian learning is effective in

short-term and not so effective in long-term.

IV. CONCLUSION

In this work, we proposed an evolutionary computation

approach to optimize spiking neural network for detecting
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abnormal activities in the elderly people’s daily life. The

initial experimental results showed that the proposed method is

able to estimate abnormal activities based on human behavior,

human location and human interaction data.
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