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Abstract—The Probabilistic random forest is a classification
model which chooses a subset of features for each random
forest depending on the F-score of the features. In other words,
the probability of a feature being chosen in the feature subset
increases as the F-score of the feature in the dataset. A larger F-
score of feature indicates that feature is more discriminative. The
features are drawn in a stochastic manner and the expectation
is that features with higher F-score will be in the feature subset
chosen. The class label of patterns is obtained by combining the
decisions of all the decision trees by majority voting. Experimental
results reported on a number of benchmark datasets demonstrate
that the proposed probabilistic random forest is able to achieve
better performance, compared to the random forest.

I. INTRODUCTION

In recent times the data stored in databases is growing
consistently. This growth of data needs some techniques to
transform the data into meaningful information and knowledge.
The decision tree classifier is a supervised learning approach,
which selects a set of reducts from the feature space and
generate decision rules based on known data. In decision
tree the goal is to minimize the number of decision rules
and classify the test data correctly with higher accuracy. An
efficient ID3 algorithm was proposed in 1979, which decides
the reducts based on information gain. The ID3 algorithm leads
to inaccurate decision making when there is noise in the sample
data and if the decision tree is binary then we need a long
sequence of tests [1].

In random forest the concept of bagging is used to generate
diverse ensemble classifiers [2], but the problem with applying
only bagging is that the first splitting node in the decision
tree remains the same [3] (even if we sample the data with
replacement). So the random forest uses bagging as well as
randomly selected inputs at each node to grow each tree [3].
This extra randomness improves the accuracy of random forest
to be as good as Adaboost and sometimes even better [3].

The Roulette wheel selection strategy is based on roulette
wheel mechanism to probabilistically select individuals based
on some measure of their performance [4]. Roulette wheel
selection method is stochastic sampling with replacement
(SSR). So it gives zero bias but potentially unlimited
spread [4]. In this, individuals are mapped one-to-one into
continuous interval of rang [0, 1]. The possibility of an
individual having large segment size in roulette wheel being
selected is larger than the one having smallest segment size [4].

F-score is an efficient feature ranking strategy that does not
depend on the class labels [5]. F-score of every feature is a
fraction of the sum of the discrimination between the sets of
different classes and the sum of the discrimination within each
sets of classes. A larger F-score of any feature indicates that
the feature is more discriminative [5].

The Probabilistic random forest (PRF) proposed by us is
an ensemble learning model which is constructed using the
concept of F-score and roulette wheel selection strategy. In
PRF instead of choosing feature subset at random for every
tree in the random forest, we choose a feature subset based
on roulette wheel selection. In roulette wheel selection, the
more discriminative feature have greater probability of being
selected in the feature subset.

II. BACKGROUND THEORY

A. Decision Tree

The Decision tree classifier is a supervised learning method
that is built from a set of training examples [6]. The Decision
tree uses, recursive top-down partitioning process and divide
and rule approaches for dividing the search space into several
subsets in its construction.

In Decision tree, the best feature is selected as a split point
so that the data in each descendent subset are purer than the
data in the parent superset and finally it will classify into some
classes. Each path from root to the leaf node is known as a
Decision rule and the subset of features involove in the final
decision tree are called Reducts of the decision tree.

The Decision tree (see Fig. 1) consist of splitting nodes
for testing unknown data samples, edges which represent the
outcome of the splitting and leaves which represent the class
labels. Algorithms like ID3 and C4.5 uses Entropy (eq.1) and
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Fig. 1: Decision Tree
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Information gain (eq.2) for choosing the best splitting point
for the features based on the available samples [7], [8]. The
main goal of the decision tree algorithm is to minimize the
number of decision rules. The C4.5 is improved algorithm
of ID3. In gain value calculation, it allows missing data by
simply ignoring them and looks only at those records which
have some values. The problem with Information gain is that, it
favours the feature having high branching factor which means
it is likely to choose the feature which will split the data into
smaller fragments.

E(S) = −
c∑

i=1

Pi log2 Pi (1)

Gain(S,B) = E(S)−
n∑

j=1

fS(Sj)E(Sj) (2)

Pi : Proportion of Label i elements in set S
Sj : Subset of element having Bj value

fS(Sj) : Frequency of subset Sj in Set S
E(S) : Entropy of Set S

c : Number of classes
n : Number of different values of conditional

attribute B = (B1, B2, . . . , Bn)

However, the decision tree also has some drawbacks. If the
depth of the tree is very low, then it has to face the problem
of underfitting and if the depth is more then it has to face
the problem of overfitting. Mostly because of larger depth the
decision tree becomes an over-complex classifier that does not
generalize well [1]. Pruning [9] and Ensemble learning are the
two techniques used to solve this problem.

Ensemble learning uses the fact that ensemble of classifiers
can give more accurate results than the single classifier [2]. If
the number of decision trees are trained based on the same
training data without sampling then the ensemble model will
work as a maximal margin classifier (like Support Vector
Machine). As shown in Fig.2(a) just because of one outlier
the position of decision boundary is affected. This issue can
be solved by training a number of classifiers each with only a
part of the training samples.

Bagging [10] is based on bootstrapping and aggregation. It
generates many bootstrap samples from training data with (or
without) replacement and trains classifiers with one bootstrap
sample each and then aggregate the results of the classifiers. In
Bagging the performace of the classifier trained with bootstrap
samples in which the outlier is not present is better than the
classifier trained based on complete training data [11]. If the

(a) Without Bagging (b) With Bagging

Fig. 2: Ensemble Learning

presence of classifiers trained without outliers is in majority
then it will improve the performance of ensemble model.
Thus, the ensemble model with bagging sometimes gives better
performance than an individual classifier [11]. As shown in
Fig.2(b) when bagging is used in the classification model we
can see that our decision boundary moves slightly towards the
left. This small movement makes sense in terms of test data.

The Decision forest [12] is a classification paradigm which
combines multiple decision trees for classification. There are
two methods for constructing decision forest: Sample Subset
Method (SSM) and Feature Subset Method (FSM). In SSM,
it randomly selects several training samples from the original
training data and then each of the subset of training samples is
used to construct one decision tree of the forest. This method
is preferable when patterns are large. In FSM, a subset of
features are chosen at random from the original set of features
(if there are d features in original data sample then r features
are chosen at random, where r < d) and then each of the subset
of features is used to train one decision tree of the forest. This
is preferable in many-features cases. Due to SSM and FSM,
the random decision forest is suitable for classification of large
datasets and datasets with high dimensionality.

B. Random Forest

The Random forest is an ensemble learning technique
developed by Breiman [3]. The Random forest was constructed
using two concepts: Subset of samples and then Random
subset of features. The main difference between the decision
forest and the random forest is that, the decision forest uses
either sample subset method or feature subset method in its
construction whereas the random forest uses both.

The Random forest combines a number of decision trees,
constructed using subset of training samples and chooses the
best feature as split point among random subset of features
at each split node. Suppose there are m decision trees (see
Fig.3) then the sample data is divided into m subset of samples
to train each decision tree. If there are d features in the
dataset then the best split point is calculated from randomly
selected

√
d features at each split node of the tree. This extra

randomness in the random forest increases the performance.
After m trees are generated, the decision of the trees for the
class label of a test pattern is decided by majority voting.

In 2001, Breiman [3] mathematically defines a random
forest as a combination of m decision tree classifiers as
{hi(x, θi), i = 1 . . .m}, where θi is a random vector generated
independent of past random vectors {θ1, . . . , θi−1} from the
same distribution and for each input x, each decision tree
classifier gives a unit vote to find the most popular class. The
margin function (MF) for the ensemble of m classifiers is
defined as:

MF(X,Y ) = avgmI(hm(X) = Y )−max
i�=Y

avgmI(hm(X) = i)

(3)

where, X and Y are the random vectors from which the
training samples are drawn randomly and I(.) is the indicator
function. The margin function (eq.3) defines the difference
of the average number of votes at X,Y for correct decision
class and the average vote for any other decision class. The
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Fig. 3: Random Forest Algorithm

accuracy of random forest increases with increase of margin
function [3]. The Generalization error (Ge) of random forest
can be defined as:

Ge = PX,Y (MF(X,Y ) < 0) (4)

Hence, by Strong Law of Large Numbers we can say that
as the number of decision trees increases in random forest, all
sequences θ1 . . . converge to

PX,Y (Pθ(h(X, θ) = Y )−max
i�=Y

Pθ(h(X, θ) = i) < 0) (5)

Eq.5 shows that it will always converge because of Strong law
of large numbers, which shows that overfitting is not a problem
in random forest [3].

In Random forest, an upper bound for the generalization
error depends on the accuracy of individual decision trees and
the diversity between the trees [3]. It is given by:

Ge ≤ ρ̄(1− s2)

s2
(6)

s : Strength of set of decision trees
ρ̄ : Mean value of correlation between decision trees

Hence, Eq.6 says that we can improve the performance of
random forest by improving the accuracy of individual decision
trees and increasing the diversity between the trees.

In Random forest, bagging process improves the perfor-
mance of the single decision tree by reducing the variance error
without significantly increasing the bias [13] and no pruning is
performed, so all decision trees of random forest are maximal
trees [14].

The Random forest algorithm can be used for estimating
the importance of features by looking at how much general-
ization error increases when that feature is permuted while all
other features remain unchanged [14]. This can be calculated
for every tree in the random forest. A complete discussion of
the random forest can be found in Breiman [3].

In 2005, M.Hamaz and D.Larocque [15] concluded that the
random forest is significantly better than bagging, boosting and
single decision trees and it is more accurate and more robust
to noise than the other methods

C. Roulette Wheel Selection

Roulette wheel selection technique of the Genetic Algo-
rithm employs a roulette wheel mechanism [4]. Roulette wheel
selection method uses fitness values of individual’s for select-
ing the best. In roulette wheel selection, probability of selecting
an individual is directly proportional to its fitness value i.e. an
individual’s selection corresponds to a portion it’s covering
in roulette wheel [16]. If f1, f2, . . . , fN be fitness values of
individual X1, X2, . . . , XN , then the selection probability pi
of individual Xi is defined as:

pi =
fi∑N
j=1 fj

(7)

Obviously, those having larger fitness value have more
probability of being selected. The fittest individual will occupy
the larger space, whereas the least fittest have correspondingly
smaller space within the roulette wheel [16]. In roulette wheel
selection each time, a real random number r in the range of
[0, 1) is generated, and the individual Xk where k satisfies
(eq. 8) is selected [17]. In roulette wheel selection, the segment
size and selection probability remain same throughout the
selection phase [4].

k = min{j | r ≤
j∑

i=1

pi , j = 1, 2, . . . , N} (8)

As shown in Fig. 4, individual X3 is the fittest one (i.e.
having largest fitness value f3), so its probability p3 of being
selected is large and it occupies largest segment, whereas
individual X1 is least fittest (i.e. having smallest fitness value
f1), so its probability p1 of being selected is correspondingly
very small and it occupies smallest segment in the roulette
wheel.

The main advantage of using roulette wheel selection is that
it discards none of the individuals in the population and gives a
chance to all the individuals to be selected. Therefore, diversity
in population is preserved in roulette wheel selection [16].

p1
0.08

p2
0.33

p3
0.40

p4
0.19

Fig. 4: Roulette Wheel Selection
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However, roulette wheel selection has some drawbacks. If
some population contains few very fit but not the best individ-
uals and the rest of the population not correspondingly good,
then those few individuals will dominates the whole population
and prevent the population from exploring better individuals.
On the other hand, if all individuals have similar probability
of being selected, then it will be very difficult to select the
better one among the fit and unfit individuals [16].

D. F-score

F-score (Fisher score) is a simple and efficient technique
to carry out feature selection. The F-score measures the
discrimination of sets of real numbers [18]. This score is based
on statistical characteristics of pattern and it is independent of
the class labels. Given the training vector xi, i = 1, 2, . . . , d,
F-score of every feature is computed using information of
training data. The F-score of the jth feature is define as:

F(j) =

c∑

k=1

(x̄k
j − x̄j)

2

c∑

k=1

1
nk−1

nk∑

i=1

(xk
i,j − x̄k

j )
2

(9)

x̄j : Average of jth feature in whole dataset

x̄k
j : Average of all elements of jth feature

belong to kth class

xk
i,j : ith element of jth feature of kth class
c : Number of classes in dataset

nk : Number of elements of kth class in dataset

The numerator of Eq. 9 indicates the inter class variance,
while the denominator indicates the sum of variance within
each class. A larger F-score indicates that, the feature is more
discriminative. If Fi > Fj , it means that the ith feature is more
discriminative than jth feature. A disadvantage of F-score is
that it considers each feature separately and it does not reveal
mutual information between features [5].

III. METHODOLOGY

In roulette wheel selection, individuals are selected with
probability proportional to the segment of a roulette wheel
they are occupying and gives a chance to all individuals (based
on their probability) to be selected. The F-score measures
the discrimination between sets using the information in the
training data. A larger F-score indicates that the set is more
discriminative. The overall idea of probabilistic random forest
is based on these two facts.

The Probabilistic random forest proposed by us uses
roulette wheel selection strategy and F-score in random forest.
In probabilistic random forest instead of selecting

√
d features

randomly from d features (see Fig. 3) for deciding the best
at each split, we are selecting

√
d features for each split

based on roulette wheel based feature selection algorithm (see
Algorithm 1).

Algorithm 1 Roulette Wheel based Feature Selection

Input: Features {f1, f2, . . . , fq} and their F-score
{F1,F2, . . . ,Fq} where q ≤ d

Output: Feature fk where k ∈ {1, 2, . . . , q}
1: Compute fsum←∑q

i=1 Fi

2: last← 0
3: for i← 1 to q do
4: Rwheel(i)← Fi/fsum
5: Rwheel(i)← Rwheel(i) + last
6: last← Rwheel(i)
7: end for
8: rnum← GENERATERANDOM(0,1)
9: for k ← 1 to q do

10: if rnum ≤ Rwheel(k) then
11: return fk;
12: end if
13: end for

In Algorithm 1 we take features available at that stage
{f1, f2, . . . , fq} and their F-scores {F1,F2, . . . ,Fq} where
(q ≤ d) as input. F-scores of q features are used as a fitness
values for roulette wheel selection method. fsum is the
summation of all q F-scores, used to calculate the selection
probability of individual feature (see eq. 7). Rwheel(i)
contains the probability of ith feature being selected.
GENERATERANDOM(0,1) is a function, which returns a real
random number between 0 and 1. Finally, Algorithm 1 returns
the feature fk satisfies the statement 10 of algorithm.

In Probabilistic random forest, if there are d fea-
tures {f1, f2, . . . , fd} then initially F-score of all features
{F1,F2, . . . ,Fd} is computed (eq. 9) using information of

Training Data

Calculate F-score
(all d features)

Sample Subset Method
(m subset of samples chosen at random)

Feature Subset Method
(
√
d features for each split using

Roulette Wheel based selection algorithm)

m− Decision Trees

Majority Voting

Fig. 5: Probabilistic Random Forest Algorithm
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TABLE I: Dataset detail

Dataset Samples Features ClassesTraining Test
Samples Samples

wine 178 119 59 14 3
wdbc 596 398 198 31 2
digit 5620 3747 1873 65 10
libras 360 240 120 91 15
letter 20000 13334 6666 17 26
MiniBooNE 130064 86701 43363 51 2

TABLE II: Timebase comparison between Random Forest and
Probabilistic Random Forest

Dataset
Random Forest Probabilistic Random Forest

Accuracy Time Accuracy Time
(percent) (sec.) (percent) (sec.)

wine 91.97± 2 2.97 92.24± 4 3.67
wdbc 89.37± 2 14.71 93.22± 1 8.46
digit 53.26± 4 152.46 76.52± 2 311.27
libras 44.05± 4 24.73 46.75± 6 27.54
letter 63.30± 1 4123.62 65.96± 1 4074.17
MiniBooNE 71.94± 1 134.55 74.33± 2 162.66

training data. If there are m decision trees then as a process
of bootstrapping, the training data is divided into m bootstrap
samples. Then each decision tree i is trained using ith boot-
strap sample of training data. While training the decision tree,
the best split feature is calculated among

√
d features chosen

based on Roulette Wheel based Feature Selection Algorithm
(see Algorithm 1) from d features at each spilt, as shown
in Fig.5. While testing, the test data is passed through each
decision tree of probabilistic random forest and decision class
is calculated based on each decision tree result. Then the final
result of the probabilistic random forest is calculated based
on which is the most popular class and that final class label
calculated by majority voting is considered as class label of
the test pattern by the probabilistic random forest.

Algorithm 2 Calculate Split Points Values

Input: Features column vectors {f1, f2, . . . , fd}
Output: Split Points {s1, s2, . . . , sd}

1: for i← 1 to d do
2: min← MIN(fi)
3: max← MAX(fi)
4: check ←∞
5: inc← (max−min)/100
6: for j ← min to max do
7: l←NUMBEROFVALUES (fi ≤ j)
8: r ←NUMBEROFVALUES (fi > j)
9: temp← ABSOLUTEVALUE(1− (l/r))

10: if temp ≤ check then
11: check ← temp
12: si ← j
13: end if
14: j ← j + inc
15: end for
16: end for

IV. IMPLEMENTATION & RESULTS

In Probabilistic random forest algorithm approximately
2/3 of observations are considered as training set and the
remaining 1/3 of data is said to be Out of bag (OOB). This
OOB data is used for testing each decision tree. Let there
be m decision trees in the probabilistic random forest so the
training data is divided into m samples each of 2/3 size of
training data. In probabilistic random forest we used only
binary decision trees which will divide the set of elements
into two parts based on split point value. The splitting value
which will divide the samples approximately in equal parts
is chosen as split points (using Algorithm 2) for continuous
predictor variables in a decision tree.

Table I shows the details of some well known datasets
taken from UCI-Machine Learning Repository [19]. In our
experiments, we have covered different types of datasets
having large (or small) number of samples, large (or small)
number of features and binary (or multiple) classes. Due to
the randomness involved in the random forest algorithm, we
ran each experiment 10 times and the average and standard
deviation of the accuracy obtained has been reported in the
Table II & III.

Table II shows the performance and the timebase
comparison of Breiman’s random forest and probabilistic
random forest having 50 trees in their decision making. It
can be seen that for most of the datasets probabilistic random
forest is taking more time in calculation than the random
forest. However, the probabilistic random forest is giving
higher accuracy when compare to random forest.

One of the parameter to be determined is the number
of decision trees to use. Table III shows the comparison of
random forest and probabilistic random forest for different
number of trees. It can be seen that the performance of both
random forest and probabilistic random forest is improving
with increase in number of trees and probabilistic random
forest is consistently giving better classification accuracy than
the Breiman’s random forest irrespective of number of trees.
A tree size of 100 is giving the best result.

V. CONCLUSION

It can be seen that with slight increase of time, the
probabilistic random forest gives better performance as
compared to information gain based random forest. As
in the case of random forest, the classification accuracy
of probabilistic random forest consistently increases with
increase in number of decision trees. The extra time required
is only for the selection of features which are selected
stochastically instead of randomly.
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TABLE III: Classification accuracy for Random Forest (RF) and Probabilistic Random Forest (PRF)

Dataset
Number of Trees

20 Trees 50 Trees 100 Trees
RF PRF RF PRF RF PRF

wine 90.17± 4 91.20± 3 91.97± 2 92.24± 4 91.26± 4 93.71± 4
wdbc 88.53± 1 91.73± 2 89.37± 2 93.22± 1 90.21± 2 93.43± 1
digit 51.46± 3 72.93± 4 53.26± 4 76.52± 2 56.85± 3 77.80± 2
libras 40.55± 5 42.50± 6 44.05± 4 46.75± 6 46.20± 5 47.67± 6
letter 62.19± 1 65.14± 1 63.30± 1 65.96± 1 63.77± 1 66.18± 1
MiniBooNE 70.63± 1 73.92± 1 71.94± 1 74.33± 2 72.14± 1 74.48± 2
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