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Abstract: Systems for still-to-video face recognition (FR) 
are typically used to detect target individuals in watch-list 
screening applications. These surveillance applications are 
challenging because the appearance of faces changes according 
to capture conditions, and very few reference stills are availa-
ble a priori for enrollment. To improve performance, an adap-
tive appearance model tracker (AAMT) is proposed for on-line 
learning of a track-face-model linked to each individual ap-
pearing in the scene. Meanwhile, these models are matched 
over successive frames against stored gallery-face-models, 
extracted from reference still images of each target individual 
(enrolled to the system) for robust spatiotemporal FR. In addi-
tion, compared to the gallery-face-models produced by self-
updating FR systems, the track-face-models (produced by the 
AAMT-FR system) are updated from facial captures that are 
more reliably selected, and can incorporate greater intra-class 
variations from the operational environment. Track-face-
models allow selecting facial captures for modeling more relia-
bly than self-updating FR systems, and can incorporate a 
greater diversity of intra-class variation from the operational 
environment. Performance of the proposed approach is com-
pared with several state-of-the-art FR systems on videos from 
the Chokepoint dataset when a single reference template per 
target individual is stored in the gallery. Experimental results 
show that the proposed system can achieve a significantly 
higher level of FR performance, especially when the diverse 
facial appearances captured through AAMT correspond to 
that of reference stills. 

I. INTRODUCTION 

Still-to-video FR is an important function in several 
video surveillance applications, most notably in watch list 
screening [1]. Given one or few reference facial stills of 
target individuals enrolled to the system, still-to-video FR 
seeks to detect their presence in archived or live videos 
captured with surveillance cameras. Initially, a facial region 
of interest (ROIs) is isolated within each reference still 
through segmentation, and discriminant ROI patterns (face 

descriptors) are extracted to design a gallery-face-model1 
(GFM). These stills are assumed to be high quality mug 
shots taken under controlled conditions. Then, during 
operations, ROI patterns of faces captured in videos are 
matched against each GFM, and the operator is alerted if the 
matching score surpasses a decision threshold. In video 
surveillance, persons in the scene may be tracked and 
matching scores may be accumulated over a facial trajectory 
(a group of ROIs that correspond to the same high quality 
track of an individual) for robust spatiotemporal FR [2].  

 The performance of systems for still-to-video FR typi-
cally declines due to variations in capture conditions (e.g., 
pose, resolution, scale, illumination, blur, and expression) 
and to camera inter-operability. Moreover, only one or very 
few reference stills are available during enrollment to design 
representative the GFM of a target individual. Therefore, 
GFMs can incorporate limited intra-class variability for face 
matching. 

Single sample per person (SSPP) problems [3] refer to 
the situation where only one reference pattern is available to 
design a pattern recognition system. To deal with SSPP 
problems, methods for adaptation, multiple face representa-
tion, or synthetic face generation may provide more repre-
sentative GFMs. However, these methods may require con-
siderable computational resources, corrupt GFMs if they are 
incorrectly updated, and assume that reference stills are 
representative of faces to be captured in videos. They may 
only incorporate limited information on the variations and 
uncertainties of faces to be seen in complex operational 
environment [4].  

This paper presents a still-to-video FR system based on 
Adaptive Appearance Model Tracker (AAMT-FR), where a 

                                                 
1 A GFM of an individual is defined as a set of reference ROI patterns (for 
a template matching), or a set of parameters estimated using reference ROI 
patterns (for a pattern classification) captured through segmentation. 
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track-face-model2 (TFM) is learned during operations for 
each different person appearing in a camera view point. For 
online learning of tracked faces, the Sequential Karhunen 
Loeve method [5] is used within a particle filter-based 
tracker. At each frame, the TFMs of each person is updated 
and matched against the GFMs of every individual enrolled 
to the system. Given that face tracking allows regrouping 
faces of each person, the matching scores are accumulated 
over a person’s facial track, and compared with an individu-
al-specific decision threshold for robust spatiotemporal 
recognition.  

Though such TFMs have successfully applied to the data 
association problem in adaptive appearance model tracking 
[6], to our knowledge these models have never been directly 
used for FR. TFMs have a number of advantages over 
GFMs in still-to-video FR applications. They may integrate 
a greater diversity of information on the intra-class varia-
tions of face appearance in a scene than with GFMs, espe-
cially when only one or few reference stills are available for 
face modeling. The facial representation incorporated in a 
TFM is captured through tracking, from videos in the opera-
tional scene, while GFMs are typically produced from a 
reference still captured under controlled conditions. 

In this paper, experimental results were obtained using 
Chokepoint dataset [7] in which videos are captured under 
semi- and uncontrolled conditions. Performance of the pro-
posed AAMT-FR system is compared at the transaction and 
trajectory levels against four other reference systems for 
still-to-video FR – Template Matching (TM [8]), Template 
Matching with Self-Update (TMSU [9]), Sparse Variation 
Dictionary Learning (SVDL [10]), and Multiple Face Rep-
resentation (MFR [4]).  

II. BACKGOUND – STILL-TO-VIDEO FR 

Still-to-video FR is performed on video streams that are 
captured under semi- or controlled conditions across a 
network of surveillance cameras. In this paper, a generic 
system for still-to-video FR is comprised with four 
functional modules: segmentation, tracking, classification 
and fusion.  

During enrollment of a target individual, the segmenta-
tion (or face detection) module isolates ROIs from one or 
more reference stills. Discriminant features are extracted 
and concatenated into reference ROI patterns for the design 
of user-specific GFMs. During operations, each camera 
captures a video stream that provides a particular viewpoint 
of individuals populating the scene. For each frame, ROIs 
are isolated and undergo the same feature extraction process 
to form input ROI patterns. The classification module 
measures the similarity between input ROI patterns and the 
GFMs of each individual enrolled to the system. The face 
tracking module initiates a new track once the segmentation 
module detects a new face in a different location than oth-

                                                 
2 A TFM of an individual is defined as a set of ROI patterns, or a set of 
parameters estimated using ROI patters, obtained by tracking an individu-
al’s facial appearance in a camera viewpoint over consecutive frames. 

ers. Then, it follows faces captured in successive frames and 
associates them to the same track. Finally, the decision fu-
sion module integrates the matching scores for a face track 
according to each GFM, and compares with user-specific 
decision threshold for robust spatiotemporal recognition. It 
outputs a list of likely target individuals associated with 
each track. 

TM [8] is a reference system for still-to-video FR, where 
the GFM of each target individual l (� � ��� � �) consists of 
a single reference template �	 
� ��
	 � � � ��	 ). During en-
rolment, features are extracted from a ROI captured within a 
single reference still. For each input ROI �
�� � ��� � �� 
detected in a video frame ��, an input ROI pattern ��� ���
��� � ���� linked to face track � is extracted and com-
pared using some similarity measures against all templates �	  of target individuals in a p-dimensional subspace ��. 

TMSU [9] is another reference system that allows adapt-
ing GFMs over time using highly confident operational data 
in order to increase FR robustness. It performs self-updating 
by comparing matching scores to a second (usually higher) 
update-threshold and selecting high confidence input ROI 
patterns to update the corresponding GFMs. Self-updating is 
limited on a single trait (e.g., face) to update the GFM of a 
target individual. To improve the limited representativeness 
of GFMs, some other techniques have been proposed in 
SSPP literature, which include multiple face representations, 
synthetic face generation, and enlarging training set using 
auxiliary data sets. Using multiple face representations, 
different face descriptors and patches or sub-images are 
extracted from a reference still to enhance GFMs for robust 
FR under various capture conditions [4]. Key issues for FR 
with multiple face representations are the diversity of repre-
sentations and their fusion to make a decision, which in-
creases the overall system complexity. Additionally, the 
original still (from which these representations are extract-
ed) may not be representative of faces captures in videos.  

In synthetic generation, multiple virtual face images are 
generated from a reference still to enhance GFMs. Multiple 
virtual views are synthesized by linear shape prediction, 
warping, morphing, symmetry property, partitioning a face 
into several sub-images, affine transformation, noise pertur-
bation, shifting, and active appearance modeling [3] [11]. 
By enlarging training set using auxiliary data sets, an auxil-
iary set containing multiple face appearance per person from 
the other individuals (called generic set) than the targets in 
the gallery is exploited to assist in learning the GFM. Sparse 
Variation Dictionary Learning (SVDL) [10] is an example 
of a sparse face modeling techniques using auxiliary data 
sets. A recurring problem with these methods is that they 
need prior knowledge to guide the generation of virtual 
views or variations of the face appearances, and the quality 
and realism of the virtual views are not guaranteed in the 
operational data. These methods may fail to predict many 
realistic and unobserved variations in face appearance in a 
real-world scene. 
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Fig. 1: Block diagram of the proposed AAMT-FR system. 

III. FACE RECOGNITION SYSTEM BASED ON AAMT 

A new Adaptive Appearance Model Tracking-based FR 
system (AAMT-FR) is proposed for still-to-video FR. In the 
proposed system, a set of GFMs is designed as usual during 
enrollment, using the reference still images of target indi-
viduals. During operations, a TFM is learned online over 
successive frames for each different person appearing in the 
scene. These models gradually integrate diverse information 
on the facial appearance from the operational scene. Mean-
while, for each frame, these TFMs are matched against the 
GFMs of every target individual enrolled to the system. 
Matching scores linked to tracking target individual are then 
accumulated over time and compared with an individual-
specific decision threshold for robust recognition. Fig. 1 
shows the general block diagram of the proposed AAMT-
FR system. It is comprised of segmentation, and of face 
tracking and recognition modules. Algorithmic description 
of the proposed system is presented in Algorithm 1.  

A. Face Tracking 

The face tracking module performs four main functions - 
face representation, prediction filtering, adaptive appear-
ance modeling, and data association. The segmentation 
module may capture face region of interests, ����� , in each 
frame ��, where � � ��� � �. Given a �����  captured in a 
new region of an input frame �� during segmentation, the 
features are extracted in the tracker’s face representation as 
a ROI pattern, ���. It allows initiating a TFM, ���, for a new 
track k. For existing tracks, the ROI pattern is extracted 
from the candidate region in �� through data association. In 
Fig. 1, ��� is a ROI pattern representing the face captured for 
track k at a candidate region of frame ��.  

During prediction filtering, the state of a face in a frame �� is predicted based on information in the previous frames, 
and on some underlying model for state transitions. Given a 
ROI pattern �� at frame ��, the input to the prediction filter 

is the previous state ���
�  and the output is a number of 
predicted states � �� defining the possible new locations and 
sizes of the face at ��. A particle filter is used for predicting 
the new states during tracking [12]. 

Algorithm 1: Still-to-video FR using AAMT 

Input: Input frames !��" # � ��� �$%, templates !�	" � � ��� � �% of 
target individuals enlisted in the gallery. 

Output: List of likely individuals from watch-list in operational scene 

1: for each frame ��, for # � ��� �$, do 
2:  − Apply segmentation to detect facial ROIs 
3: 

T
ra

ck
 I

ni
tia

liz
at

io
n 

for each �����, for � � ��� ��, do 

4: 
 if the ROI is located in a different location than the 

existing tracks 
6:   − Increment the number of tracks, & ' & ( � 

7: 
  − Compute a new FTM ��� with the ROI for the  

    newly initiated face track K 
9:  end if 

10: end for 
11: 

T
ra

ck
in

g for each FTM ���, for � � ��� �&, do              
12:  − Compute state ��� of the face at frame It  using tracking 
13:  − Update the TFM ��� using new state information ��� 
16: end for 

13: 

C
la

ss
if

ic
at

io
n 

for each input pattern ��� associated with TFM !���" � ���� � &% do                       
16:  for each GFM �	, for � � �� � � �, do                      

17:  − Compute score )���� �� � *+,+���+#-����� �	� 
18:  end for 
19: end for 
20: 

Fu
si

on
 

for k = 1,…, K do 
21:  for l = 1,…, L do 

22: 
  − Accumulate scores over W consecutive frames by 

�../)���� �� � �
0 ( �1 )2��� ���

23��4  

23:   if �../)���� �� 5 6	 then 

24: 
   − Detect or predict the appearance of watch-list  

    individual l 
25:   end if 
26:  end for 

27: end for 
28: end for 
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Adaptive appearance modeling inside the tracker gener-
ates TFMs ��� for newly initiated tracks and updates the 
models for existing tracks. Once a new track k is initially 
detected in the scene, the ROI patterns for the first n frames 
are tracked and captured using template matching. A data-
block 7 � !�
�� � � �8�% is thereby defined using the tracked 
face regions with states !�
�� � � �8�%. Then, the TFM of the 
target face is generated as �7� � 9:7�� �;7�� <7�=, where :7�  is 
the Eigen vector, �;7�  is the mean vector, and <7� is the covar-
iance matrix computed from the singular value decomposi-
tion (SVD) of the centered data matrix of data block, 7. 

When a new data block > � 9�8?
� � � � �8?@� = becomes 
available after tracking for q additional frames, the updated 
TFM, �7?>� � 9:7?>� � �;7?>� � <7?>� = is obtained by using the 
augmented data matrix A7
>B through the computationally 
efficient Sequential Karhunen-Loeve (SKL) algorithm [5] as 
follows:  

Step 1: Compute mean vectors, �;>� � � ,C D �2�8?@238?
  and 

  �;7?>� � �EF8�
�EF8�?@ �;7� ( @

�EF8�?@ �;>� 

Step 2: Form the matrix 

> � GH�I?JK L �;>K
M� H�I?NK L �;>KMO!PF Q �P ( Q�C %H�;>K L �;7KMR 
Step 3: Compute >S � TUVWH> L XXY> M and 

Z � [\] XY> 
^ >SH> L XXY> M_ 

Step 4: Compute the SVD of Z"Z `abcde XS]SfS 
Step 5: Finally, X7?> � AX >SBXS and <7?> � <S 

Two key parameters – the forgetting factor, f, and batch 
size, q – determine the plasticity of TFMs over time. Param-
eter ghA�
�B determines the contribution of older observa-
tions to be considered in updating the TFM, where g � � 
indicates no forgetting shall occur. Parameter q defines the 
batch size upon which a TFM is updated during tracking. 

  Data association compares the TFM ��� and the track-
er ROI pattern ��� extracted from a predicted region (or 
state) defined by particle filter at frame ��. The region that 
gives maximum matching score is considered as the new 
location of the target face k at ��. Matching score between 
the face model ��� and the tracker ROI pattern ��� is meas-
ured using equation (1) to find face correspondences in 
consecutive frames. 

B. Spatiotemporal Recognition: 

Spatiotemporal recognition incorporates two main func-
tions: classification and fusion. Beside these, the gallery 
contains the GFMs !�	" � � �� � � �% of the target individu-
als. For each frame ��, classification seeks to measure the 
similarity between each facial model  ��� � !X� �;i� <% and 
all templates �	  in the gallery as follows:  

)���� �� � jkl!Lm��	 L �;�� L XXY��	 L �;��mn%      (1) 

The system's overall decisions are produced at the trajectory 
level. The fusion module accumulates the scores of a target 
k over the last W frames for each trajectory using: 

�../)���� �� � 

4?
D )2��� ���23��4             (2) 

If the accumulated score for a target individual surpasses 
its decision threshold,
6	 , the presence of the individual l is 
detected. The system flags all individuals of interest that are 
detected in the scene. An individual-specific decision 
threshold 6	 is selected using the score distribution obtained 
by matching the GFM �	  to ROI patterns extracted from 
video tracks of non-target individuals at a user defined fpr of 
the cumulative probability density function [4].  

IV. EXPERIMENTAL RESULTS 

To compare the performance of FR systems, videos from 
the Chokepoint dataset [7] are used. Recorded as a video 
surveillance scenario, an array of 3 cameras is placed above 
different portals to capture individuals walking through in a 
natural way. The dataset contains 54 videos. Each one of the 
videos captures 29 individuals, where 23 are male and 6 are 
female. All videos are captured in two portals and 4 ses-
sions, where the recordings of two portals are one month 
apart. Videos are captured at 30 fps and an image resolution 
is o�� p q�� pixels. Overall, the dataset contains 64,204 
labeled face images each of which are cropped with size rq p rq pixels. This dataset is challenging for FR as the 
videos are captured under uncontrolled conditions with 
variations in pose, lighting, scale, and blur. 

In experiments, faces are detected (segmentation) using 
Viola and Jones [13] algorithm. A particle filter based track-
er [14] is used to follow the motion of faces, where the 
number of particles, x and y-translations, rotation, scaling, 
aspect-ratio, and skew direction changes are set to 9, 9, 0.05, 
0.05, 0.005, and 0.001, respectively. The forgetting factor f 
and batch size q to update TFMs are set to 0.99 and 5, re-
spectively. The facial ROIs are scaled into a common size of so p so pixels. For recognition, 81-dimensional Histogram 
of Oriented Gradient (HOG) features are extracted from 
each ROI and reduced into 32 using PCA projection. 

The proposed AAMT-FR system is compared to four 
reference systems: TM [8], TMSU [9], SVDL [10], and 
MFR [4]. In TM, input ROI patterns are extracted from the 
ROIs detected in a frame and compared with all the GFMs 
using some similarity measure. The input ROI patterns are 
linked to tracking trajectory and accumulate the similarity 
scores over the trajectory for spatiotemporal recognition. 
Only one reference still is used to design the GFM for each 
target individual. In TMSU, a FR system similar to TM is 
employed, where the GFMs is changed adaptively over 
time. To update the GFMs, only those input ROI patterns 
are selected for which the similarity scores surpass a second 
update-threshold for the target individuals. In SVDL, the 
GFMs are generated from a sparse variation dictionary 
learned from single training samples per person, as well as 
an auxiliary dictionary of ROIs captures from non-target 
UBM individuals appearing in the scene. In MFR, multiple 
representations of the single sample per person are stored in 
the gallery as GFM. Multiple feature extraction techniques 
(LBP, LPQ, HOG, and Haar feature) are applied to patches  
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(a) ROC curves (b) Inverted PR curves 

Fig. 2. ROC and inverted PR curves obtained with TM, TMSU, and AAMT-FR systems for individuals ID 03 and ID 04 with all Chokepoint videos. 

isolated from the GFMs to generate diverse face-part repre-
sentations. Finally, an ensemble of template matchers is 
applied on multiple face representations for FR. 

The performance of systems is evaluated at transaction 
and trajectory levels. Transaction level analysis show the 
matching performance of the system based on ROI classifi-
cation predictions. At trajectory level, information from the 
facial tracker is used to accumulate classification predictions 
according to trajectories corresponding to a same individual 
over a 1 second (W = 30 frames) window. Results are 
shown in the Receiver Operating Characteristic (ROC) and 
inverted Precision-Recall (PR) spaces. In ROC space, the 
partial Area Under Curve (pAUC) is observed for false 
positive rates (fpr) up to 5%. The area under the PR curves 
(AUPR) is also observed. 

Fig. 2 shows an example of the ROC and inverted PR 
curves obtained at the transaction level when matching ROI 
patterns extracted from videos GFMs of target IDs 03 and 
04. The dotted line in the Figures indicates the operating 
point at gl� � tu related to target ID 04. It is seen from 
the figures that the AAMT-FR outperforms TM and TMSU. 
The improved performance can be attributed to the use of  

TABLE I. AVERAGE PAUC (5%) AND AUPR PERFORMANCE FOR TM, 
TMSU, MFR, SVDL, AND AAMT-FR SYSTEMS AT THE TRANSACTION AND 

TRAJECTORY LEVELS ON ALL CHOKEPOINT VIDEOS. 

Systems 
Transaction Level Trajectory Level 

pAUC AUPR pAUC AUPR 

TM [8] �Fvs w �F�s �Fxt w �F�v �Fx� w �F�� �Fxq w �F�q 

TMSU [9] �Fxo w �F�t �Fxr w �F�� �Fsy w �F�x �Fsy w �F�s 

MFR [4] �Fsv w �F�t �Fs� w �F�� �Ft� w �F�x �Fso w �F�s 

SVDL [10] �Fss w �F�y �Fsx w �F�v �Fts w �F�� �Ft� w �F�t 

AAMT-FR ^F z{ w ^F ^z ^F || w ^F ^} ^F |~ w ^F ^� ^F |~ w ^F ^� 

TFMs that incorporates intra-class variability on facial ap-
pearances captured during operations. Also, AAMT-FR 
allows selecting facial captures for face modeling more 
reliably because it exploits tracking information. TMSU 
outperforms TM for target IDs 03, when the GFMs for these 
individuals are updated with the correct operational data.   

Because of incorrect updates, the performance of TMSU 
declines for ID 04. 

Table I presents the average pAUC (5%) and AUPR per-
formance at the transaction- and trajectory-levels for TM, 
TMSU, SVDL, MFR and AAMT-FR systems over all the 
Chokepoint videos. To compare the global performance of 
systems, the experiments are repeated 10 times, each time 
randomly selecting five different targets individual (to form 
the watch list) and 10 other individual as non-targets. The 
table shows that the proposed AAMT-FR system outper-
forms others in all the cases. 

To observe the diversity of information incorporated into 
the facial captures by different systems, the ROIs for indi-
viduals with ID 12 are shown in Fig. 3 for the P1E_S1_C1 
sequence. ROI patterns in the 81 feature HOG space of face 
captures are projected in a 2D space using Sammon map-
ping. Since, both TM and TMSU systems use ROIs captured 
through face segmentation, fewer high quality captures are 
available for modelling than AAMT-FR. Thus, TM and 
TMSU provide less diversity of appearances. 

The computation effort required by the AAMT-FR is 
mainly found in steps for face model update during tracking. 
For face model update, the AAMT-FR uses the SKL algo-
rithm [12] whose computational complexity is ���,n�, 
where d and m refer to the dimensionality of the input fea-
ture vectors and the number of new facial captures consid-
ered for face model update, respectively. For tracking, parti-
cle filter has been used, whose computational complexity is ����, where N is the number of particles re-sampled for a 
time instance by the filter [16]. 

In SVDL, the complexity of commonly used �
 ������������ sparse coding is ��, ( ���, where m is the 
number of dictionary atoms, d is the dimensionality of the 
features, and � is an error constant. In TMSU, the main 
computation is required for GFM update, where the Eigen 
space is updated by re-computing the principal components 
matrix with the increased training set. This operation re-
quires ���� ( �n,� computations, where d and m refer to 
the dimensionality and the number of feature vectors used, 
respectively [17]. The computational complexity for TM is 
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(a) Captures used in TM 

 
(b) Captures used in AAMT-FR 

Fig. 3. Example of Sammon mapping of the facial captures processed by
TM and AAMT-FR systems for ID 12 in the video P1E_S1_C1. 

TABLE II. AVERAGE COMPUTATION TIME PER FRAME (SEC/FRAME) FOR TM, 
TMSU, MFR, SVDL, AND AAMT-FR SYSTEMS. 

Systems 
Time Complexity (sec/frame) 

Recognition  
(without tracking) 

Recognition 
(with tracking) 

TM [8] �F�qq w �F�q �F�r� w �F�t 
TMSU [9] �F�qy w �F�t �Fvrv w �F�y 
MFR [4] �F�vt w �F�q �Fvt� w �F�o 

SVDL [10] �F��v w �F�y �Fvxy w �F�t 
AAMT-FR N/A �Fv�y w �F�q 

����. It does not update face model and the computational 
complexity that it requires is mainly for template matching. 
In MFR, features are extracted from a uniform, non-
overlapping patch configuration of 4p s (�v p �v pixels). 
However, bigger size patches provide much information 
about the region but increase the complexity of processing. 

The computation time per frame for different FR sys-
tems with/without using tracker are shown in Table II. In 
AAMT-FR, a tracker is always required to generate TFMs 
for FR. Thus, the computation time of AAMT-FR cannot be  

 
Fig. 4. The AUCs and pAUCs (5%) for different batch sizes and forgetting 
factors. 

computed without considering tracking. At trajectory level, 
the performance for each system is improved over the trans-
action level because of score accumulation (see Table I); 
however, a tracker must be incorporated with the FR system 
for accumulating scores from the same individual. Thus, at 
trajectory level analysis, the total computation times include 
the times required for the tracking and the recognition. 

The performance of the AAMT-FR is compared with the 
TM, TMSU, SVDL, and MFR systems considering all the 
entering and leaving sequences captured with Camera 2 
(frontal or near frontal view). Average AUPRs for the sys-
tems at different priors of targets and non-targets, � �!�
� �n� � � �
�% � !�" �� �" t���� � ��" t����%� are plotted in 
Fig. 4. The figure shows that the performance of all the 
systems declined as the level of target to non-target imbal-
ance grows in the operational data. Performance for TMSU 
degrades sharply because of incorrect updates of the GFM. 
The AAMT-FR system outperforms the others because the 
FTM incorporates diversity information of the facial cap-
tures through tracking. 

The impact of changing batch size m and forgetting fac-
tors f may have a considerable impact on the FR perfor-
mance using the AAMT-FR. Fig. 5(a) shows the AUC and 
pAUC produced by AAMT-FR system while varying batch 
size, m. In this case m is changed from 1 to 10 while keep-
ing the forgetting factor, f = 0.9. This figure shows that if m 
is increased, the performance declines as TFMs are updated 
after every m frames. Thus, m = 1 gives best performance 
for the AAMT-FR system, although this may increase the 
processing time. Fig. 5(b) shows the performance of the 
AAMT-FR while varying f between 0 and 1, while fixing m 
= 1. Here, f = 0 indicates forget everything whereas with the 
higher value of f, it allows to remember more past observa-
tions. AAMT-FR performance tends to increase with the 
value of f as it allows incorporating more diverse infor-
mation of face appearance changes in the TFMs. 
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(a) Varying batch size, m 

 
(b) Varying forgetting factor, f 

Fig. 5. The AUCs and pAUCs (5%) for different batch sizes and forgetting 
factors. 

V. CONCLUSION 

This paper presents an AAMT-FR system for still-to-
video FR. It is specialized for video surveillance applica-
tions like watch-list screening, given only one reference still 
per target person. Inside the system, an AAM tracker is used 
that gradually learns a track-face-model (TFM) per individ-
ual with the facial captures appearing in the scene. Mean-
while these models are matched over time against the gal-
lery-face-models (GFMs), extracted from the reference still 
images from a gallery of the individuals of interests. Match-
ing scores are accumulated over several frames and multiple 
cameras for spatiotemporal FR. Simulation results with the 
Chokepoint videos indicate that the AAMT-FR can provides 
a significantly higher level of performance than reference 
TM [8], TMSU [18], SVDL [19] and MFR [4] systems. 
Indeed, facial models learned with AAMT-FR select cap-
tures for face modeling more reliably and incorporates a 
greater variability of facial representation from the actual 
environment. However, the current TFM is used just as a 
proof of concept. The future direction of this research in-
tends to introduce more robust TFMs, matching functions, 
and GFMs to improve the system’s performance in FR.     

ACKNOWLEDGEMENT 

This work was partially supported by the Natural Sci-
ences and Engineering Research Council, the Ministère du 
développement économique, de l’innovation et de 
l’exportation du Québec, and Research Incentive Grant 
(Athabasca University), Canada. 

REFERENCES 
 

[1]  F. Matta and J. L. Dugelay, "Person recognition using facial video 
information," Journal of Visual Languages and Computing, vol. 20, 
no. 3, pp. 180-187, 2009.  

[2]  M. De la Torre Gomera, E. Granger, R. Sabourin and D. Gorodnichy, 
"Partially-supervised learning from facial trajectories for face 
recognition in video surveillance," Information Fusion, vol. 24, pp. 
31-53, 2014.  

[3]  X. Tan, S. Chen, Z.-H. Zhou and F. Zhang, "Face recognition from a 
single image per person: A survey," Pattern Recognition, vol. 39, no. 
9, pp. 1725-1745, 2006.  

[4]  S. Bashbagi, E. Granger, R. Sabourin and G.-A. Bilodeau, "Watch-list 
screening using ensembles based on multiple face representations," in 
ICPR, Stockholm, Sweden, 2014.  

[5]  A. Levy and M. Lindenbaum, "Sequential karhunen–loeve basis 
extraction and its application to images," IEEE Transactions on Image 
Processing, vol. 9, no. 8, pp. 1371-1374, 2000.  

[6]  M. A. A. Dewan, E. Granger, F. Roli, R. Sabourin and G.-L. 
Marcialis, "A comparison of adaptive appearance methods for tracking 
faces in video surveillance," in ICDP, London, UK, 2013.  

[7]  Y. Wong, S. Chen, S. Mau, C. Sanderson and B. C. Lovell, "Patch-
based probabilistic image quality assessment for face selection and 
improved video-based face recognition," in CVPRW, Colorado, USA, 
2011.  

[8]  R. Brunelli and T. Poggio, "Face recognition: features versus 
templates," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 15, no. 10, pp. 1042-1052, 1993.  

[9]  F. Roli and G. L. Marcialis, "Semi-supervised PCA-based face 
recognition using self-training," in SSSPR, Hong Kong, China, 2006.  

[10] M. Yang, L. Van and L. Zhang, "Sparse variation dictionary learning 
for face recognition with a single training sample per person," in 
ICCV, Washington, USA, 2013.  

[11] F. Mokhayeriy, E. Granger and G.-A. Bilodeau, "Synthetic face 
generation under various operational conditions in video surveillance," 
in ICIP, Quebec, Canada, 2015.  

[12] J. Cho, S. Jin, X. Pham, J. Jeon, J. Byun and H. Kang, "A real-time 
object tracking system using particle filter," in ICIRS, Beijing, China, 
2006.  

[13] P. Viola and M. J. Jones, "Robust real-time face detection," 
International Journal of Computer Vision, vol. 57, pp. 137-154, 2004.  

[14] D. A. Ross, J. Lim, R.-S. Lin and M.-H. Yang, "Incremental learning 
for robust visual tracking," International Journal of Computer Vision, 
vol. 77, no. 1, pp. 125-141, 2008.  

[15] J. D. Hol, T. B. Schon and F. Gustafsson, "On resampling algorithms 
for particle," in NSSPW, Cambridge, UK, 2006.  

[16] A. Sharma and K. Paliwal, "Fast principal component analysis using 
fixed-point algorithm," Pattern Recognition Letters, vol. 28, pp. 1151-
1155, 2007.  

[17] F. Roli and G. L. Marcialis, "Semi-supervised PCA-based face 
recognition using self-training," in Structural, Syntactic, and 
Statistical Pattern Recognition, Hong Kong, China, 2006.  

[18] M. Yang, L. Van and L. Zhang, "Sparse variation dictionary learning 
for face recognition with a single training sample per person," in 
ICCV, Washington, USA, 2013.  

202


