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Data Analysis and Inference Group

Faculty of Information Technology and Electrical Engineering

University of Oulu

Finland

Email: {tuomoala, hejunno, jaska, jjr}@ee.oulu.fi

Abstract—Every classification model contains uncertainty.
This uncertainty can be distributed evenly or into certain areas
of feature space. In regular classification tasks, the uncertainty
can be estimated from posterior probabilities. On the other hand,
if the data set contains missing values, not all classifiers can be
used directly. Imputing missing values solves this problem but
it suppresses variation in the data leading to underestimation of
uncertainty and can also bias the results. Multiple imputation,
where several copies of the data set are created, solves these
problems but the classical approach for uncertainty estimation
does not generalize to this case. Thus in this paper we propose
a novel algorithm to estimate classification uncertainty with
multiple imputed data. We show that the algorithm performs as
well as the benchmark algorithm with a classifier that supports
classification with missing values. It also supports the use of
any classifier, even if it does not support classification with
missing values, as long as it supports the estimation of posterior
probabilities.

I. INTRODUCTION

Sometimes the uncertainty of a classification result can be
as important as the classification result itself. This might be
the case with e.g. decision support systems in medical domain
where human lives can be on the line. In this case, the extra
information about the uncertainty of the classification result
could be very valuable. In other applications, the uncertainty
could be used to reject samples with too high uncertainty
or direct them to manual inspection. Uncertainty estimate
could also be used to analyse the possible sources of the
uncertainty. Based on this information, the classification model
could possibly be fine tuned or more data could be collected
about the uncertain samples to reduce uncertainty and improve
accuracy.

Nature of the classification problem itself and the classifi-
cation algorithm are at the core when uncertainty is quantified.
In this article, focus will be on real-world data sets with, in
this case artificially introduced, missing data. This is a case
where multiple imputation is of great value [1] and the missing
values in explanatory variables can add to the uncertainty. Thus
a way is also needed to quantify the amount of uncertainty that
is caused by some value being missing or any combination of
missing values.

Classification algorithms have traditionally been developed
using complete data sets and most require values for all
variables to be present to work. There are a few exceptions,
such as Naive Bayes (NB) classifier, that can handle missing
values in data but they are rather exceptions than the norm.

Classifiers that have proven to perform best generally are
Random Forest and Support Vector Machine (SVM) [2], both
of which cannot handle missing values, at least natively. Many
real world data sets are, however, cursed with missing data.
There are many reason why this is the case. For example many
medical data sets contain patient records that do not all contain
the same variables simply because it is not realistic to expect
every patient has been measured for every possible blood test
etc. Many of the incomplete variables could, however, add
value to the final model if the modeling tools were able to use
that information.

There are three main approaches to handling missing data.
The most common approach is to simply ignore any data
samples containing missing values. This is called complete
case analysis or listwise deletion. Sometimes all available data
is used for each analysis separately. This is called available-
case analysis or pairwise deletion [1]. Another approach is
to impute the missing values with something sensible or to
use model-based methods to model the distribution of the
variables to make analysing the whole data set possible [3].
Both deletion and imputation ignore the uncertainty that is
caused by the unknown true values of the missing data and
deletion does not make it possible to evaluate test samples
that are incomplete. Sometimes deletion or imputation can
be made behind the scenes during data preparation or even
made implicitly by statistical software. Whether deletion or
imputation was used, the modeller might be totally unaware
that the data set has had missing values in the first place as well
as how the missing values were handled. If single imputation
had been used, this tends to bias the analysis results and
underestimate the amount of variance in the imputed variables.
Multiple imputation, where two or more possible values are
imputed for each missing value, solves these problems [1],
[4] but machine learning algorithms cannot directly handle
multiple imputed data sets.

It is straightforward to estimate the uncertainty, i.e. stan-
dard error, of statistical estimands with multiple imputed data
by using simple rules, called Rubin’s rules [1], [4]. These
rules take into account the between-imputation variance and
within-imputation variance when estimating the standard error
of the statistical estimand in question. On the other hand, for
classification result in the case of complete or singly imputed
data, the estimated posterior probability of the predicted class,
when available, can be used as an uncertainty measure directly
or through a derived measure. Using single imputed data can,
however, bias the results and it will most certainly suppress
the inherent variability in the data set therefore ignoring
the uncertainty about the true values of the missing values.
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Multiple imputation solves the problems of single imputation.
Nevertheless, to the best of our knowledge, uncertainty es-
timation of classification results when multiple imputed data
is used has not been studied. In this article we propose an
algorithm to estimate the uncertainty in this case.

This article is divided as follows. Background of the topic
is presented in Section II. The proposed algorithm is then
derived in Section III and some practical experiments with the
algorithm are introduced in Section IV. The results obtained in
the experiments are then presented in Section V and discussed
in Section VI. Section VII concludes the article.

II. BACKGROUND

Missing data is common problem with many real-world
data sets [5]–[7]. As most classification algorithms can directly
only use complete data, the missing data points need to be
handled somehow. As stated in the introduction, just ignoring
missing values is common practise and this can even be hidden
from the analyst by removing the missing values either in the
preprocessing stage or in the analysis stage by the default
missing data handling method in the statistical software at
hand. For example in R, in the package e1071, the default
action in training an SVM model is listwise deletion if missing
values are encountered. Pretending there is no problem of
missing data might be convenient but it will throw away
valuable data at best and severely bias the results at worst.
Some data sets might even be completely useless if missing
data is ignored and enough data points are missing. This
becomes apparent when looking at Table I. If all features
are required to be present for the analysis, only a very small
percentage of the values can be missing or the data set becomes
useless.

TABLE I. EXPECTED PERCENTAGE OF COMPLETE CASES WITH

DIFFERENT NUMBER OF FEATURES AND PERCENTAGES OF MISSING

VALUES.

NUMBER OF FEATURES

MISSING 5 10 20 40 80

1 % 95.1 % 90.4 % 81.8 % 66.9 % 44.8 %
2 % 90.4 % 81.7 % 66.8 % 44.6 % 19.9 %
5 % 77.4 % 59.9 % 35.8 % 12.9 % 1.7 %

10 % 59.0 % 34.9 % 12.2 % 1.5 %
20 % 32.8 % 10.7 % 1.2 %
40 % 7.8 % 0.6 %
60 % 1.0 %

There are three distinct mechanisms that describe the
probability of each data point being missing. If all data points
have exactly the same probability of being missing, the data
are described as being missing completely at random (MCAR).
With MCAR, factors unrelated to the data itself are the causes
of missing data. If the probability of a data point being missing
can be explained by observed data, then the data are said to
be missing at random (MAR). If neither of these conditions
hold, the data is missing not at random (MNAR). A thorough
explanation of missing data mechanisms and their implications
can be found in e.g. [1]. In most cases, assuming MAR is
reasonable. In practice this means that missing values can be
estimated with information available from the observed vari-
ables [1] but this is not always the case and the choice of the
missing data handling method should take into consideration
the mechanism behind the missing values [3].

A. Handling missing data

Garcı́a-Laencina et al. [5] and Aste et al. [3] review missing
data handling methods in pattern classification tasks. One
method is to delete cases where some of the data is missing
but this approach is not recommended unless the amount of
missing data is small and the overall amount of data is large.
Another method is missing data imputation which will be
discussed in more detail in the next section. A third class
of methods are model-based procedures in which the joint
distribution of the variables are modelled and then used by
the classifier. The final class of methods are machine learning
approaches which are able to deal with missing data while
avoiding explicitly imputing the missing values.

One of the best known model-based algorithm that is
used to handle data with missing values is the expectation-
maximization (EM) algorithm and it has been successfully
used with many problems with incomplete data. EM can be
used to e.g. train Gaussian mixture models [8].

In the machine learning approaches, the classifiers them-
selves are able to deal with missing values. Naive Bayes clas-
sifier, for example, does this simply by ignoring the missing
features. In ensemble methods, such as neural network ensem-
bles, several classifiers are created that each use a different
combination of complete features. Some decision trees can
handle missing values natively, too. For example, ID3 creates
an additional edge for the unknown values. Fuzzy approaches,
where missing values are represented by an interval of possible
values, have also been used. Also, Support Vector Machines
have been extended to handle missing values by harnessing
the EM algorithm [5].

Even if some classifiers can handle incomplete data, impu-
tation can offer some benefits. It allows one to use any desired
classifier and if multiple imputation is used, the inherent
uncertainty about the true values of the missing data points
will be captured as variation between the imputations. Also,
comparison of classifier performance is easy when the missing
data is handled separately from the classification problem. In
this work we will concentrate on imputation as the missing
data handling method.

B. Missing data imputation

If the classifier we would like to use cannot handle missing
values and we want to keep all the available data for analysis,
we need to replace the missing values by some estimate. This
process is called missing value imputation. There are several
ways how to choose the imputed value. To demonstrate the
effect that the chosen imputation method can have on the
characteristics of the data, we will use an example where 20
% of the data is removed completely at random from the Iris
data set [9].

Probably the simplest way to fill in missing values is by
mean imputation, i.e. replacing any missing values with a mean
of that particular variable. For categorical data, the mode can
be used. Figure 1 shows how mean imputation behaves when it
is used with the example data. Mean imputation will obviously
underestimate the amount of variance in the data. This can
be clearly seen from the scatter plot and the histogram of the
complete data and imputed data when they are plotted together.

152



(a) Scatter plot of the features. (b) Histogram of Sepal Length.

Fig. 1. Mean imputation. Blue indicates observed values and red indicates imputed values.

(a) Scatter plot of the features. (b) Histogram of Sepal Length.

Fig. 2. Regression imputation. Blue indicates observed values and red indicates imputed values.

Mean imputation will also disturb inter-variable relations and
bias any estimates other than the mean itself. Even the mean
estimate will be biased by mean imputation if the data are not
MCAR [1].

A step forward is regression imputation, where information
from other observed variables is used to predict the missing
value. A regression model is built from the observed data
which is then used to calculate the replacement value for

missing data points. The values produced are the most likely
values according to the model but variation is again suppressed
and therefore it is unlikely that the predicted values correctly
represent the distribution of the true values had they been
observed. An example where the missing values were imputed
with regression imputation can be seen in Figure 2. Using
regression imputation also affects correlation; the imputed
values have a correlation of 1 as they are located on a line
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thus increasing the combined correlation of the observed and
imputed values. If the data are MCAR, mean estimates will
be unbiased with regression imputation. An illustrative way
to think about regression imputation is, however, that if the
prediction model did indeed produce perfect estimates of the
missing values, no information was really missing in the first
place [1].

In stochastic regression imputation, adding noise to regres-
sion imputation restores the lost variability in the imputed data
points. A regression model is first fit to the complete data,
residual variance is estimated, and finally the imputed values
are drawn according to these parameters. As can be seen from
Figure 3, adding noise to the imputed values really opens up
the distribution of the imputed values and the values seem like
they could actually have come from the original distribution
even though they are not. Stochastic regression preserves the
relationship and correlation of the variables but it does not
deal with the inherent uncertainty of the imputed values.
Regression imputation and stochastic regression imputation
can also produce values that are impossible, such as negative
values for variables that are in reality strictly positive.

In multiple imputation, m > 1 complete data sets are
created by replacing the missing values with plausible values.
There are several possibilities for which model to use for the
imputation and the model can be chosen individually for each
variable. Each complete data set is then analysed individually.
Results from each of the analyses can then be pooled to
a final estimate using simple pooling rules called Rubin’s
rules [4]. The imputed data sets differ in the imputed values
whereas the complete values are identical in all of the data sets.
The variation in the imputed values indicates that there was
uncertainty caused by the unobserved. The pooled statistical
estimates are, however, unbiased and have correct statistical
properties under appropriate conditions [1].

C. Classification with multiple imputed data

State-of-the-art classification algorithms, e.g. Support Vec-
tor Machines and Random Forests [2], require all variables to
be present in both training and test samples to work. To the best
of our knowledge, Belanche et al. [10] are the only ones who
have used multiple imputed data sets in classification problems
with such algorithms. They developed two different algorithms
on how to combine classification results to form a final
prediction when multiple imputed data sets were used. In one
algorithm the training data set was imputed m times, merged
into a single large data set, and then used to train a classifier,
SVM in this case. Test data set was then concatenated with
the stacked training data set, imputed m times, and extracted
from the training samples for prediction. Each of the m now
complete test data sets were used for prediction using the
classifier that was trained in the previous step. Therefore, for
each sample in the test data set, m predictions were produced
and a majority vote was used to form the final prediction for
each test sample. A diagram of the procedure is depicted in
Figure 4. In the second algorithm, training data was again
imputed m times and for each of the complete data sets, a
classifier was trained. Test data set was then concatenated with
each of the m imputed training data sets, imputed once (i.e.
m = 1) and then used for prediction. Again, m predictions
were produced and a majority vote was used to form the final

prediction. The former algorithm, called 1MI, was determined
to work generally better so we will use that algorithm in this
work also.
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Fig. 4. Classification of multiple imputed data with the 1MI algorithm.

D. Uncertainty measures

Classification uncertainty can be expressed using the pos-
terior probability of the assigned class if the classifier used
supports estimating that. Using the posterior probability di-
rectly gives an idea about the (un)certainty of the classification
result. An uncertainty measure can also be derived from the
posterior probabilities [11]. The measure is defined in (1)
where pi is the posterior probability of class i and n is the
number of classes. This measure takes into account also the
posterior probabilities of the other classes. For comparing with
the uncertainty measure we will propose in this article, this
uncertainty measure will be used.

U = 1−
maxi=1,...,n(pi)−

∑n

i=1
(pi)/n

1− 1/n
∈ [0, 1] (1)

For statistical analyses, standard error is used as a measure
of uncertainty in the statistic at hand. It can be defined as
”the standard deviation of the sampling distribution of some
statistic” [12]. But why are we interested in standard errors?
Because when dealing with missing data, there is a proven
way to estimate the standard error of a statistic when multiple
imputation is used. That way is to use pooling rules called
Rubin’s rules [1], [4] and we will use the same underlying
principle later in defining an uncertainty measure in the case
of classification with multiple imputed data.

Rubin’s rules for combining statistical analysis results of
repeated-imputation are defined in (2)-(5). Suppose we are
estimating some statistic Q̄ from a data set containing missing
values. After using multiple imputation, we first analyse each
imputed data set separately to obtain estimates of the statistic
Q̂ for each of imputed data sets. The final estimate can then
be obtained as in (2). Here Q̄ is calculated by taking the mean
of the analyses results with different repeated-imputation data
sets.

There are three sources of variation regarding the estimate
Q̄:
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(a) Scatter plot of the features. (b) Histogram of Sepal Length.

Fig. 3. Stochastic regression imputation. Blue indicates observed values and red indicates imputed values.

• Variance caused by the fact that only a sample of the
population is observed and not the entire population.
This is called within-variance.

• Variance caused by the missing values. This is called
between-variance.

• Simulation variance caused by the fact that Q̄ itself is
estimated for finite m.

Within-variance Ū , defined in (3), is the average of the
sample variances within each imputed data set. To account
for the uncertainty in the statistic caused by missing values,
between-variance B is calculated as in (4). Because Q̄ is itself
an estimate using finite m, variance contribution of this needs
to be taken into account, too. It has been shown in [4] that the
variance of this factor is B/m and this is taken into account
in (5) where the total variance T of the estimate is calculated
as a combination of within-variance, between-variance, and
simulation variance.

Q̄ =
1

m

m∑
l=1

Q̂l (2)

Ū =
1

m

m∑
l=1

Ūl (3)

B =
1

m− 1

m∑
l=1

(Q̂l − Q̄)(Q̂l − Q̄)′ (4)

T = Ū +B +
B

m
= Ū +

(
1 +

1

m

)
B (5)

III. CLASSIFICATION UNCERTAINTY OF MULTIPLE

IMPUTED DATA

In this section we will derive a novel uncertainty measure
that can be used even in the presence of missing data and even
if the chosen classifier does not support learning and prediction
with incomplete samples. The only requirement is the ability
to estimate posterior probabilities of the classification result.

Like with statistical estimands, the uncertainty of classi-
fication result can be of interest in many cases. When the
data set contains missing values, multiple imputation is an
excellent way to capture the uncertainty about the true values
of the missing values. The uncertainty of the true nature of the
missing values can be seen as variation between imputations,
larger variation meaning higher uncertainty. In a classification
task, this will be reflected both in the classification results
between imputations and the posterior probabilities of the
assigned classes. If the weight of the particular feature for
the classification result is small, then even a high uncertainty
about the true value will make a small difference to the end
result and vice versa. This will be automatically captured in
this approach.

Here we will derive an uncertainty measure T correspond-
ing to the total uncertainty that is caused by missing variables
to the classification result of a classifier and by the inherent
uncertainty of the classification model itself. The idea behind
this approach is the same as in Rubin [4], only adapted to
classification. The magnitude of T is dependent on within-
variance Ū , i.e. uncertainty of the classification result within
a single imputation according to (1), and between-variance
B which corresponds to the variation of classification result
between different imputed data sets. When T is minimized,
i.e. when there is no uncertainty about the missing values,
uncertainty of the underlying classification model will remain.
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The within-variance for each imputed data set, Ūl, can be
calculated as defined in (1). Because values of Ūl will fall
in the range [0, 1], the combined within-variance Ū , calculated
according to (3), will also fall in the range [0, 1]. The unbiased
estimate of the between-variance B for continuous statistical
estimands is the mean squared error which can be interpreted
as a 0/1 loss in the case of discrete classes as defined in (6).
The possible values that B can get fall in the range [0, 1].

B =
1

m− 1

m∑
l=1

{
1 if Q̂l �= Q̄
0 otherwise

(6)

The total classification uncertainty T is a combination
of within-variance, between-variance, and simulation variance
and it can be calculated according to (5) like in [4] in the case
of statistical estimands. The total uncertainty T can get values

in the range [0,
2m+ 1

m
] and can easily be scaled to the range

[0, 1] so that its value will not depend on m and for more
intuitive interpretation.

IV. EXPERIMENTS

The presented uncertainty measure was tested in a practical
experiment where more and more data was incrementally
removed completely at random from two publicly available
data sets, the Iris data set [9] and the Wine data set [13].
A Naive Bayes classifier was chosen as the classifier be-
cause it supports calculating posterior probabilities and it
can natively handle missing values. Therefore comparison of
the uncertainty measure in (1) and the proposed uncertainty
measure with the same classifier was possible. In addition, a
Support Vector Machine classifier was tested with the proposed
algorithm. Gaussian kernel and default parameter values were
used.

For the imputations, the R package mice [14] was used.
Because the purpose of the experiments was not to maximize
the classification performance but instead demonstrate the pro-
posed uncertainty measure, a good default imputation method
was used. In practice this meant using Random Forests as
the imputation method with the number of trees set to 10,
which is the default. Using Random Forests can accomondate
interactions between variables and nonlinearities inherently
[15]. The number of imputed data sets, m, was chosen to
be 10 which should be a decent default value capturing
much of the variation between imputations while remaining
computationally feasible.

Data was removed from the data sets in 10 % increments
until the described multiple imputation procedure was unable
to impute all the values. The probability for each value to be
removed was the same for all variables, i.e. the final missing
values were missing completely at random. The data set was
split into training (70 % of the samples) and test (30 %
of the samples) data sets. The removal rate was same for
both the training and test data sets and for each variable,
including the class label for the training data set. The 1MI
algorithm, described in Section II, was used to handle the
multiple imputed data. The only difference was the use of the
class label of the training samples as part of the imputations.
This information is indeed available for most of the training

data set samples and should therefore be used as part of the
imputation model.

For each data set and each step of data removal, the total
uncertainty T was calculated according to (5) for every sample
in the test data set after multiple imputation. In addition,
uncertainty of Naive Bayes classifications on the same incom-
plete data samples were calculated with (1) for comparison.
All experiments were simulated 1000 times with a different
random seed on each simulation.

V. RESULTS

For each amount of missing values, classification per-
formance was assessed as a function of uncertainty. The
classification results were ordered by their uncertainty in an
ascending order and the cumulative number of samples that
were above a threshold accuracy value were counted. The
results when 50 % of the data was missing in the Iris data
set can be seen in Figure 5. For the multiple imputed data, the
proposed uncertainty measure was used, and for Naive Bayes
on incomplete data, the uncertainty measure defined in (1) was
used.

In this particular case, using the Naive Bayes classifier
directly on the incomplete data led to a classification accuracy
of 79.51 % whereas with the multiple imputed data, the
accuracies were 78.61 % and 80.26 % for Naive Bayes and
SVM classifiers, respectively.

For a comparison of the proposed algorithm with directly
using incomplete data, classification accuracy was plotted
against uncertainty with both the Iris and the Wine data sets
with different amounts of missing data. Naive Bayes classifier
was used in both cases. The same procedure was repeated with
Support Vector Machine classifier. The results are plotted in
Figure 6.

For the same data sets and same amounts of missing val-
ues, average classification accuracies and average uncertainties
were calculated. The results can be seen in Tables II and III for
Naive Bayes classifier used directly on incomplete data as well
for both Naive Bayes and Support Vector Machine classifiers
using the proposed algorithm based on multiple imputation.
Highest accuracy for each data set and each amount of missing
values is in bold in the results.

The classification results were then sorted in an ascending
order based on their uncertainty and the classification accura-
cies were calculated for both the lowest and highest uncertainty
deciles of the samples. The results are presented in Tables IV
and V again for the same data sets with different amounts of
missing data and for all the same algorithms as above. For the
lowest decile of uncertainties, i.e. the least uncertain of the
samples, the highest classification accuracy is again in bold.
For the highest decile, i.e. the most uncertain of the samples,
the lowest accuracy is in bold in the results.

VI. DISCUSSION

With complete data, both the Iris data set and the Wine data
set are almost completely separable. As the amount of missing
values increases, classification accuracy starts to decline but
remains very reasonable even with as much as 60 % of the data
missing. Classification performance is almost identical when
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(a) Naive Bayes with incomplete data (b) Naive Bayes with multiple imputed data (c) SVM with multiple imputed data

Fig. 6. Classification accuracy as a function of uncertainty.

Fig. 5. Cumulative number of samples with the lowest uncertainty as a
function of classification accuracy in the Iris data set when 50 % of the data
was missing.

using the incomplete data directly and using multiple imputed
data with the Naive Bayes classifier. Support Vector Machine
seems to work marginally better when the amount of missing
data is relatively small, even without tuning the classifier
parameters, but falls behind in accuracy with these two data
sets when the amount of missing values starts to increase more.
This decline is more pronounced with the Wine data set and it
is accompanied by increased average uncertainty compared to
Naive Bayes classifier with the proposed algorithm. With the
Iris data set the average uncertainties remain almost identical
with increasing number of missing data and there is no dip in
performance for either of the classifiers.

The two algorithms were compared by sorting the classifi-
cation results by the uncertainty value and counting the number

TABLE II. CLASSIFICATION ACCURACY AND UNCERTAINTY OF THE

IRIS DATA SET WITH NAIVE BAYES, NAIVE BAYES WITH MULTIPLE

IMPUTATION, AND SVM WITH MULTIPLE IMPUTATION.

ACCURACY AVG UNCERTAINTY

MISSING NB MI NB MI SVM NB MI NB MI SVM

10 % 0.937 0.940 0.948 0.075 0.038 0.040
20 % 0.918 0.922 0.934 0.125 0.067 0.067
30 % 0.890 0.892 0.909 0.197 0.108 0.115
40 % 0.851 0.850 0.869 0.296 0.165 0.179
50 % 0.795 0.786 0.803 0.433 0.246 0.268
60 % 0.708 0.694 0.702 0.588 0.340 0.366
70 % 0.568 0.556 0.547 0.720 0.433 0.455

TABLE III. CLASSIFICATION ACCURACY AND UNCERTAINTY OF THE

WINE DATA SET WITH NAIVE BAYES, NAIVE BAYES WITH MULTIPLE

IMPUTATION, AND SVM WITH MULTIPLE IMPUTATION.

ACCURACY AVG UNCERTAINTY

MISSING NB MI NB MI SVM NB MI NB MI SVM

10 % 0.963 0.964 0.971 0.026 0.020 0.054
20 % 0.952 0.953 0.961 0.041 0.034 0.086
30 % 0.936 0.938 0.943 0.072 0.057 0.131
40 % 0.915 0.911 0.907 0.131 0.093 0.198
50 % 0.877 0.871 0.851 0.246 0.152 0.284
60 % 0.818 0.806 0.738 0.444 0.258 0.391
70 % 0.667 0.665 0.562 0.660 0.398 0.475

of most certain samples reaching a certain classification rate
(Figure 5). A local polynomial regression smoother was then
fitted to the data to make it easier to compare the results visu-
ally. The slope of the smoother for both algorithms is similar
as it is also for both classifiers with the new algorithm. Only
difference is in the height of the curve which is comparable
to the overall accuracy achieved by that particular classifier-
algorithm combination.

Because the two uncertainty measures differ slightly, they
do not equally occupy the same value range and they are
therefore not directly comparable value for value. With both
uncertainty measures, however, it is very clear that low uncer-
tainty values mean high classification accuracy and vice versa
as is evident looking at Tables IV and V, which is exactly
the feature we are interested in an uncertainty measure. A
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TABLE IV. CLASSIFICATION ACCURACY OF THE LOWEST AND

HIGHEST UNCERTAINTY DECILES OF THE IRIS DATA SET WITH NAIVE

BAYES, NAIVE BAYES WITH MULTIPLE IMPUTATION, AND SVM WITH

MULTIPLE IMPUTATION.

LEAST UNCERTAIN MOST UNCERTAIN

MISSING NB MI NB MI SVM NB MI NB MI SVM

10 % 1.00 1.00 1.00 0.648 0.675 0.650
20 % 1.00 1.00 0.9998 0.597 0.618 0.618
30 % 1.00 0.9998 0.9998 0.541 0.569 0.568
40 % 1.00 1.00 0.998 0.456 0.515 0.521
50 % 1.00 0.9996 0.996 0.368 0.487 0.473
60 % 0.997 0.995 0.987 0.377 0.444 0.419
70 % 0.945 0.936 0.873 0.354 0.383 0.370

TABLE V. CLASSIFICATION ACCURACY OF THE LOWEST AND

HIGHEST UNCERTAINTY DECILES OF THE WINE DATA SET WITH NAIVE

BAYES, NAIVE BAYES WITH MULTIPLE IMPUTATION, AND SVM WITH

MULTIPLE IMPUTATION.

LEAST UNCERTAIN MOST UNCERTAIN

MISSING NB MI NB MI SVM NB MI NB MI SVM

10 % 1.00 1.00 1.00 0.735 0.756 0.757
20 % 0.9998 1.00 1.00 0.688 0.691 0.705
30 % 0.9996 0.9996 0.9998 0.655 0.650 0.642

40 % 0.996 0.998 0.9994 0.627 0.593 0.574

50 % 0.988 0.993 0.997 0.564 0.546 0.534

60 % 0.970 0.979 0.975 0.537 0.514 0.475

70 % 0.927 0.930 0.769 0.444 0.425 0.404

very high accuracy is achieved in the least uncertain samples
even as the average accuracy gets lower when more and more
data is missing. This is more visually clear from Figure 6.
As can be seen from the figures, the relationship between
uncertainty and accuracy is not linear and it is not completely
consistent between different data sets or different amounts
of missing data within the same data set. When looking at
the uncertainty values that each of the algorithms produce
at a certain accuracy level with different amounts of missing
data and on different data sets, our novel algorithm seems to
outperform the benchmark algorithm. For example at 80 %
accuracy, using incomplete data directly leads to uncertainty
values that cover approximately 43 % of the total range of
uncertainties in the data set. With our novel algorithm, this
variation is cut into half when the same classifier is used and is
around 26 % with the novel algorithm using the SVM classifier.
This span of the uncertainty values is clearly lower with the
novel algorithm suggesting it being more consistent across data
sets and different amounts of missing data.

The proposed algorithm is computationally more complex
than directly using incomplete data with a classifier that
can handle missing values. The complexity comes from two
sources. First, the imputation process adds complexity as the
imputation models need to be constructed and the imputation
is repeated 2m times, m times for the training data and m
times for the test data. Second, the classification task is more
complex as the amount of training data is higher when stacked
training data is used and the classification is repeated m times.

VII. CONCLUSION

The main finding in our study is that the ability of the novel
algorithm to estimate the uncertainty of a classification result
works as well if not better as the benchmark algorithm. It also
allows any classifier to be used even if the classifier does not
support data modelling with missing values. Only requirement
is that it supports estimating posterior probabilities. The new
algorithm is computationally more complex, but with the cost
of computational resources decreasing, this is a small price to
pay for the upsides in tasks where uncertainty adds value to
the bare classification results.
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