2015 IEEE Symposium Series on Computational Intelligence

Multi-strategy Multimodal Genetic Algorithm for
Designing Fuzzy Rule Based Classifiers

Vladimir Stanovov', Evgenii Sopov? and Eugene Semenkin’

Department of Systems Analysis and Operations Research
Siberian State Aerospace University
Krasnoyarsk, Russia
vladimirstanovov@yandex.ru', evgenysopov@gmail.com?, eugenesemenkin@yandex.ru>

Abstract—A hybridization of genetic algorithms and
machine learning techniques have proved its effectiveness for
many complex benchmark and real-world problems. In this
study we present a novel approach that combines self-
configuring genetic algorithm for multimodal optimization and
fuzzy rule based classifier. The proposed search metaheuristic
controls the interactions of many techniques for multimodal
optimization (different genetic algorithms) and leads to the self-
configuring solving of problems with a priori unknown
structure. Appling this approach to designing the fuzzy rule
based classifiers, we can obtain many optimal solutions with
different representation. The results of numerical experiments
with popular optimization benchmark problems (for
multimodal genetic algorithm) and with well-studied real-world
classification problems (for self-configuring fuzzy rule based
classifier design) are presented and discussed. The main feature
of the proposed approach is that it does not require the
participation of the human expert, because it operates in an
automated, self-configuring way.

I. INTRODUCTION

Recent advances in computer and internet technologies
have led to the need to process, analyze and understand
massive amounts of data. Today the area of machine learning
proposes a variety of approaches for solving classification
problems, and most popular are k-nearest neighbors, neural
networks, support vector machines, genetic programming and
others. Modern machine learning methods often use
evolutionary computation techniques as a design tool, which
is universal and can be applied for various structures. These
evolutionary algorithms applied for machine learning
problems are often called genetics-based machine learning
(GBML) algorithms [1]. The GBML is focusing on using
evolutionary algorithms, such as genetic algorithms (GAs),
evolution strategies, genetic programming, and evolutionary
programming to select the structure and/or tune the machine
learning method. A number of GBML methods have been
developed for solving complex classification problems [2, 3].

The fuzzy rule-based classification systems (FRBCSs) are
effective approaches in machine learning, as they can provide
easy-to-understand models for the end users. Although
FRBCSs are useful and accurate for small datasets, they may
require many computational resources for large datasets.

978-1-4799-7560-0/15/$31 ©2015 IEEE

978-1-4799-7560-0/15 $31.00 © 2015 IEEE
DOI 10.1109/SSC1.2015.34

167

Among the fuzzy classification methods, there are many well-
developed approaches, which use GAs or other specialized
evolutionary algorithms for the rule base design. Although the
classical GA is a powerful method, there is a tendency of
developing specialized algorithms for various problems.

Many real-world problems have more than one optimal
solution, or there exists only one global optimum and several
local optima in the feasible solution space. Such problems are
called multimodal. As known, GAs are efficient in the
multimodal environment as they use a stochastic population-
based search instead of the individual search used by
conventional algorithms. At the same time, traditional GAs
have a tendency to converge to the best-found optimum losing
population diversity. Such single best-found solution usually
have very good accuracy, but may have a structure that is not
convenient for human understanding and analysis. Thus there
is a good idea to find many (or all) global and acceptable local
optima which represent different solutions to the problem. In
a case of the FRBCS, such optima, while saving comparable
accuracy, may contain different rules in the rule base and/or
different fuzzy term structures.

In this study a novel approach based on a metaheuristic for
designing multi-strategy GA for multimodal optimization
(MMO) is proposed. Its main idea is to create an ensemble of
many MMO techniques and adaptively control their
interactions. Such an approach would lead to the self-
configuring solving of problems with a priori unknown
structure. We have applied the MMO GA to the problem of
designing the FRBCSs.

The rest of the paper is organized as follows. Section 2
describes significant related work. Section 3 describes the
proposed approaches. In Section 4 the setup and results of
numerical experiments are presented. In the Conclusion the
results and further research are discussed.

II. RELATED WORKS

A. FRBCS

A number of GA-based approaches have been developed
for adaptive tuning of fuzzy rule base in the FRBCSs [4, 5, 6,
7]. At the same time, many researchers try to obtain not only
the computational algorithm for classification, but solution to
the problem in the human-readable form. One of the ways is
multi-objective problem statement [8, 9]. Here the first

IEEE
computer
® psouety

objective maximize the accuracy of classification, and the
second minimize the number of rules in the rule base. It is
worth noting that the multi-objective statement needs more
advanced GA-based techniques, and subsequent analysis of
the obtained Pareto set approximation.

Another way of getting several adequate solutions to the
problem is using multimodal problem statement, when the
learning algorithm is focused on finding several local optima,
as well as the global optimum.

B. MMO GA

The problem of MMO exists since the first GAs. Over the
past decade interest for this field has increased. The recent
approaches are focused on the goal of exploring the search
space and finding many optima to the problem. Many efficient
algorithms have been proposed. Good survey of widespread
MMO techniques can be found in [10, 11]. As we can see from
many studies, there is no universal approach that is efficient
for all MMO problems. Many researches design hybrid
algorithms, which are generally based on a combination of
search algorithms and some heuristic for a niching
improvement.

Another way is a combining many basic MMO algorithms
to run them in parallel, migrate individuals and combine the
results. In [12] an island model is applied, where islands are
iteratively revised according to the genetic likeness of
individuals. In [13] four MMO niching algorithms run in
parallel to produce offspring, which are collected in a pool to
produce a replacement step. In [14] the same scheme is
realized using the clearing procedure.

The conception of designing MMO algorithms in the form
of an ensemble seems to be promising. A metaheuristic that
includes many different MMO approaches (different search
strategies) can deal with many different MMO problems. And
such a metaheuristic can be self-configuring due to the
adaptive control of the interaction of single algorithms during
the problem solving.

In [15] a self-configuring multi-strategy genetic algorithm
in the form of a hybrid of the island model, competitive and
cooperative coevolution was proposed. The approach is based
on a parallel and independent run of many versions of the GA
with many search strategies, which can deal with many
different features of optimization problems inside the certain
optimization class. The approach has demonstrated good
results with respect to multi-objective and non-stationary
optimization. In this study, we will apply this concept to the
MMO problem.

III. METHODOLOGY

A. Hybrid Evolutionary Fuzzy Classification Algorithm

The fuzzy rule base classification (FRBCS) method,
which we have implemented, is based on a simple rule base
encoding into the GA chromosome. Let us describe this
encoding in details.

The classification problem consists in assigning
an F-dimentional object of space RF a class number C; from
a predefined set € = {Cj, ..., C,}, where k is the number of
classes. Let X= {X;, ..., Xp} be the set of input variables,
and Us, f=1,..,F be the domain of f -th variable.

168

Let Pr= {Af,p ...,Af’Tf},f =1,..,F be the fuzzy
granulation of Uy into Ty fuzzy sets. Then the fuzzy rule is:

Rp:IF X,1S Ay j, AND ...AND X¢IS A), .THEN Y IS C;,,

where Y is the output and C;, € C is the class number for m-
thrule. j, r € [1, Tf] is the number of fuzzy set from partition
P, selected for variable X.

Then the rule base can be presented as:

J11 JiF C]
] = jm,l jm,F ij) (1)
jM,l jM,F Cj

where j,,, means that for rule R,,, and variable X, the fuzzy
set Ay j,. - has been selected.

The values in the matrix are integers, so that the problem
of finding the optimal fuzzy rule base reduces to integer non-
constrained optimization. This problem can be solved with
genetic algorithm, and the key point here is the encoding
method. The easiest method is to encode each jp, into a
binary string of length [, so that 2! > Tr + 1. One is added to
the number of fuzzy sets, as we also need to encode the “Don’t
care” condition. Including this term allows decreasing the size
ofthe rule base and increasing the rules’ generalization ability.
The class number is encoded in a similar manner.

The number of rules M in our computational experiments
was fixed and equal to 12. However, if all terms in a certain
rule are set to “Don’t care” (DC), the rule is considered as
empty and not used in classification, so the algorithm is
capable of decreasing the number of rules. The number of
fuzzy sets for granulation was fixed and equal to 5.

The fitness function included two main values: error on the
training set with weight 1 and the complexity of the rule base
with weight 0.1. The complexity of the rule base was
calculated as the ratio of number of non-empty fuzzy sets to
the total possible number of fuzzy sets in the rule base (which
is equal to F X M). Including complexity of the rule base into
the fitness function allows creating of simpler rule bases.

The distance between two rule bases for the MMOGA was
calculated as the number of different fuzzy sets in these rule
bases.

B. SelfMMOGA

In the field of statistics and machine learning, ensemble
methods are used to improve decision making. This concept
can be also used in the field of GA. The main idea is to include
different search strategies in the ensemble and to design
effective control of algorithm interaction. The general
structure of the self-configuring multi-strategy GA proposed
in [15] is called Self*GA (the star sign corresponds to the
certain optimization problem) and it is presented in Fig.1.

The total population size is called the computational
resource. The resource is distributed between algorithms,

which run in parallel and independent over the predefined
number of iterations (called the adaptation period). After the
distribution, each GA included in Self*GA has its own
population which does not overlap with populations of other
GAs. At the first iteration, all algorithms get an equal portion
of the resource. This concept corresponds to the island model,
where each island realizes its own search strategy. After the
adaptation period, the performance of individual algorithms is
estimated with respect to the objective of the optimization
problem. After that algorithms are compared and ranked.
Search strategies with better performance increase their
computational resource (the size of their populations). This
concept corresponds to the competitive coevolution scheme.
Finally, migrations of the best solutions are set to equate the
start positions of algorithms for the run with the next
adaptation period. This concept corresponds to cooperative

coevolution.

Estimation of GA 1

Stee of population 1/
el pecsiten 32}

Initialization

\ GAL = " purformance
Total
popuiation [L1, -E Sy
Distriaution of / \ Camgatitive Stag
Conperative Stage: Size of population 2, Estimation of GA 2 e
R ooy 25 | |
computational —» 7 IEER S GA2 M —F—t—+ agorithmsco merison
resource 4/ and ranking
~——___ lslndz
T Ty
sice of poputation nr/ Estimation of GA N
.) A_
] performance P
—~— icland N

Distribution rule

Fig. 1. The Self*GA structure

Such a technique eliminates the necessity to define an
appropriate search strategy for the problem as the choice of
the best algorithm is performed automatically and adaptively
during the run.

Now we will discuss the design of a Self*GA for MMO
problems that can be named SelfMMOGA.

At the first step, we need to define the set of individual
algorithms included in the SelfMMOGA. In this study we use
six basic techniques, which are well-studied and discussed
[16, 17], and they can be used with binary representation with
no modification. This feature is important as we encode
complex structures like FRBCSs.

Single algorithms and their specific parameters are
presented in Table 1. All values for radiuses and distances in
Table 1 are in the Hamming metric for binary encoding and in
the Euclidean metric for real-valued encoding.

The key point of any coevolutionary scheme is the
performance evaluation of a single algorithm. For MMO
problems performance metrics should estimate how many
optima were found and how the population is distributed over
the search space. Unfortunately, good performance measures
exist only for benchmark MMO problems, which contain
knowledge of the optima. Performance measures for black-
box MMO problems are still being discussed. Some good
recommendations can be found in [18]. In this study, the
following criteria are used.

169

TABLE L. ALGORITHMS INCLUDE IN THE SELFMMOGA.

Algorithm Parameters
. Clearing radius, Capacity
Algl | Clearing of a niche
Alg2 | Sharing Niche radius, o
Number of clusters, min
Alg3 | Clustering distance to centroid, max
distance to centroid
Restricted
Alg4 | Tournament Window size
Selection (RTS)
Deterministic
Algs Crowding)
Probabilistic
Algb Crowding)

The first measure is called Basin Ratio (BR). The BR
calculates the number of covered basins, which have been
discovered by the population. It does not require knowledge
of optima, but an approximation of basins is used. The BR can
be calculated as

BR(pop) =1,)
l= ?":1 min {1,2xepop b(x, Zi)}a
X*Zj
_(1,if x € basin(z)
b(x,2) = { 0, otherwise

where pop is the population, k is the number of identified
basins by the total population, / is the indicator of basin
coverage by a single algorithm, b(*) is a function that indicates
if an individual is in basin z.

To use the metric (1), we need to define how to identify
basins in the search space and how to construct the function
b(x,z).

For continuous MMO problems, basins can be identified
using different clustering procedures like Jarvis-Patrick, the
nearest-best and others [19]. In this study, for MMO problems
with binary representation we use the following approach. We
use the total population (the union of populations of all
individual algorithms in the SelfMMOGA). For each solution,
we consider a predefined number of its nearest neighbours
(with respect to the Hamming distance). If the fitness of the
solution is better, it is denoted as a local optima and the centre
of the basin. The number of neighbours is a tunable parameter.
For a real-world problem, it can be set from some practical
point of view.

The function b(x,z) can be easily evaluated by defining if
individual x is in a predefined radius of basin centre z. The
radius is a tunable parameter. In this study, we define it as

total population size

radius = . ,

©)

where k is the number of identified basins (k=|Z]).

The second measure is called Sum of Distances to Nearest
Neighbour (SDNN). The SDNN penalizes the clustering of

solutions. This indicator does not require knowledge of
optima and basins. The SDNN can be calculated as

pop size

SDNN(pop) =X%;=; dnn(xi, POD), “
dpn(x;, pop) = min {dist(x,y)},

yepop\{x}
where d,, is the distance to the nearest neighbour, dist is the
Hamming distance.

Finally, we combine the BR and the SDNN in an
integrated criterion K:

K = a-BR(pop) + (1 —a)-SDNN(pop), (5)
where SDNN is a normalized value of SDNN, a defines
weights of the BR and the SDNN in the sum (a € [0,1]).

Next, we need to design a scheme for the redistribution of
computational resources. New population sizes are defined for
each algorithm. In this study, all algorithms give to the
“winner” algorithm a certain percentage of their population
size, but each algorithm has a minimum guaranteed resource
that is not distributed. The guaranteed resource can be defined
by the population size or by problem features.

Atthe cooperative stage, in many coevolutionary schemes,
all individual algorithms begin each new adaptation period
with the same starting points (such a migration scheme is
called “the best displaces the worst”). For MMO problems, the
best solutions are defined by discovered basins in the search
space. As we already have evaluated the approximation of
basins (Z), the solutions from Z are introduced in all
populations replacing the most similar individuals.

All general GA parameters are tuned using a self-
configuration procedure, introduced in [20]. For each genetic
operator we define a finite number of its versions (for
example, low, normal, high mutation rate). The operator is
chosen according to its probability, which is defined by
operator’s success rates and is estimated on every generation.
The success estimation for every type of operator is performed
based on the averaged fitness values of offspring produced by
the operator.

IV. EXPERIMENTAL SETUP AND RESULTS

A. SelfMMOGA

To estimate the SelfMMOGA performance we have used
the following list of benchmark problems. Six binary MMO
problems from [13]. These test functions are based on the
unitation functions, and they are massively multimodal and
deceptive. And, eight real-valued MMO problems from
CEC’2013 Special Session and Competition on Niching
Methods for Multimodal Function Optimization [21].

In the case of binary problems, we use the Peak Distance
(PD) measure for estimating the performance. The PD
indicator calculates the average distance of known optima to
the nearest individuals in the population [18].

PD = =%, dy(qs, p0P), (6)

170

The following criteria for estimating the performance of
the SelfMMOGA over continuous benchmark problems are
used:

e Peak Ratio (PR) measures the percentage of all optima

found by the algorithm (4).

Success Rate (SR) measures the percentage of
successful runs (a successful run is defined as a run
where all optima were found) out of all runs.

PR = l{geQ | dnnk(q.pop)ss}l 7)
where Q = {q1, 92, .-, qx} is a set of known optima, € is
accuracy level.

The maximum number of function evaluation and the
accuracy level for the PR evaluation are the same as in CEC
completion rules. In all experiments all computational
resources are equal for all compared algorithms.

To demonstrate the control of algorithm interaction in the
SelfMMOGA, we have chosen an arbitrary run of the
algorithm on an arbitrary problem and have visualized the
distribution of the computational resource (see Figure 2). The
total population size is 200 and the minimal guaranteed
amount of the computational recourse is 10. The maximum
number of generations is 200 and the size of the adaptation
period is 10, thus the horizontal axis contains numeration of
20 periods.

—A—Algl —8—Alg2 —@—Algd —x—Algd Algs ——Alg6

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20

Fig. 2. Example of the SelfMMOGA run

As we can see, there is no algorithm that wins all the time.
At the first two periods, Sharing (Alg2) and Clearing (Algl)
had better performance. The highest amount of the resource
was won by Clustering (Alg3) at the 10th period. At the final
stages, Deterministic Crowding (AlgS) showed better
performance.

The results of estimating the performance of the
SelfMMOGA with on binary problems are presented in Table
2. The table contains the values of the PR, the SR and the PD
averaged over 50 independent runs. We also have compared
the results with Ensemble of niching algorithms (ENA)
proposed in [13]. There is only the SR value for the ENA.

We have also compared the results with the average of 6
stand-alone algorithms (Algl-Alg6). The average value can
be viewed as the average performance of a randomly chosen
algorithm. Such an estimation is very useful for black-box
optimization problems, because we have no information
about problem features and, consequently, about what
algorithms to use. If the performance of the SelfMMOGA is

better than the average of its component, we can conclude
that on average the choice of the SelfMMOGA will be better.
As we can see from Table 2, the SelfMMOGA always
outperforms the average of its stand-alone component

algorithms for binary problems. Moreover, for some
problems no stand-alone algorithm has a SR value equal to 1,
but the SelfMMOGA does.

TABLE II. RESULTS FOR BINARY PROBLEMS
Average of 6
stand-alone Self MMOGA ENA
Problem algorithms
PR SR PD PR SR PD SR
binaryF11 | 0,91 | 0,89 | 2,30 | 1,00 | 1,00 | 0,00 | 1,00
binaryF12 | 0,96 | 0,95 | 1,38 | 1,00 | 1,00 | 0,00 | 1,00
binaryF13] 0,95 | 0,93 | 2,34 | 1,00 | 1,00 | 0,00 | 1,00
binaryF14 | 0,89 | 0,91 | 2,37 | 1,00 | 1,00 | 0,00 | 1,00
binaryF15| 0,84 | 0,82 | 2,61 | 1,00 | 1,00 | 0,00 | 1,00
binaryF16 | 0,78 | 0,79 | 3,08 | 1,00 | 1,00 | 0,00 | 0,99
TABLE III. AVERAGE PR AND SR FOR EACH ALGORITHM
Self MMOGA DE/nrand/1/bin | ¢cDE/rand/1/bin N-VMO dADE/nrand/1 | PNA-NSGAII
& PR SR PR SR PR SR PR SR PR SR PR SR
1e-01 0,962 0,885 0,850 0,750 0,963 0,875 1,000 | 1,000 | 0,998 | 0,938 | 0,945 | 0,875
1e-02 0,953 0,845 0,848 0,750 0,929 | 0,810 | 1,000 | 1,000 | 0,993 | 0,828 | 0,910 | 0,750
le-03 0,943 0,773 0,848 0,748 0,847 0,718 | 0,986 | 0,813 | 0,984 | 0,788 | 0,906 | 0,748
1e-04 0,907 0,737 0,846 0,750 0,729 | 0,623 | 0,946 | 0,750 | 0972 | 0,740 | 0,896 | 0,745
1e-05 0,816 0,662 0,792 0,750 0,642 0,505 | 0,847 | 0,708 | 0,835 | 0,628 | 0,811 | 0,678
Average | 0,916 0,780 0,837 0,750 0,822 0,706 | 0,956 | 0,854 | 0,956 | 0,784 | 0,893 | 0,759
TABLE IV. ALGORITHMS RANKING OVER CEC’13 BENCHMARK PROBLEMS
Rank b . Rank b .
PR criter?on Algorithm SR criteriyon Algorithm
1 N-VMO and dADE/nrand/1 1 N-VMO
2 SelfMMOGA 2 dADE/nrand/1
3 PNA-NSGAII 3 SelfMMOGA
4 DE/nrand/1/bin 4 PNA-NSGAII
5 cDE/rand/1/bin 5 DE/nrand/1/bin
- - 6 cDE/rand/1/bin

The results of estimating the performance of the
SelfMMOGA with on continuous problems are presented in
Tables 3 and 4. Table 3 shows results averaged over all
problems. Table 4 contains ranks of algorithms by separate
criteria.

We have also compared the results of the SelfMMOGA
runs with some efficient techniques from the competition.
The techniques are DE/nrand/1/bin and Crowding
DE/rand/1/bin, N-VMO, dADE/nrand/1, and PNA-NSGAII.

feature of the approach is that it operates in an automated,
self-configuring way. Thus, the SelfMMOGA can be a good
tool for designing FRBCSs.

B. FRBCS

The computational experiments for the fuzzy
classification were performed on 7 datasets from UCI and
KEEL repositories [22, 23]. Table 5 contains the information
about the datasets.

As we can see from Tables 3 and 4, the SelftMMOGA TABLE V. DATASETS DESCRIPTION

shows results comparable with popular and well-studied Number of | Number of | Number of
techniques. It yields to dADE/nrand/1 and N-VMO, but we Dataset instances features classes
should note that these algorithms are specially designed for Australian credit 690 14 2
continuous MMO problems, and have taken 2nd and 4th Banknote 1372 4 2
places, respectively, in the CEC competition. At the same Column 2¢ 310 6 2
time, the SelfMMOGA has very close average values to the Column 3¢ 310 6 3

best two algorithms, and outperforms PNA-NSGAII, Tonosphere 351 34 2
CrowdingDE and DE, which have taken 7th, 8th and 9th Liver 345 6 2
places respectively. Seeds 210 7 3

We have included only basic MMO search techniques in
the SelfMMOGA. Nevertheless, it performs well due to the
effect of collective decision making in the ensemble. The key

171

The next table contains the classification results for the
standard GA and three best solutions from SelfMMOGA on
the test sample.

TABLE VI CLASSIFICATION RESULTS FOR TEST SAMPLE
Dataset GA+ |SelftMMOGA |Selft MMOGA |Self MMOGA
FRBCS| Solution 1 Solution 2 Solution 3
Australian | 0.839 0.862 0.816 0.867
Banknote | 0.947 0.892 0.862 0.867
Column 2¢| 0.773 0.789 0.751 0.768
Column 3c| 0.668 0.741 0.619 0.674
Ionosphere| 0.747 0.680 0.665 0.656
Liver 0.567 0.586 0.598 0.597
Seeds 0.874 0.793 0.621 0.691

As we can see, for three datasets the standard GA allows
finding most accurate solutions. However, the SelfMMOGA
outperforms the standard GA on 4 datasets out of 7.
Moreover, the best solution is not always the first one — for
example, for datasets Australian and Liver, the best solution
was second or even third. Thus, using this method, several
local optima have been found, and the researcher is able to
select one of them.

As an example, we provide three rule bases for Liver
dataset with the best accuracy, obtained on the last iteration.
These rule bases contain 10, 12 and 10 rules and are very
different, although they have almost the same accuracy about
0.544. We suggest that the results can help the human experts
in a field of the solving problem to obtain better (or may be
very new) information about the problem features.

The rule bases are presented in Figures 3-5.

Each row is one rule, where every position contains the
fuzzy term for corresponding variable, and the last position is
the assigned class label. The DC (“Don’t Care”) term means
that corresponding variable is ignored in a rule.

As we can see from the results, the SelfMMOGA for
FRBCS design performs well for many complex
classification problems. Moreover, it provides the user not
only with computational algorithm, but with explicit, human-
readable representation of many solutions. Another feature of
the approach is that it does not require the participation of the
human-expert, because it operates in an automated, self-
configuring way.

. DC | DC ;‘)Q(i) ’x DC . Y\:Y/>\ 0
| oc | ocloc)oc]o

pc | bc|bc|pc] pc Lk 0
oc | oc | oc | oc|f)| oc 1
W oc]ocloc]o

[WEE

VN

| oci

AL

LA

Fig. 3. Solution 1 for Liver dataset

172

X/\/A‘
A A
Fig. 4. Solution 2 for Li

DC .

DC
':DC::

/\/ \/\/\/J A

W Mx A
ANV VI \”/ \ /\’
9 ZM AN A
/ VY A Y

>\ /<) \
Fig. 5. Solution 3 for Liver dataset

C

V. (CONCLUSIONS

The fuzzy rule-based classification systems are effective
approach for solving many complex classification problems,
and they can provide easy-to-understand models for the end
users. In this work we have proposed the self-configuring
approach for the multimodal designing of FRBCSs. The
approach uses the multi-strategy metaheuristic that includes
different multimodal search strategies in the ensemble and
controls these search algorithms interaction. The main
objective of the multimodal approach is to find many
(possibly all) global and local optima of the problem. For the
FRBCS designing problem, it means that we can obtain many
effective rule bases with comparable accuracies, but different
structures. Different rule bases are useful information that can
help to find and understand features of the particular problem
and the proposed fuzzy rule based solution.

We have investigated the proposed SelfMMOGA with a
number of benchmark problems. The results show that it
outperforms its component algorithms on average. This means
that the SelfMMOGA is better than its component algorithm
randomly chosen in a case of the black-box optimization
problem, or in a case when the choice of proper algorithm
requires expert knowledge and much computational effort.

The performance of the hybridization of the SelfMMOGA
and the FRBCS have been tested with a number of real-world

data sets from popular repositories. The results shows that the
approach demonstrates efficiency comparable with the
standard approach (GA+FRBCS). In addition, it provides the
end user with many optimal solutions, which can be analyzed.
We can recommend this approach for the users who are not
experts in a field of machine learning, because the approach
operates in an automated and self-configuring way.

In further works, we will compare the proposed approach
with other widespread techniques. Also we will examine the
hybridization of the SelfMMOGA with other machine
learning techniques.

ACKNOWLEDGMENT

Research is performed with the financial support of the
Ministry of Education and Science of the Russian Federation
within the State Assignment for the Siberian State Aerospace
University, project 2.1889.2014/K.

REFERENCES
(1]

A. Fernandez, S. Garcia, J. Luengo, E. Bernado-Mansilla, F. Herrera
“Genetics-Based Machine Learning for Rule Induction: State of the
Art, Taxonomy, and Comparative Study,” Evolutionary Computation,
IEEE Transactions on (Volume:14, Issue: 6), pp. 913 — 941, June 21,

2010.

L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems
and genetic algorithms,” Artif. Intell., vol. 40, no. 1-3, pp. 235-282,
Sep. 1989.

U. Bodenhofer, F. Herrera Ten Lectures on Genetic Fuzzy Systems,
Preprints of the International Summer School: Advanced Control—
Fuzzy, Neural, Genetic. — Slovak Technical University, Bratislava. —
1997. p. 1-69.

H. Ishibuchi, S. Mihara, Y. Nojima. Parallel Distributed Hybrid Fuzzy
GBML Models With Rule Set Migration and Training Data Rotation.
IEEE Transactions on fuzzy systems, VOL. 21, No. 2. — April 2013.

H. Ishibuchi et al. Hybridization of fuzzy GBML approaches for
pattern classification problems. /EEE Trans. on Systems, Man, and
Cybernetics — Part B: Cybernetics, Volume 35,Issue 2, pp. 359-365,
April 2005.

E. Zhou, A. Khotanzad, Fuzzy classifier design using genetic
algorithms, Pattern Recognition, Volume 40, Issue 12,2007, pp. 3401—
3414.

R. Sergienko, E. Semenkin and V. Bukhtoyarov, Michigan and
Pittsburgh methods combination for fuzzy classifier design with
coevolutionary algorithm, in 2013 IEEE Congress on Evolutionary
Computation (CEC*2013), pp. 3252-3259, 2013.

R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, A
multiobjective evolutionary approach to concurrently learn rule and

(2]

(3]

(4]

(5]

(6]

(7]

(8]

173

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

data bases of linguistic fuzzy-rule-based systems, IEEE Trans. Fuzzy
Syst., vol. 17, no. 5, pp. 1106-1122, 2009.

M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, F. Herrera, A Review
of the Application of Multi-Objective Evolutionary Fuzzy Systems:
Current Status and Further Directions. IEEE Transactions on Fuzzy
Systems, 21:1 (2013) 45-65.

S. Das, S. Maity, B.-Y. Qub, P.N. Suganthan, Real-parameter
evolutionary multimodal optimization: a survey of the state-of-the art.
Swarm and Evolutionary Computation 1, pp. 71-88, 2011.

Y. Liu, X. Ling, Zh. Shi, M. Lv, J. Fang, L. Zhang, A Survey on Particle
Swarm Optimization Algorithms for Multimodal Function
Optimization. Journal of Software, Vol. 6, No. 12. pp. 2449-2455,
2011.

M. Bessaou, A. Petrowski, P. Siarry, Island Model Cooperating with
Speciation for Multimodal Optimization. Parallel Problem Solving
from Nature PPSN VI, Lecture Notes in Computer Science, Volume
1917. pp. 437-446, 2000.

E.L. Yu, P.N. Suganthan, Ensemble of niching algorithms. Information
Sciences, Vol. 180, No. 15. pp. 2815-2833,2010.

B. Qu, J. Liang, P.N. Suganthan, T. Chen, Ensemble of Clearing
Differential Evolution for Multi-modal Optimization. Advances in
Swarm Intelligence Lecture Notes in Computer Science, Volume 7331.
pp. 350-357, 2012.

E. Sopov, A Self-configuring Metaheuristic for Control of Multi-
Strategy Evolutionary Search. ICSI-CCI 2015, Part III, LNCS 9142.
pp. 29-37,2015.

G. Singh, K. Deb, Comparison of multi-modal optimization algorithms
based on evolutionary algorithms. In: Proc. of the Genetic and
Evolutionary Computation Conference, Seattle. pp. 1305-1312, 2006.

S. Das, S. Maity, B.-Y. Qub, P.N. Suganthan, Real-parameter
evolutionary multimodal optimization: a survey of the state-of-the art.
Swarm and Evolutionary Computation 1, pp. 71-88,2011.

M. Preuss, S. Wessing, Measuring multimodal optimization solution
sets with a view to multiobjective techniques. EVOLVE — A Bridge
between Probability, Set Oriented Numerics, and Evolutionary
Computation IV. AISC, vol. 227, Springer, Heidelberg. pp. 123-137,
2013.

M. Preuss, C. Stoean, R. Stoean, Niching foundations: basin
identification on fixed-property generated landscapes. In: Proc. of the
13th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2011. pp. 837844, 2011.

E.S. Semenkin, M.E. Semenkina, Self-configuring Genetic Algorithm
with Modified Uniform Crossover Operator. Advances in Swarm
Intelligence. Lecture Notes in Computer Science 7331. Springer-
Verlag, Berlin Heidelberg. pp. 414-421, 2012.

Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for
CEC’2013 special session and competition on niching methods for
multimodal function optimization. Evol. Comput. Mach. Learn. Group,
RMIT University, Melbourne, Australia. Tech. Rep., 2013.

UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/

KEEL (Knowledge Extraction based on Evolutionary Learning),
http://www keel.es

