2015 IEEE Symposium Series on Computational Intelligence

A Subspace-Based Method for PSO Initialization

ET van Zyl
Department of Computer Science
University of Pretoria
Pretoria, South Africa
Email: evzyl@cs.up.ac.za

Abstract—Particle swarm optimization (PSO) is known to
suffer under the curse of dimensionality. This paper proposes
a novel strategy of particle swarm initialization particularly for
high dimensional problems. The initialization strategy encourages
the swarm to focus on exploitation rather than exploration,
thereby allowing it to find fairly good solutions, even in the
face of high dimensionality and very large search spaces. The
proposed initialization strategy is compared to a number of
other initialization strategies on high dimensional problems. The
proposed strategy performed considerably better than all the
other initialization strategies for the higher dimensional problems.
Reasons for the observed behaviour are also discussed.

I. INTRODUCTION

Particle swarm optimisation (PSO) is a stochastic,
population-based optimization algorithm developed by
Kennedy and Eberhart [5]. PSO has been used successfully
to train neural networks and solve complex optimization
problems amongst many other real-world applications
[19]. PSO has also been extended for applications in
high dimensional problems [20], multi-objective optimisation
problems [4], niching problems [3] and dynamic environments

[2].

Generally, it is advantageous for the particles’ initial po-
sitions to cover as much of the search space as possible. The
more of the search space is covered, the less the chance that the
global optimum is in an uncovered region. This significantly
increases the likelihood of the optimum being found, since the
only way for the PSO to find an optimum in an uncovered
region is for the particles to be carried there by momentum.

Usually, search space coverage is achieved by initializing
the particles uniformly throughout the search space so that the
initial diversity of the swarm is high.

However, for high dimensional problems, the region of
the search space that can be covered by the particles’ ini-
tial positions is very small because the search space grows
exponentially with dimensionality. Even if the particles are
distributed uniformly throughout the search space, much of
the search space remains effectively uncovered due to its
sheer size. The exponential growth of the search space with
dimensionality also means that simply increasing the size of
the swarms is also not a good solution, since the swarm size
would also need to increase exponentially.

The proposed initialization strategy recognizes that effec-
tive exploration in high dimensional search spaces is prac-
tically impossible. Thus, instead of attempting to promote

978-1-4799-7560-0/15/$31 (©2015 IEEE

978-1-4799-7560-0/15 $31.00 © 2015 IEEE
DOI 10.1109/SSC1.2015.42

226

AP Engelbrecht
Department of Computer Science
University of Pretoria
Pretoria, South Africa
Email: engel@cs.up.ac.za

exploration, the initialization strategy forces the swarm to
focus more on exploitation or rather, exploration of only a
small part of the search space. So rather than distributing the
swarm as uniformly as possible throughout the entire search
space, the strategy initializes the swarm in a small subspace
of the search space. The swarm does not wander far from the
initialized region and is thus able to find a - potentially local -
optimum within that region. But, as the results show, the local
optimum found by such a swarm is usually better than the
optimum found by a swarm that attempts to explore the entire
search space.

The remainder of the paper is structured as follows: Section
2 provides a brief overview of the basic PSO algorithm and
briefly describes each of the initialization strategies against
which the proposed initialization strategy will be compared.
Section 3 introduces the proposed initialization strategy. Sec-
tion 4 describes the experimental method. Section 5 provides
the results of the experiments and discusses the observed
behaviour. Section 6 concludes the paper.

II. BACKGROUND

The section provides an explanation of the basic PSO
algorithm in Subsection A. The remaining sections describe
each of the initialization strategies against which the proposed
initialization strategy will be compared.

A. Particle Swarm Optimizer

PSO is a stochastic, population-based optimization algo-
rithm proposed by Kennedy and Eberhart [5] which is based on
the flocking behaviour of birds. Every particle in the swarm is
a vector representing a candidate solution to the optimization
problem. The individuals move or “fly” through the search
space for a number of iterations, hopefully converging upon
an optimal solution. The position of each particle in the search
space changes with every iteration according to

t+1

t+1
X;

=xi+v] (1)
where xﬁ“ denotes the position of particle ¢ at iteration ¢ + 1
and vf-“ denotes its velocity at iteration ¢ + 1. The initial
position x{ are determined by the chosen initialization strategy.

The particle’s velocity at iteration ¢ 4+ 1 is influenced by
the velocity at which the particle was moving in the previous
iteration, the best position that the particle has discovered so far
(the “personal best” position, denoted y!) and the best location
discovered by other members of the particle’s neighbourhood
(denoted ¥). If the particle’s neighbourhood is a proper subset

IEEE
computer
® psouety

of the swarm, then this location is called the “local best”. If the
particle’s neighbourhood is the entire swarm, then the particle’s
social component makes use of the best position found thus
far by the entire swarm, called the “global best”. This paper
uses the global best approach. The velocity is thus calculated
according to

tH1 _ ot t t - t
v = wug + ey — xy;) + carz (g5 — @) (2)
where vf'-H denotes the velocity of particle ¢ in dimension

j at iteration ¢t + 1. w denotes the inertia weight and c;
and co denote the cognitive and social acceleration constants
respectively. 71, 72; ~ U(0, 1) are random numbers sampled
between O and 1 at every iteration. yfl denotes the personal
best of particle ¢ in the jth dimension and g;; denotes the
global best position of the swarm in the jth dimension.

B. Uniform Random Initialization

Usually [7], the initial positions of the particles are ob-
tained by sampling from a Uniform distribution as follows

3

where n is the dimensionality of the search space and ;44
and x,,;, denote the upper and lower bounds of the search
space, respectively. A pseudo-random number generation is
usually used to generate these positions.

X? ~ U(xmina xmam)n

C. Sobol Sequences

It has been found by Schoemann and Engelbrecht [18] that
using quasi-random number generators to generate initial par-
ticle positions can improve PSO performance. Quasi-random
number generators exhibit low discrepancy: for any given set,
the proportion of points generated by a quasi-random number
generator is approximately proportional to the measure of the
set. In other words, the point set generated by such a sequence
does not have gaps or clusters.

Quasi-random number generators thus ensure that the
swarm 1is initially distributed evenly throughout the search
space, providing the swarm with (relatively) good search space
coverage.

The Sobol sequence is one such quasi-random sequence.
Further information about the implementation of Sobol se-
quences is provided by Joe and Kuo in [10].

D. Centroidal Voronoi Tesselations

Richards and Ventura suggested Voronoi tesselations as
a particle initialization strategy in [17]. Voronoi tesselations
partition the search space into a number of small cells. These
cells should be approximately the same size so that their
centers are distributed uniformly through the search space.

Such cells are produced by a set of generators. Each
generator is assigned all the points in the search space that
are closer to that generator than to any of the other generators.
In this way, the search space is partitioned into a number of
cells, each around one of the generators. For centroidal Voronoi
tesselations (CVT), the generators are at the center of their
cells.

227

The CVTs were calculated as described by Ju, et al [11].
Initially, the set of generators are chosen randomly within the
search space. The positions of the generators are then adjusted
over a number of iterations as follows: At every iteration, a
number of sample points are chosen in the search space. Each
sample point is allocated to the closest generator. Calculate a;,
the centroid of the sample points assigned to the i, generator.
Then move every generator g; closer to a; by some fraction
of the distance between g; and a,.

The pseudo-code for the algorithm is provided below.

function CVT(s) returns a set of s initial points
for all ¢ from 1 to s do
Choose g; randomly within search space as iy,
generator
end for
for all £ from 1 to MAX_ITERATIONS do
Choose a set) of q random points within search space
for all p in Q) do
Find g;, the generator closest to p
Add p to G, the subset of () containing the points that
are closer to g; than any other generator
end for
for all ¢ from 1 to s do
Calculate a;, the average of all the points in G;
Move g; closer to a; by some fraction of the distance
between ¢; and a;
end for
end for
end function

E. Nonlinear Simplex Method

Parsopoulos and Vrahatis [15], use the Nonlinear Simplex
Method (NSM) to initialize particle swarms. The NSM was
introduced by Nelder and Mead [12] as a means of function
minimization. A n-dimensional simplex is a geometrical figure
with n+1 vertices. The vertices of a simplex are initialized to
be points in the search space, each with a corresponding score
according to the fitness function. For a number of iterations, the
simplex “walks” around the search space, each time moving
the vertex with the lowest score to a point with a higher score.
Every step that the simplex takes can be described in terms of
reflections, contractions and expansions.

Let Py, ..., P, denote the n+ 1 vertices of a simplex. Let
the vertex with the best score be denoted by B. Let the vertex
with the worst score be denoted by W. Also, let P denote the
centroid calculated using all the vertices except W.

A reflection of P is defined by

P*=(1+a)P—aP @)

where « is a positive constant known as the reflection coeffi-
cient. An expansion of P is defined by

P =P+ (1-7)P (5)

where v is known as the expansion coefficient and is a constant
greater than one. A contraction of P is defined by

Pt =pP+(1-p)P (6)

where [is between zero and one and is known as the
contraction coefficient.

At every iteration, IV is reflected to W*.

If the score of the new position is neither better than B

nor worse than W, W is replaced by W* and the iteration
ends.
If the score of W* is better than B, W* is expanded to W**.
If the score of W** is better than B, then W** replaces W,
otherwise the expansion fails and W* replaces W and the
iteration ends.

Lastly, if W* is worse than all the other points (except
possibly W), then W is replaced by min{W, W*}. The new
W is then contracted to W***.

If the score of W*** is better than W, it replaces W.
Otherwise, the contraction fails and all P; are replaced by
and the iteration restarts.

The initial suggestion for using NSM applied it to problems
where the swarm size, s, was larger than the problem dimen-
sion, n. In this case, the simplex was initialized randomly in
the search space and allowed to step s — (n + 1) many times.
The points through which the simplex’s vertices moved were
used as the initial particle positions.

However, the problems examined in this paper were of
dimensionality far higher than that of the search space. The
simplex was thus allowed to take s steps and the best s points
through which the simplex’s vertices had moved were selected
as the initial particle positions.

III. PROPOSED INITIALIZATION STRATEGY

The proposed swarm initialization technique initializes the
swarm in a small subspace of the entire search space. The
swarm does not wander far from this initial subspace, thereby
forcing the swarm to focus on exploitation within the small
subspace rather than attempting to explore the expanse of the
search space.

The initialization strategy makes use of a “seed set”, which
is simply a set of u, randomly generated, n-dimensional or-
thogonal unit vectors. The seed set is obtained by means of the
Modified Gram Schmidt method (MGS) [14] where the initial
set of linearly independent vectors are generated randomly. The
smaller the seed set, the fewer linearly independent vectors are
used to initialize the particle positions and personal bests and
the smaller the subspace within which the swarm is initialized.

For completeness, a brief discussion of the Gram-Schmidt
method follows. The Gram-Schmidt method receives u-many,
n-dimensional vectors as input from which it generates a set of
min{u,n} orthogonal vectors. The set of orthogonal vectors
is generated stepwise as follows:

Given a set of n-dimensional input vectors, {vy, ...
for all 7 from 1 to u do

i—

s Vu}

v, <V;,a;> .
4 =V Z <aj,a; >
Jj=1
b, = &
v lag]]
end for
return {by,...,b,}

In the algorithm above, < a,b > denotes the inner product
of the two vectors a and b.

228

To produce the i;;, orthogonal vector b;, the iy, seed set
vector v; is projected onto the subspace generated by all
of the orthogonal vectors already calculated, by, bs,...,b;_1.
The orthogonal vector b; is then defined to be the difference
between v; and its projection. Note that all the b; for 7 > n
will be zero vectors.

Intuitively, the projection step finds the components of the
seed vector that is shared by the orthogonal vectors calculated
thus far. The b; is then found by taking away all the shared
components from the seed vector.

The Gram-Schmidt method as discussed above is suscep-
tible to rounding errors. The Modified Gram Schmidt method
computes the projection step differently so that the process
is numerically stable. The implementation of the initialization
technique thus uses the MGS method instead.

The initialization strategy generates an n-dimensional point
which can be used either as a particle’s initial position or as
its initial personal best (see Section 4 for further details on
how personal bests were chosen in the given experiments). The
point is selected randomly on a line, L, that passes through
the centre of the search space. The direction of the line, d, is
determined by the seed set.

The direction of the line is a random linear combination
of all the vectors in the seed set, calculated as

d =c1b; + by + ... + ¢, by (@)

where each ¢; ~ U(0,1) and each b; is an element from the
seed set.

The point, p, is generated on a line with the equation

p=td+c (8)

where c denotes the centre of the search space and ¢ is a scalar.
The value for t is drawn from a uniform distribution with
bounds (tmin, tmaz)- Let the bounds of the j-th dimension of
the search space be (Z; min,Zj,mas). Then the bounds for ¢
are calculated as follows

for all j from 1 to n do
if d; == 0 then continue
end if
> Find the point p, the intersection between L and
the maximum boundary of the j;;, dimension
ty = Hhemget
p =tid +J c
if IWITHINBOUNDS(p, MARGIN) then continue
end if
> Find the point q, the intersection between L and
the minimum boundary of the j;;, dimension
t2 — Zj,min —Cj

d;
q= tgd +J c
if !WITHINBOUNDS(q, MARGIN) then continue
end if
return t,,;, = min(ty,ts) and t,0. = max(ty, ta)
end for
function WITHINBOUNDS(p, MARGIN)
for all ¢ from 1 to n do
if |p; — i mas| OF |Di — Timin| > MARGIN then
return false
end if

end for
return true
end function

The algorithm is illustrated in Figure 1 for a 2-dimensional
search space centred at (0,0). According to the diagram, the

algorithm would return bounds (¢,min, tmaz) = (% yd‘#)
Y
Y
Dz
(wminy ymaw) .
N :/" 1 (xma;u ymaaz)
| d py |
! |
l -
! -7 |
! .7 |
Py -7 !
(xmiru ymin) kil ety !
Gz o (:Cmazv ymzn)

Fig. 1. Determining bounds for the scalar ¢ in a 2-dimensional space centred
at (0,0), given a direction vector d

Since the relative sizes of the direction vector’s components
differ, the bounds (tmin, tmas) may define a very small range
that causes the generated positions to be near the origin in all
dimensions except the few for which the direction vector is
relatively large. In order to prevent all of the generated points
from being concentrated near the centre of the search space,
the points were allowed to be generated outside of the search
space in a given dimension by a small margin, denoted by
MARGIN in the algorithm above.

IV. EXPERIMENTAL PROCEDURE

This section describes the experimental procedure fol-
lowed.

Each of the algorithms were evaluated on a benchmark
suite of 22 base functions which are listed in the “Function
Name” column of Table IV. Since the proposed initalization
strategy initializes particles on lines that pass through the
centre of the search space, it would not be representative to
use benchmark functions with optima near the centre of the
search space. Instead, many of the benchmark functions were
also shifted by varying degrees so that the benchmark suite is
not biased towards the proposed initialization strategy. A given
function f was shifted and rotated to produce f5"#* according

to
f)5ME = f(R(x— 7)) + 8 ©)

where v and [are constants specified in Table 1 and R
is a randomly generated orthogonal matrix. The “Rotated”
column in Table 1 indicates whether the function was rotated
or not. This provided a total of 38 benchmark functions. The
benchmark suite contains uni- and multi-modal functions that
are both separable and non-separable. The definitions of the
functions and the corresponding bounds were used as in [8],
[9] and [16]. The “Source” column of Table 1 lists the identifier
of each function according to its source. Function ¢ from [8]
is denoted by f;; function ¢ from [9] is denoted by F; and

229

function ¢ from [16] is denoted by G;. All of the functions
were minimized in {500, 1000, 2000} dimensions.

The PSOs made use of synchronous updates and the star
neighbourhood topology. Personal bests and the global best
were only updated if they were within the bounds of the search
space, thereby ensuring that the particles’ attractors remained
inside the search space. Velocity clamping was not used.
Initial velocities were set to zero. The values of the velocity
equation parameters were used as suggested by [6] to ensure
convergence with w = 0.729844 and ¢; = co = 1.49618.

The initial personal best and initial positions of the particles
were initialized by generating two vectors within the search
space (according to the chosen initialization strategy) and
evaluating both. The vector with the better value for the
objective function was assigned to the particle’s personal best
and the particle’s initial position was set to the other vector.

The pseudo-random number generator used for the Uni-
form Random strategy was a Merzenne Twist. The quasi-
random number generator used for the Sobol sequence ini-
tialization strategy was the implementation provided in the the
Apache Commons Math package version 3.6 [1].

The CVT strategy was allowed to run for 5 iterations.
With every iteration, 50000 sample points were generated as
suggested in [17]. Every generator was moved 0.6 of the
distance between it and the centroid of the sample points
assigned to it. The NSM was implemented as described in the
previous section with values a = 1.0, v = 2.0 and 5 = 0.5 as
suggested in [13].

The proposed initialization strategy was implemented as
described in Section 3. Particle positions were generated with
a MARGIN of one tenth the range of the search space,
(0.1(Tyaz — Tmin))- Personal bests were generated with a
MARGIN of zero to ensure that the particle’s attractor remains
inside the search space. Three different values for u were
tested, namely {1,5,25}.

A swarm size of 25 was used in all cases. Each simulation
was allowed to run for 2000 iterations. Every simulation was
repeated on each benchmark function 30 times to achieve
statistical significance. The performance of an algorithm on
a given benchmark function was characterized in terms of the
best fitness value attained in a given simulation. The swarm
diversity was characterized by means of the average distance
from the swarm centre as suggested in [13].

Friedman tests with a p-value of 0.05 were used to detect
statistically significant differences among the algorithms’ per-
formance. If the Friedman test indicated significant differences,
further pairwise comparisons were done by means of Mann-
Whitney U tests with a p-value of 0.05.

V. RESULTS AND DISCUSSION

This subsection provides the comparative results of the
experiments as well as a detailed discussion of the observed
outcomes.

Tables II, IIT and IV provides comparative results for the
different initialization strategies for 500, 1000 and 2000 dimen-
sional problems respectively. Each table may be interpreted as
follows: The value of the cell in row number R and column

TABLE 1.

BENCHMARK FUNCTIONS

Function Name Source Domain Range Rotated Function Name Source Domain Range Rotated
Shift Shift Shift Shift
Absolute Value fi 0.0 0.0 No Rastrigin Sh fi2 0.0 0.0 Yes
Dixon-Price Fus 0.0 0.0 No Rastrigin ShR f12 2.0 —330.0 Yes
Egg Holder fa 512.0 0.0 No Rosenbrock fi3 0.0 0.0 No
Elliptic fs 0.0 0.0 No RosenbrockSh f13 10.0 390.0 No
Elliptic Sh fs 10.0 —450.0 No RosenbrockR fis 0.0 0.0 Yes
Elliptic R fs 10.0 —450.0 Yes Salomon f1a 0.0 0.0 No
Elliptic ShR fs 0.0 0.0 Yes Schaffer 6 fis 0.0 0.0 No
Griewank fe 0.0 0.0 No Schaffer 6S hR f1s 20.0 —300.0 Yes
Griewank Sh fe 10.0 —180.0 No Schwefel Gs 0.0 0.0 No
Griewank R fe 0.0 0.0 Yes Schwefel 1.2 f1e 0.0 0.0 No
Griewank ShR fe —60.0 —180.0 Yes Schwefel 1.2 Sh f1e 10.0 —450.0 No
HyperEllipsoid fr 0.0 0.0 No Schwefel 1.2 R fie 0.0 0.0 Yes
Michalewicz fs 0.0 0.0 No Schwefel 2.21 f19 0.0 0.0 No
Norwegian fo 0.0 0.0 No Spherical fa2 0.0 0.0 No
Powell Singular 2 Foo 5.0 0.0 No Spherical Sh faz 0.0 0.0 No
Quadric fio 0.0 0.0 No Step f23 0.0 0.0 No
Quartic fi11 0.0 0.0 No Vincent foa 0.0 0.0 No
Rastrigin f12 0.0 0.0 No Weierstrauss fas 0.0 0.0 No
Rastrigin R fiz2 2.0 —330.0 No Weierstrauss Sh fas 1.0 —130.0 No
TABLE L COMPARISON WITH SUBSPACE-BASED PSO ON'n = 500 explained in Section III, it is proposed that forcing the swarm
> Subspace-ul | = | <Subspace-ul to search within a small part of the search space may yield
Uniform Random 0 0 38 better results than attempting to explore the entire search space.
Sobol Sequence 21 1 16
;;’]3[(3) g 22 The Sobol sequence initialization strategy ensures that

TABLE III. COMPARISON WITH SUBSPACE-BASED PSO ON n = 1000

> Subspace-ul < Subspace-ul

Uniform Random 0 0 38
Sobol Sequence 2 5 31
CVT 6 9 23
NSM 0 0 38

number C' reflects the number of benchmark functions for
which the algorithm listed in row R performed significantly
better than the algorithm in column C' in terms of the best
score attained by the swarm, averaged across all runs. In all
cases, the subspace-based initialization strategy with a seed set
of size 1 was used for comparison.

Note that for the lower dimensional problems (500 dimen-
sions), the Sobol sequence is the only strategy that performed
better than the subspace-based strategy - the rest almost never
performed significantly better than the subspace-based strategy.
In contrast, for the higher dimensional problems (1000 and
2000 dimensions), the only initialization strategy in competi-
tion with the subspace-based strategy was CVT and even then
the subspace-based strategy outperformed CVT for more than
half of the benchmark problems.

The observed behaviour can be explained by the hypoth-
esis that for high dimensional problems, initializing particles
evenly throughout the search space may not be beneficial. As

TABLE IV. COMPARISON WITH SUBSPACE-BASED PSO ON n = 2000
> Subspace-ul = < Subspace-ul
Uniform Random 0 0 38
Sobol Sequence 2 2 34
CVT 8 8 22
NSM 0 1 37

230

the particle positions are initialized in such a way that the
particles do not cluster together and that there are no large gaps
between them initially. This appears to be a useful strategy
in the lower dimensional cases. However, as the problem
dimensionality increases, the swarms are no longer able to
explore the exponentially growing search space effectively and
the swarm’s performance deteriorates. A typical profile of best
score achieved by the swarm per iteration is shown in Figure
2. The figure shows that the best solution found by the Sobol
sequence was discovered within the first few iterations and
then never improved upon; the good solutions found by the
swarm were thus not due to gradual exploration of the search
space, but rather because the solution found by the swarm was
serendipitously near one of the swarm’s initial points. Such
propitious initialization becomes less likely as the problem
dimensionality increases.

Since the Sobol sequence swarm and the uniform random
PSO swarm are initialized evenly throughout the search space,
there will be large distances between the initial positions of the
particles. Although the NSM is not initialized evenly through-
out the search space, the initial particle positions are the s
points with the highest scores through which the n dimensional
simplex passes. In high dimensions, this becomes equivalent
to a brute-force approach for finding a favourable region in
the search space, since the number of points generated by the
simplex’s iterative walk is much smaller than the number of
its initial vertices (n + 1), which are chosen randomly. The
distance between the initial particle positions are thus also
quite large. This is supported by Figure 3.

6N

Best Score per It

-600 —

Uniform Random (n = 2000)
Sobol Sequence (n = 2000)

£ CVT (n = 2000)

NSM (n=2000y -——-

8 Subspace fr=-1; n-=2000)
I T T T T T T T T

1200
Iterations

|
1500

Fig. 2. Best Score per Iteration of Uniform Random, Sobol Sequence,
CVT, NSM and Subspace PSOs on Vincent for 2000 Dimensions over 2000
Tterations

1’_‘4 T T —— - - - —————————
< 1200
7
= 4
_: 600 —
wy
Uniform Random (n = 2000) —
Sobol Sequence (n = 20000}
CVT (n=2000)y | -
S R T T e T T T T AN (e 00 e
Subspace (u=1: n= 2000}
| T T | T T | T T |
1] 600 1200 1800
Iterations
Fig. 3. Swarm Diversity per Iteration of Uniform Random, Sobol Sequence,

CVT, NSM and Subspace PSOs on Elliptic, Rotated for 2000 Dimensions
over 2000 Iterations

The momentum of the particles will thus be fairly large,
due to the large initial distances between the particles. Even if
a good solution is found, the particles will be unable to exploit
the surrounding area effectively due to their large velocities,
which will prevent fine-grained searching.

The argument above is supported by Figures 2 and 3.
Figure 2 shows that for the uniform random PSO and then
NSM PSO, the best score per iteration fails to improve after
initialization and, for the Sobol sequence PSO, the score im-
proves very little after initialization. Additionally, as illustrated
in Figure 3, after an initial drop, the average diversity of the
swarm stays relatively high for the remainder of the search.
This implies that the swarms converge to a local minimum that
is found within the first few iterations of the search. However,
the sustained high diversity indicates that the swarms were
unable to exploit further within the discovered region.

Both CVT and the subspace-based method caused particles

231

to be initialized closer together, thereby giving the swarm
a much lower initial diversity than the other methods. The
momentum components of the particles’ velocities would thus
be smaller, enabling the particles to perform fine-grained
exploration in a selected region. The reasons for the small
initial swarm diversities exhibited by the subspace-based and
CVT methods are explained below.

The CVT method makes use of sample points to determine
the cell centroids and to ensure that they are distributed evenly
throughout the search space. However, the number of sample
points remain fixed regardless of the problem dimensional-
ity. For high dimensional problems, the chosen number of
sampling points are not enough to ensure even distribution
of the cell centroids, particularly if the number of iterations
also remains fixed. This, in turn, led to a relatively low initial
swarm diversity (see Figure 4).

s

800 T
£ 600
5
2 400—
:
w

200 — ——

Subspace (u=1;n=2
T T | T T ‘ T |
0 600 1200 1800
Tterations
Fig. 4. Swarm Diversity per Iteration of CVT and Subspace PSOs on

Schaffer6 for 2000 Dimensions over 2000 Iterations

The subspace method also causes the swarm to have a low
initial diversity due to the way in which the scalar ¢ is chosen.
Although ¢- the scalar by which the direction vector d is scaled
- is chosen randomly, ¢d must still be approximately within the
bounds of the search space. If the value of d is relatively large
for only one dimension, this will force ¢ to be small, thereby
confining the particle position to a smaller initial space in all
the other dimensions.

As illustrated in Figure 5 and explained above, a low initial
diversity may have been an advantage. In many of the cases
that the CVT method outperforms the subspace-based method,
the CVT swarm started with a lower initial diversity than the
subspace-based swarm.

There were, of course, also cases in which the subspace-
based swarm outperformed the CVT method, even though
the CVT had lower initial diversity. This shows that simply
initializing particle unevenly is not an appropriate strategy.
This may be because the CVT created position clusters in
unfavourable areas - parts of the search space with no good
solutions - or because the CVT left gaps in favourable areas
of the search space. However, since the subspace within which
the subspace-based PSOs are initialized is chosen randomly,

Best Score per It

840
T80~
CVT (n=2000)~—"—"
E Subspace (u = 1; n = 2000) "
T T | T T | T |
0 600 1200 1800
Tterations
Fig. 5. Best Score per Iteration of CVT and Subspace PSOs on Schaffer6

for 2000 Dimensions over 2000 Iterations

TABLE V. COMPARISON AMONGST SUBSPACE INITIALIZATION

STRATEGIES FOR VARYING SEED SET SIZES

> Subspace u=1
Subspace u=5 3
Subspace u=25 11

= <Subspace u=1
35 0
26 1

it should be expected that the subspace may frequently be
unfavourable and that the best score of the subspace-PSOs
should have high standard deviation.

This was indeed seen by examining the standard deviations
of the subspace-based PSOs for different values of u. As
u is increased, the initial subspace in which the swarm is
initialized becomes larger and so the chances of initialization
in a poor region are slightly lower. Nevertheless, even for
u = 1, the subspace-based PSO still exhibited lower standard
deviations than the other initialization strategies for 28 of the
38 benchmark functions.

The swarms with different seed sizes performed very
similarly for problems of lower dimensionality. For problems
of dimensionality 2000, Table V shows that swarms with larger
seed sets performed better than swarms with smaller seed sets.
Swarms with larger seed sets are initialized in a larger subspace
of the search space which decreases the chances of the particles
being initialized in a poor region. However, even the largest
seed size tested is still initialized in a much smaller subspace
than the other initialization strategies, thereby allowing the
swarm to focus on exploring a smaller part of the search space.

VI. CONCLUSION

The paper introduced a novel particle swarm initialization
strategy that is particularly suited to high dimensional prob-
lems. The proposed initialization strategy forces the swarm to
focus on exploration within a small subspace of the search
space, rather than attempting to explore the entire search
space. The proposed initialization strategy is compared to a
number of other initialization strategies on problems of high
dimensionality.

It was found that the proposed strategy performed much

232

better than uniform random initialization and NSM. The pro-
posed strategy was outperformed by Sobol sequences for the
lower dimensionality problems, but in turn performed far better
than CVT for the higher dimensional problems. The only
strategy that performed comparably to the proposed subspace-
based strategy was CVT. However, the proposed strategy
still performed significantly better than CVT on more than
half of the benchmark suite for all problem dimensionalities,
though the two strategies performed more similarly at higher
dimensions.

In addition, the effect of different seed set sizes - the
number of random, linearly independent vectors used to gen-
erated the initial particle positions - was briefly examined.
It was found that PSOs initialized with different seed set
sizes behaved similarly at dimensions below 2000. At higher
dimensions, PSOs with larger seed sizes performed better.

The paper proposes that low initial swarm diversity may be
beneficial to the swarm’s searching ability in high dimensional
problems because the particles will have lower momentum,
enabling the swarm to perform more fine-grained exploration
within the initialized region.

It is suggested that optimization of high dimensional
problems should be focused more on finding good local
minima within a small region of the search space, rather
than attempting to trawl the entire space in search of a
global minimum. Although the shift in focus to exploitation
rather than exploration may seem counter-intuitive, the results
indicate that it may be a fruitful approach.

Further research may attempt to generalize these results
to other population-based algorithms such as differential evo-
Iution or evolutionary programming. Additionally, further re-
search may attempt to investigate the importance of particle
momentum for high dimensional problems; techniques such
as velocity clamping or gradually decreasing inertia weights
may allow swarms to perform effective large-scale as well as
fine-grained exploration.

Future work may also investigate the advantages the ini-
tialization strategy may offer with regard to niching problems.
Slight modifications to the initialization strategy may allow
different swarms to be initialized in othogonal subspaces
within the search space, thereby allowing each swarm to
discover a different local optimum.

REFERENCES

[1] The Apache Software Foundation.

Commons Mathematics Library, 2015.

Commons Math: The Apache

T. Blackwell. Particle swarm optimization in dynamic environments.
In S. Yang, Y.-S. Ong, and Y. Jin, editors, Evolutionary Computation
in Dynamic and Uncertain Environments, volume 51 of Studies in
Computational Intelligence, pages 29-49. Springer Berlin Heidelberg,
2007.

R. Brits, A. P. Engelbrecht, and F. van den Bergh. A niching particle
swarm optimizer. In Proceedings of the Conference on Simulated
Evolution And Learning, pages 692-696, 2002.

C. A. Coello Coello and M. Lechuga. Mopso: a proposal for multiple
objective particle swarm optimization. In Proceedings of the 2002
Congress on Evolutionary Computation, volume 2, pages 1051-1056,
2002.

R. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pages 39—43, Oct 1995.

(3]

(4]

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

R. Eberhart and Y. Shi. Comparing inertia weights and constriction
factors in particle swarm optimization. In Proceedings of the 2000
Congress on Evolutionary Computation, volume 1, pages 84-88 vol.1,
2000.

A. P. Engelbrecht. Computational Intelligence, An Introduction, page
297. John Wiley & Sons, Ltd, 2nd edition, 2007.

A. P. Engelbrecht. Particle swarm optimization: Global best or local
best? In Proceedings of the 11th Brazilian Congress on Computational
Intelligence, pages 124—135, Sept 2013.

M. Jamil and X.-S. Yang. A literature survey of benchmark functions for
global optimization problems. Int. Journal of Mathematical Modelling
and Numerical Optimisation, 4(2):150194, 2013.

S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing sobol’s
quasirandom sequence generator. Association for Computing Machinery
Trans. Math. Softw., 29(1):49-57, Mar. 2003.

L. Ju, Q. Du, and M. Gunzburger. Probabilistic methods for centroidal
voronoi tessellations and their parallel implementations. Parallel Com-
puting, 28(10):1477 — 1500, 2002.

J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308-313, 1965.

0. Olorunda and A. P. Engelbrecht. Measuring exploration/exploitation
in particle swarms using swarm diversity. In IEEE Congress on
Evolutionary Computation, pages 1128-1134, June 2008.

C. C. Paige, M. Rozloznik, and Z. Strakos. Modified gram-schmidt
(mgs), least squares, and backward stability of mgs-gmres. Society

233

[15]

[16]

[17]

[18]

[19]

[20]

for Industrial and Applied Mathematics Journal Matrix Anal. Appl.,
28(1):264-284, May 2006.

K. E. Parsopoulos and M. N. Vrahatis. Initializing the particle
swarm optimizer using the nonlinear simplex method. In Advances in
Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pages
216-221. WSEAS Press, 2002.

F. Ramezani and S. Lotfi. The modified differential evolution algorithm
(mdea). In J.-S. Pan, S.-M. Chen, and N. Nguyen, editors, Intelligent
Information and Database Systems, volume 7198 of Lecture Notes in
Computer Science, pages 109-118. Springer Berlin Heidelberg, 2012.

M. Richards and D. Ventura. Choosing a starting configuration for
particle swarm optimization. In Proceedings of the IEEE International
Joint Conference on Neural Networks, volume 3, pages 2309-2312
vol.3, July 2004.

I. Schoeman and A. P. Engelbrecht. Effect of particle initialization on
the performance of particle swarm niching algorithms. In M. Dorigo,
M. Birattari, G. Di Caro, R. Doursat, A. P. Engelbrecht, D. Floreano,
L. Gambardella, R. Gro, E. ahin, H. Sayama, and T. Sttzle, editors,
Swarm Intelligence, volume 6234 of Lecture Notes in Computer Sci-
ence, pages 560-561. Springer Berlin Heidelberg, 2010.

D. Sedighizadeh and E. Masehian. Particle swarm optimization meth-
ods, taxonomy and applications. International Journal of Computer
Theory and Engineering, 1(4), Oct 2009.

F. van den Bergh and A. P. Engelbrecht. A cooperative approach

to particle swarm optimization. IEEE Transaction on Evolutionary
Computation, IEEE Transactions on, 8(3):225-239, June 2004.

