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Abstract—Multimodal optimization amounts to finding 
multiple optima of a problem. In recent years, particle swarm 
optimization (PSO) algorithms have been widely used by the 
evolutionary computation community to tackle multimodal 
problems. However, the capability of using a suitable PSO 
communication topology to induce stable niching behavior has 
not been well explored. In this paper, we propose a minimum 
spanning tree (MST) topology for PSO to solve multimodal 
problems. In each iteration, a minimum spanning tree is built 
based on the configuration of particles. The neighbors of each 
particle are determined according to the MST. The MST 
topology is able to capture the distribution of particles using a 
small number of edges. Moreover, a number of max weighted 
edges in the MST are cut to avoid the genetic drift phenomenon 
and to enhance the niching performance. The proposed topology 
is integrated with a canonical PSO and a locally informed 
particle optimizer (LIPS) to tackle multimodal problems. 
Experiments have been conducted on the CEC2013 benchmark 
functions to test the performance the integrated algorithms. 
Experimental results show that PSOs with MST topology are 
very effective in solving multimodal problems.  

I. INTRODUCTION  
Multimodal problems are commonly seen in many 

application domains. For example, in pattern recognition, 
multiple eclipse detection [1][2] that aims at extracting 
multiple eclipse from an image is a typical multimodal 
problem. Locating multiple optima of a problem has several 
benefits. First, it can provide users a diverse set of good 
solutions. If a solution cannot be implemented due to 
unexpected circumstances, remedial actions can be made 
quickly by adopting other equally good solutions. Second, by 
locating multiple optima, the possibility of getting stuck in one 
local optimum is decreased. Multimodal optimization has 
gained increasing attention in recent years because of its 
considerable significance. 

Evolutionary computation (EC) [3][4] is one of the most 
promising candidates for multimodal optimization. It contains 
a family of nature-inspired optimization algorithms. Unlike 
traditional optimization techniques, the algorithms maintain a 
population of individuals, which are used to search for the 
global optimum cooperatively. It is a common phenomenon 
that individuals in the population eventually gather around one 
optima. However, this is not desirable when we are dealing 

with multimodal problems. To develop the algorithms’ ability 
of finding and maintaining multiple niches, a number of 
techniques known as “niching” methods were proposed [5]-[8]. 
Some famous niching methods include fitness sharing [9], 
crowding [10], speciation [11], and restricted tournament 
selection [12]. 

Among the promising EC techniques is the particle swarm 
optimization (PSO) [13][14]. PSO is very popular owing to its 
simplicity and effectiveness. It has been used increasingly as 
an optimization technique for solving complex problems [15]. 
The fact that PSO is a population-based technique makes it a 
natural candidate for multimodal optimization. A number of 
PSO variants have been proposed to handle multimodal 
problems [16]-[23]. Most of the niching PSOs center on 
dividing the particles into sub-swarms. Each sub-swarm is 
assigned to search for one optimum. This sort of methods 
generally require a niching parameter (e.g., the niche radius 
required by SPSO [20]), which is very difficult to set without a 
priori knowledge of the problem being solved. To eliminate the 
need of specifying niching parameters, alternative methods that 
rely on the swarm communication topology are proposed [22], 
[23]. The swarm communication topology plays a very 
important role in the search behavior of PSO. However, the 
most commonly used global topology cannot meet the 
requirement of multimodal optimization. In [22], Li showed 
that PSO with a ring topology (rpso) is able to find and 
maintain multiple niches. This finding sheds light on the 
importance of swarm topology on finding multiple optima.  

This paper tries to exploit the potential of using a well-
designed swarm communication topology to induce stable 
niching behavior. To this end, we propose a minimum 
spanning tree (MST) topology for PSO to solve multimodal 
problems. Particles are viewed as vertices in the search space. 
In each iteration, a fully connected graph is constructed based 
on the configuration of particles. Each pair of particles are 
connected by a weighted edge. A minimum spanning tree is 
built on the weighted graph. Then, the neighborhood relation of 
two particles is determined by whether there is an edge in the 
MST connecting them. Further, to avoid particles oscillating 
between two niches that are far away from each other, a certain 
number of max weight edges are removed from the MST. 
Hence, the graph is divided into several connected 
components. Particles in each connected component are 
responsible for finding one optimum or several optima that are 
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close to one another. The MST topology has the following 
features: (1) It alleviates users’ burden of setting any niching 
parameters. (2) It is able to capture the distribution of particles 
by using a small number of critical edges. (3) It is a distance-
based topology. The neighbors of a particle are chosen in a 
way that they are close to the particle geometrically. Each 
particle is guided by its distance-based neighbors so that 
multiple niches can be detected simultaneously. (4) It is able to 
maintain found optima until the end of a run. The MST 
topology uses neighborhood information to perform local 
search. Once a niche is detected, particles around the niche will 
continue to search for better solutions within it. 

The proposed MST topology is integrated with the 
canonical PSO and a state-of-the-art PSO variant called LIPS 
[23] to solve multimodal problems. The resulting algorithm is 
termed MST-PSO and MST-LIPS respectively. Experiments 
have been carried out to study the search behavior of the MST-
based PSOs. In addition, MST-PSO and MST-LIPS are 
compared with several state-of-the-art multimodal algorithms. 
The experimental results demonstrate the effectiveness of the 
MST topology in solving multimodal problems.  

The rest of this paper is organized as follows. Section II 
gives a brief review on PSO-based multimodal algorithms. 
Section III describes the proposed minimum spanning tree 
topology PSO. Experiments on the CEC2013 benchmark 
functions are conducted in Section IV. Discussion about the 
experimental results is also included in this section. Finally, 
concluding remarks are presented in Section V. 

II. BACKGROUND 

A. Particle Swarm Optimization 
PSO is a simple and efficient population-based 

optimization technique proposed by Kennedy and Eberhart 
[13]. It mimics the group behavior of bird flocking and fish 
schooling. PSO maintains a swarm of particles that fly through 
the problem space with continuously updated velocities. 
Particles are initially distributed throughout the search space. 
Each particle memorizes the best position it has ever been 
(pbest) and the global best position (gbest). At each iteration, 
the position and velocity of each particle are updated according 
to the following formula: 

 1 1

2 2

( )
( )

i i i i
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ω= × + × × −
+ × × −
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 i i iX X V= +   (2) 

where Xi and Vi denote the position and velocity of the ith 
particle respectively. � is the inertia weight that is used to 
balance the global and local search abilities. c1 and c2 are 
acceleration coefficients. r1 and r2 are random numbers within 
[0, 1]. The model that uses gbest to guide the search of each 
particle is commonly known as global topology. Besides the 
global topology, there are frequently used local topologies. 
Instead of using gbest to guide the particles, a local topology 
defines the neighbors of each particle. The velocity of a 
particle is updated using the information provided by its 

personal best position (pbest) and the neighborhood best 
position (lbest), as formulized in (3). 
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B. PSO for Multimodal Optimization 
PSO is one of the most promising candidates for solving 

multimodal problems. Brits et al. [17] proposed a nbest PSO 
algorithm that defines the neighbors of a particle as its n closest 
particles. The lbest of a particle is the average position of its n 
neighbors. Brits et al. [18] also proposed a PSO variant called 
NichePSO. Multiple sub-swarms are spawned from the main 
swarm to locate multiple optima. A sub-swarm can be merged 
with another sub-swarm. Each sub-swarm is able to absorb 
particles from the main swarm. Parsopoulos and Vrahitis [19] 
proposed an approach that isolates particles whose fitness 
values have reached a specific accuracy level. The isolated 
particles repel other particles by using a “stretching” technique. 
A small swarm of particles is generated around each isolated 
particle to facilitate fine search. Li [20] applied the concept of 
species to PSO and proposed a speciation-based PSO (SPSO) 
algorithm. Particles in the main swarm are divided into a 
number of species. Each species is dominated by a particle 
called species seed. The velocity update of a particle is 
performed using the information provided by its species seed. 
In [16], Barrera and Coello provided a comprehensive survey 
for PSO-based multimodal algorithms. In the following 
paragraphs, we briefly review some prominent PSO-based 
multimodal algorithms that used for comparison in this paper.  

1) Fitness Euclidean-Distance Ratio PSO (FER-PSO): 
Noticing that setting the niching parameters is the most critical 
issue for existing multimodal algorithms, Li proposed [21] a 
Fitness Euclidean-distance Ratio based PSO (FER-PSO) 
algorithm that removes the need of any niching parameters. In 
FER-PSO, for each pair of particles (j, i),  a quantity called 
Fitness-Euclidean distance Ratio (FER) is calculated as follows: 

 ( , )
( ) ( )j i

j i
j i

fit pbest fit pbest
FER

pbest pbest
α

−
= ⋅

−
  (4) 

where � is a scaling factor. ||pbestj-pbesti|| denotes the 
Euclidean distance between pbestj and pbesti. Instead of 
having a single gbest for the entire swarm, each particle is 
allocated a neighborhood best position. pbestj is chosen as the 
neighborhood best position of the ith particle if FER(j, i) gives 
the lowest FER value. By doing so, particles will fly towards 
their “fittest-and-closest” neighbors and multiple sub-swarms 
will form naturally around multiple optima. 

2) Ring Topology PSO (rpso): The performance of many 
multimodal algorithms is very sensitive to the setting of 
niching parameters. To eliminate the need of specifying any 
niching parameters, Li [22] proposed a ring topology PSO 
(rpso) for solving multimodal problems. In rpso, particles are 
arranged in a circle. Each particle only interacts with 
immediate neighbors (i.e., particles on its left and right). Li 
showed that PSO with ring topology is able to detect and 
maintain multiple stable niches. 
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3) Distance-Based Locally Informed Particle Swarm (LIPS): 
To enhance the local search ability of PSO and solve 
multimodal functions, Qu et al. [23] proposed a locally 
informed particle swam (LIPS) optimizer. Instead of using 
gbest to guide the search of particles, LIPS uses several local 
bests. The velocity of a particle is updated by using the 
information provided by its Euclidean distance neighbors, 
which is formulized as: 

 ( ( ))i i i iV V P Xω ϕ= ⋅ + −   (5) 

where 

 1 ( )nsize
j jj

i
nbest

P
ϕ

ϕ
= ⋅

=
�

  (6) 

�j is a random number in the range [0, 4/nsize] and � is the 
summation of �j. nbestj is the jth nearest neighbor to pbesti. 
nsize is the neighborhood size. In [23], it is recommended that 
nsize dynamically increase from 2 to 5 with respect to the 
number of function evaluations. LIPS makes good use of the 
neighborhood information and has been shown to be very 
effective in solving multimodal problems. 

III. THE PROPOSED MINIMUM SPANNING TREE TOPOLOGY  

A. Rationale 
The characteristics of PSO topologies in locating a single 

global optimum have been extensively studied in the literature 
[24]. The global topology is distinguished by its fast 
convergence speed, while local topologies have strong ability 
of diversity maintenance. However, topologies used for tracing 
and locating multiple optima have not been well studied. This 
paper is devoted to the design of a communication topology 
that is suitable for multimodal problems.  

When solving multimodal problems, the selection of 
examples used to guide the search of particles is very important. 
If only gbest is used, the entire swarm will probably converge 
to one optimum. Different from the global topology, local 
topologies may be competent to handle the multimodal 
optimization task. In [22], Li showed that PSO with a ring 
topology is able to locate multiple optima of a problem. In 
addition, it was observed that the ring topology with no 
overlapping neighborhoods is more effective than that with 

overlapping neighborhoods (illustrated in Fig. 1). Note that 
ring topology is a fixed index-based topology, particles are 
only allowed to interact with their neighbors determined by the 
particle indices. As the initial swarm is generated randomly in 
the search space, it is very likely that a particle and its 
neighbors belong to different niches, causing the oscillation of 
particles. In a later study, Qu et al. [23] found that it is possible 
to eliminate such oscillation by defining the neighborhood 
relation of two particles according to their Euclidean distance. 
They pointed out that PSO with Euclidean-based topology is 
able to perform exploration more freely than those with index-
based topology. Moreover, the Euclidean distance-based 
neighborhood selection also increases PSO’s ability for local 
search and fine-tuning.  

Motivated by the findings that (1) topologies which divide 
the entire swarm into several disjoint sets of particles are able 
to exhibit more stable niching behavior; (2) distance-based 
topologies work better than index-based topologies, we 
propose a distance-based dynamic topology for PSO to tackle 
multimodal optimization problems. The detailed description of 
the topology is given in the next subsection. 

B. Minimum Spanning Tree Topology 
The proposed minimum spanning tree topology (MST) is a 

conceptually simple topology based on the graph theory. A 
graph is constructed according to the distribution of particles. 
Each particle is viewed as a vertex in the graph. For each pair 
of particles, there is a weighted edge connecting them. The 
weight of the edge connecting the ith and jth particles is given 
by the Euclidean distance: 

 ij i jw pbest pbets= −   (7) 

The distance between two particles is calculated with respect to 
their memory best positions, since the memory best position of 
a particle is more stable than its current position. We then build 
a minimum spanning tree on the complete graph. The max 
weighted edges in the spanning tree are probably connecting 
particles from different niches. Hence, a number of max 
weighted edges in the minimum spanning tree are cut to avoid 
possible genetic drift. In this way, the graph is divided into 
several connected components. Each connected component 
contains particles that are located in relatively close regions. 
The neighborhood relation of two particles is determined by 
whether there is an edge of the MST connecting them.  

Fig. 2 gives an example of constructing the MST topology. 
There are seven vertices (represented by grey circles) in the 
graph. Every pair of distinct vertices is connected by a 
weighted edge (Fig. 2 (a)). The weight of an edge is 
determined by the Euclidean distance of its corresponding pair 
of particles in the search space. Then, a MST is built on the 
weighted complete graph, as shown in Fig. 2 (b). The longest 
edge connecting No. 2 and No. 4 particles is cut to facilitate the 
formation and maintenance of multiple niches. Each particle 
maintains a neighborhood list. We find the neighbors of each 
particle by looking through the remaining edges in the MST. 
The neighbors of all particles defined by the constructed MST 
are given in Fig. 2 (c). The velocity update of a particle is 

 
                     (a)                                          (b) 
Fig. 1.  Ring topology PSO. (a)r3pso with overlapping neighbors. (b) 
r3pso without overlapping neighbors. 
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performed by using the information provided by the neighbors 
in its neighborhood list. 

Compared with existing PSO topologies, the MST topology 
has its distinct features. It is a distanced-based dynamic 
topology constructed from a global viewpoint. It captures the 
distribution of the particles with a relatively small number of 
critical edges. There are two main advantages of MST 
topology to solve multimodal problems. (1) The construction 
of the MST ensures the good usage of the local and global 
information provided by the particle distribution. Moreover, 
the topology is updated along with the evolution of particles, 
ensuring that there is no information delay. (2) The neighbors 
of a particle defined by the MST topology are close to each 
other geometrically. They are probably from the same niche 
and this increases the algorithm’s ability of local search and 
fine-tuning. In addition, the removal of max weight edges 
increases the algorithm’s ability of maintaining multiple stable 
niches.  

C. Particle Swarm Optimization with MST Topology 
The MST topology is integrated into the canonical PSO and 

the LIPS. The resulting algorithms are termed MST-PSO and 
MST-LIPS respectively. The flowchart of MST-based PSOs is 
plotted in Fig. 3. The difference between the MST-based 
variants and the original ones is the way in which the 
neighborhood of each particle is defined. Moreover, compared 
with LIPS, the advantages of MST-LIPS is that the parameter 
nsize is eliminated. The velocity update of MST-LIPS is given 
by (6), while the exemplar is changed to: 

 1( )inn
j jj

i
nbest

P
ϕ

ϕ
= ⋅

=
�

  (8) 

where nni is the number of neighbors given by the MST 
topology. The subscript i implies that each particle may have 
different number of neighbors. 

D. Complexity Analysis 
The main computational cost of MST-based PSOs comes 

from the building of the minimum spanning tree. The simplest 
method to find the minimum spanning tree is to construct the 
complete graph on the particles, which has Np(Np-1)/2 edges, 
compute edge weights by finding the distance between each 
pair of particles, and then run Prim’s algorithm on it. The total 
time complexity of the method is O(Np2), which is similar to 

1 2

2

3

4

5

6

7

1 3 4

5 7

2

2

4 6

5

4

Particle indices Neighbor lists

1

2

3

4

5

6

7

(a)

(c)

(b)

 
Fig. 2.  Illustration of the minimum spanning tree topology. 
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Fig. 3.  Flowchart of MST- PSO. 
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that of FER-PSO and LIPS. Therefore, the MST topology does 
not impose any serious burden on niching PSOs. 

IV. EXPERIMENTS 
In this section, we carry out experiments to investigate the 

performance of MST-PSO and MST-LIPS. 

A. Experimental Setup 
1) Test Functions: The CEC2013 benchmark functions 

[25] are adopted to test the performance of the proposed 
algorithms. The function set contains 20 functions (some are 
identical functions with different dimensionalities). All of 
them are formulated as maximization problems. F1-F5 are 
simple, low dimensional functions. F6-F12 are scable 
multimodal functions. The number of global optima for F6 and 
F7 increases rapidly as the dimensionality grows. For F8-F12, 
the number of global optima is independent from the 
dimension D. F9-F12 are complex non-symmetric multimodal 
functions constructed by several basic functions. F9-F10 and 
separable while F11-F12 are non-separable. More detailed 
descriptions of the test functions can be found in [25]. 

2) Parameter Settings: An algorithm terminates when the 
given number of fitness evaluations (FEs) is exhausted. The 
maximum number of FEs for the test function set is listed in 
Table I. To determine whether a global optimum is found, we 
need to specify an accuracy level ε. In this paper, five levels of 
accuracy {1.0E-01, 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05} are 
used. For PSO algorithms, the accelarion coefficients c1 and c2 
are fixed at 2.0. The ineria weight � is set to 0.729 and the 
population size is fixed at 100. A test algorithm is run 50 
times for each test function. 

3) Performance Measure: Two popular performance 
measures, i.e., peak ratio (PR) and the success rate (SR) are 
adopted to evaluate the performance of MST based PSOs. PR 
is the percentage of the number of global optima found. SR is 
the percentage of runs in which all the global optima are 
found. They are calculated according to the following 
formula: 

 1 ,
NR

ii NPF
PR

NKP NR
==

⋅
�   (9) 

 ,NSRSR
NR

=   (10) 

where NPFi is the number of found optima in the i-th run. 
NKP is the total number of global optima. NR is the number of 
runs. NSR is the number of runs in which all the global optima 
are successfully located. 

B. Percentage of Edges to Be Cut 
In MST-PSO, p percent of the longest edges are removed 

from the spanning tree to avoid possible genetic drift. We first 
investigate the effect of the percentage of removed edges. 
Specifically, the performance of MST-PSO is recorded when p 
is set to one of the following values: {0, 5%, 10%, 15%, 20%, 
25%}. The experimental results are visualized in Fig. 4. It can 

be seen that the performance of MST-PSO is insensitive to p. 
Some settings of p perform slightly better than others in some 
functions, but the reverse is observed when dealing with other 
functions. Overall, the difference between the settings of p is 
moderate. However, if no edge is cut (i.e., p equals to 0), the 
possibility that all particles converge to a single optimum is 
increased, as revealed by the case of F1. Hence, we recommend 
to remove 5%-20% of the longest edges. In the following 
experiments, p is fixed at 10%. 

C. Comparison with FER-PSO and RPSO 
In this part, we compare MST-PSO with FER-PSO [21] 

and r3pso [22]. Here, r3pso represent the version of ring 
topology PSO that has no overlapping neighbors (illustrated in 
Fig. 1(b)). The experimental results are reported in Tables II-
III. The algorithms are compared pairwise and the better results 
are highlighted in boldface. From the tables, it can be seen that 
in most of the test functions, MST-PSO outperforms FER-PSO 
and r3pso regardless of the setting of the accuracy level. The 
better performance of MST-PSO owes to the way of choosing 
the neighbors. The distance-based neighbors defined by the 
MST topology ensures a high diversity. On the other hand, 
when particles are crowded with different regions of 
attractions, MST-PSO is able to perform search within each 
region independently. This improves MST-PSO’s fine-search 
ability. 

D. Comparison with LIPS 
In this part, we compare MST-LIPS with LIPS [23] to 

show that the performance of LIPS can be improved by 
applying the MST topology. The experimental results are given 
in Table IV. Part of the results (ε is set to 1.0E-04) are 
visualized in Fig. 5. For basic multimodal functions (F1-F8), 
the performance of MST-LIPS is very similar to that of LIPS. 
However, for those complex functions (F9-F12), MST-LIPS 
outperforms LIPS. Compared with LIPS, the advantages of 
MST-LIPS is that the MST topology is built from a global 
point of view. The topology makes good use of the global and 

TABLE I 
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS 

Range of functions MaxFEs 
F1 to F5 (1D or 2D) 5.00E+04 

F6 to F11 (2D) 2.00E+05 
F6 to F12 (3D or higher) 4.00E+05 

 
 

Fig. 4.  Effect of the percentage of removed edges. 
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local information provided by the particle distribution. In LIPS, 
each particle only uses the information provided by its nearest 
neighbors without acknowledging the configuration of other 
particles. Therefore, MST-LIPS is more suitable for complex 
multimodal problems that have non-symmetric landscapes, as 
demonstrated in Fig. 5. Moreover, another advantage of MST-
LIPS it that it eliminates the parameter nsize introduced by 
LIPS. Fig. 6 shows the particle distribution of MST-LIPS on 2-
dimensional multimodal functions. The lines connecting two 
particles denote the edges in MST. A cross on the line indicates 
that the corresponding edge is removed. It can be seen that 
MST-LIPS is very effective in locating multiple optima. 

E. Convergence Speed 
We continue to study the convergence speeds of the MST-

topology based PSOs. The convergence speed of a multimodal 

algorithm is defined by the number FEs required to locate all 
global optima. It is calculated according to the following 
formula: 

 1
NR

ii FEs
avgFEs

NR
==�   (11) 

where FEsi is the number of FEs consumed in the i-th run. If 
the algorithm cannot locate all global optima, FEsi is given by 
the MaxFEs. In the experiment, the accuracy level is set to 
1.0E-04 [25]. It is very difficult for the multimodal algorithms 
to generate a non-zero success rate on complex multimodal 
functions. Therefore, we concentrate on F1-F8. Table V 
presents the convergence speed results of the algorithms. It 
can be observed that in most of the considered functions, the 
MST topology based PSOs have faster convergence speeds, 

TABLE  II 
EXPERIMENTAL RESULTS OF MST-PSO AND FER-PSO 

Level of  
accuracy 

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05 
MST-PSO FER-PSO MST-PSO FER-PSO MST-PSO FER-PSO MST-PSO FER-PSO MST-PSO FER-PSO 

Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR 
F1(1D) 1.000  1.000  0.500  0.000  1.000  1.000  0.500 0.000 1.000 1.000 0.500 0.000 1.000 1.000 0.500  0.000  1.000  1.000 0.500 0.000 
F2(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996  0.980  1.000  1.000 0.992 0.960 
F3(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F4(2D) 1.000  1.000  0.990  0.960  1.000  1.000  0.870 0.600 1.000 1.000 0.695 0.140 1.000 1.000 0.645  0.120  1.000  1.000 0.635 0.120 
F5(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 0.980 0.960 
F6(2D) 0.803  0.000  0.470  0.000  0.791  0.000  0.399 0.000 0.781 0.000 0.362 0.000 0.769 0.000 0.332  0.000  0.000  0.000 0.000 0.000 
F7(2D) 0.404  0.000  0.193  0.000  0.404  0.000  0.193 0.000 0.402 0.000 0.183 0.000 0.399 0.000 0.164  0.000  0.395  0.000 0.151 0.000 
F6(3D) 0.170  0.000  0.073  0.000  0.163  0.000  0.065 0.000 0.160 0.000 0.064 0.000 0.157 0.000 0.061  0.000  0.155  0.000 0.059 0.000 
F7(3D) 0.086  0.000  0.039  0.000  0.085  0.000  0.039 0.000 0.083 0.000 0.036 0.000 0.081 0.000 0.030  0.000  0.078  0.000 0.028 0.000 
F8(2D) 0.985  0.840  0.740  0.060  0.985  0.840  0.725 0.060 0.985 0.840 0.677 0.020 0.985 0.840 0.630  0.000  0.983  0.820 0.562 0.000 
F9(2D) 0.817  0.020  0.407  0.000  0.817  0.020  0.350 0.000 0.817 0.020 0.320 0.000 0.817 0.020 0.313  0.000  0.817  0.020 0.313 0.000 
F10(2D) 0.823  0.160  0.248  0.000  0.820  0.140  0.240 0.000 0.813 0.100 0.233 0.000 0.810 0.100 0.230  0.000  0.808  0.080 0.225 0.000 
F11(2D) 0.680  0.000  0.410  0.000  0.677  0.000  0.390 0.000 0.677 0.000 0.380 0.000 0.673 0.000 0.380  0.000  0.673  0.000 0.373 0.000 
F11(3D) 0.660  0.020  0.303  0.000  0.653  0.000  0.293 0.000 0.653 0.000 0.290 0.000 0.653 0.000 0.290  0.000  0.653  0.000 0.287 0.000 
F12(3D) 0.460  0.000  0.088  0.000  0.458  0.000  0.085 0.000 0.458 0.000 0.085 0.000 0.458 0.000 0.085  0.000  0.458  0.000 0.085 0.000 
F11(5D) 0.297  0.000  0.143  0.000  0.297  0.000  0.140 0.000 0.297 0.000 0.140 0.000 0.297 0.000 0.140  0.000  0.297  0.000 0.140 0.000 
F12(5D) 0.240  0.000  0.023  0.000  0.240  0.000  0.023 0.000 0.240 0.000 0.023 0.000 0.238 0.000 0.023  0.000  0.238  0.000 0.023 0.000 

F11(10D) 0.073  0.000  0.000  0.000  0.073  0.000  0.000 0.000 0.073 0.000 0.000 0.000 0.073 0.000 0.000  0.000  0.073  0.000 0.000 0.000 
F12(10D) 0.018  0.000  0.000  0.000  0.018  0.000  0.000 0.000 0.018 0.000 0.000 0.000 0.018 0.000 0.000  0.000  0.018  0.000 0.000 0.000 
F12(20D) 0.003  0.000  0.000  0.000  0.003  0.000  0.000 0.000 0.003 0.000 0.000 0.000 0.003 0.000 0.000  0.000  0.003  0.000 0.000 0.000 
 

TABLE  III 
EXPERIMENTAL RESULTS OF MST-PSO AND R3PSO 

Level of  
accuracy 

1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05 
MST-PSO r3pso MST-PSO r3pso MST-PSO r3pso MST-PSO r3pso MST-PSO r3pso 

Function PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR PR SR 
F1(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F2(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F3(1D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F4(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F5(2D) 1.000  1.000  1.000  1.000  1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000  1.000 1.000 1.000 
F6(2D) 0.803  0.000  0.723  0.000  0.791  0.000  0.719 0.000 0.781 0.000 0.717 0.000 0.769 0.000 0.704  0.000  0.000  0.000 0.000 0.000 
F7(2D) 0.404  0.000  0.387  0.000  0.404  0.000  0.384 0.000 0.402 0.000 0.382 0.000 0.399 0.000 0.379  0.000  0.395  0.000 0.376 0.000 
F6(3D) 0.170  0.000  0.133  0.000  0.163  0.000  0.125 0.000 0.160 0.000 0.119 0.000 0.157 0.000 0.115  0.000  0.155  0.000 0.111 0.000 
F7(3D) 0.086  0.000  0.103  0.000  0.085  0.000  0.100 0.000 0.083 0.000 0.095 0.000 0.081 0.000 0.091  0.000  0.078  0.000 0.087 0.000 
F8(2D) 0.985  0.840  0.957  0.560  0.985  0.840  0.957 0.560 0.985 0.840 0.955 0.540 0.985 0.840 0.955  0.540  0.983  0.820 0.955 0.540 
F9(2D) 0.817  0.020  0.723  0.040  0.817  0.020  0.720 0.020 0.817 0.020 0.720 0.020 0.817 0.020 0.720  0.020  0.817  0.020 0.717 0.020 
F10(2D) 0.823  0.160  0.720  0.000  0.820  0.140  0.713 0.000 0.813 0.100 0.708 0.000 0.810 0.100 0.705  0.000  0.808  0.080 0.705 0.000 
F11(2D) 0.680  0.000  0.657  0.000  0.677  0.000  0.653 0.000 0.677 0.000 0.653 0.000 0.673 0.000 0.653  0.000  0.673  0.000 0.653 0.000 
F11(3D) 0.660  0.020  0.583  0.000  0.653  0.000  0.573 0.000 0.653 0.000 0.567 0.000 0.653 0.000 0.550  0.000  0.653  0.000 0.543 0.000 
F12(3D) 0.460  0.000  0.260  0.000  0.458  0.000  0.258 0.000 0.458 0.000 0.253 0.000 0.458 0.000 0.248  0.000  0.458  0.000 0.240 0.000 
F11(5D) 0.297  0.000  0.100  0.000  0.297  0.000  0.070 0.000 0.297 0.000 0.047 0.000 0.297 0.000 0.037  0.000  0.297  0.000 0.030 0.000 
F12(5D) 0.240  0.000  0.055  0.000  0.240  0.000  0.040 0.000 0.240 0.000 0.025 0.000 0.238 0.000 0.015  0.000  0.238  0.000 0.013 0.000 

F11(10D) 0.073  0.000  0.000  0.000  0.073  0.000  0.000 0.000 0.073 0.000 0.000 0.000 0.073 0.000 0.000  0.000  0.073  0.000 0.000 0.000 
F12(10D) 0.018  0.000  0.000  0.000  0.018  0.000  0.000 0.000 0.018 0.000 0.000 0.000 0.018 0.000 0.000  0.000  0.018  0.000 0.000 0.000 
F12(20D) 0.003  0.000  0.000  0.000  0.003  0.000  0.000 0.000 0.003 0.000 0.000 0.000 0.003 0.000 0.000  0.000  0.003  0.000 0.000 0.000 
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indicating that the MST topology can help accurately detect 
the basin of attractions using a relatively small number of 
fitness evaluations.  

V. CONCLUSION 
In this paper, we proposed a minimum spanning tree (MST) 

topology for PSO to solve multimodal problems. The proposed 
topology builds a minimum spanning tree on the complete 
graph constructed by the particles. Then, a number of max 
weighted edges in the minimum spanning tree are cut to 

enhance PSO’s niching performance. The MST topology 
makes good use of the local and global information provided 
by the distribution of particles. Two MST-based PSO variants 
(MST-PSO and MST-LIPS) were presented. Experiments have 
been conducted on the CEC2013 benchmark set to study the 
effect of the MST topology. Experimental results show that the 
MST-based PSOs exhibit better performance than several state-
of-the-art multimodal algorithms. The results also show that 
the MST-based PSOs are able to induce stable niching 
behavior and have faster convergence speeds. Future research 
may focus on developing an adaptive PSO topology that is 
capable of automatically enhancing the communication of 
particles in the same region of attraction.  
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                             (e)                                                             (f)                                                              (g)                                                           (h) 
Fig. 6. Distributions of pbests of MST-LIPS on different stages. (a) Iteration 1 (F6). (b) Iteration 20 (F6). (c) Iteration 50 (F6). (d) Iteration 100 (F6). (e) Iteration 1 
(F8). (f) Iteration 20 (F8). (g) Iteration 50 (F8). (h) Iteration 100 (F8). 
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