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Abstract—The quantum particle swarm optimization (QPSO)
algorithm was developed to address the limitations of the tradi-
tional particle swarm optimization (PSO) algorithm in dynamic
environments. Some particles in the QPSO algorithm are chosen
as ‘“‘quantum” particles, and the positions of these are sampled
uniformly within a radius (i.e., a hypersphere) centred around the
global best particle. The remainder of particles follow standard
PSO behaviour. This paper proposes sampling various alternative
probability distributions to update the positions of quantum
particles. Ten probability distributions are examined on dynamic
environments with varying dimensionalities, temporal change
severities, and spatial change severities, with both single-peak
and five-peak environments considered. Results indicated that
the most effective distribution to use is dependent upon the type
of dynamism present. In general, it was observed that a small
quantum radius was preferable to a large radius, indicating that
exploitation is more beneficial than exploration with regards to
QPSO performance. Finally, despite having been commonly used
in various QPSO applications, the performance of the uniform
distribution was found to be sub-par.

I. INTRODUCTION

Many real-world optimization problems exhibit dynamic
behaviour where the optimal solution varies over time. For
example, environmental changes may shift the position of
the optima, the optimal fitness value, or both. Such dynamic
problems are more challenging than their static counterparts —
simply locating the optimal solution is no longer sufficient as
the position of the optimum may change over time. Moreover,
extreme cases of dynamism (i.e., ones where environmental
changes are very frequent) are akin to random environments
in the sense that little to no environmental knowledge can be
gathered before being (potentially) invalidated by a change
in the problem landscape. Similarly, dynamic problems with
less frequent changes also pose a problem to optimizers which
exhibit convergence, as the limited diversity in such a scenario
may hinder an adequate response to an environmental change.

The particle swarm optimization (PSO) algorithm [1] is
a stochastic optimization technique based on the swarming
behaviour found in flocks of birds. The PSO algorithm itera-
tively calculates and applies a velocity vector to the position
of each agent, causing them to have flight-like movements.
Agents in the PSO algorithm, known as particles, are attracted
to two positions in the search space which govern their
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movement: their personal best position and the global best
position found by any particle during the PSO execution. The
PSO algorithm was originally proposed as a continuous-space
optimizer for static environments and has found great success
in a wide variety of domains [1], [2], [3]. However, both
challenges previously highlighted for dynamic environments,
namely knowledge being invalidated by environmental changes
and lack of diversity, lead to major performance issues for PSO
in dynamic environments [4].

Quantum particle swarm optimization (QPSO) [5] was
introduced as a dynamic variant of PSO aimed to address
its known drawbacks in dynamic environments. In the QPSO
algorithm, some proportion of particles are designated as
“quantum” particles and forego the traditional particle update
strategy. Rather, their positions are sampled uniformly within a
radius around the global best particle. This strategy is intended
to inject diversity within the population, especially late in
the run, as this prevents all particles from converging to a
single point. While most studies employing QPSO sample
the position uniformly around the global best position, the
use of alternative distributions has been recognized but only
the uniform, Gaussian, and non-uniform (linearly decreasing
density) distributions have been examined [6]. Blackwell et
al. [6] found that of the three examined distributions, the
uniform distribution performed the best with respect to offline
error. However, this experiment was small in scope, as it was
tangential to the overall study, and explored only limited types
of dynamism. In contrast, this paper examines ten probability
distributions with a direct focus on examining a wide variety
of dynamic environment types.

The quantum particles in the QPSO algorithm provide a
mechanism of both exploration and exploitation. During the
early phase of QPSO execution, or shortly after an environ-
mental change, the quantum particles work as an exploitation
mechanism whereby they exploit the global best position.
Later during QPSO execution, or after a relatively long time
has passed since an environmental change, i.e., when conver-
gence has begun, the quantum particles provide an exploration
mechanism by retaining a base level of diversity. This level
of diversity is largely based on the radius of the quantum
cloud. Thus, one can control the balance of exploration and
exploitation by controlling the degree to which quantum par-
ticles centre around the global best position versus tending
away from it. To assess the effect of probability distributions
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on the performance of the QPSO algorithm, ten probability
distributions are examined.

The remainder of this paper is structured as follows.
Background information on dynamic environments, PSO, and
QPSO is given in Section II. Section III introduces the exam-
ined probability distributions while Section IV describes the
experimental procedures. Experimental results and a discussion
of these results are provided in Section V. Finally, concluding
remarks are given in Section VL.

II. BACKGROUND

This section provides the necessary background informa-
tion for the remainder of the paper.

A. Dynamic Environments

A dynamic environment is, generally speaking, an envi-
ronment which changes over time. While this definition is
quite vague, a great deal of research effort has been devoted
to better describe and classify dynamic environments. Many
of these classification schemes are based on the characteristics
of the dynamism. Duhain and Engelbrecht [7] point out three
major benefits to having a more complete classification of dy-
namic environments. Firstly, a more descriptive classification
of dynamic optimization problems allows for better inferences
about algorithmic strengths and weakness to be made based on
their performance. Secondly, one can reason about algorithmic
performance on an unseen problem once the environmental
type of the problem is known. Finally, algorithms can exhibit
observable and predictable characteristics when faced with
certain types of dynamism. Thus, when presented with an un-
known dynamic environment, observing such characteristics in
an algorithm’s behaviour may be indicative of the environment
type, allowing one to gather previously unknown information
about the environment.

Angeline [8] focused on classifying the trajectories and
patterns of changes which the optimum undergoes. For exam-
ple, a linear optimum follows a linear trajectory, a circular
optimum follows a periodic pattern, and a random optimum
has no discernible, or rather recognized, pattern. De Jong [9]
examined the frequency and magnitude of changes, referred to
as the temporal and spatial severity, respectively, to differen-
tiate between drifting and abrupt environments. Environments
of the former type change frequently but changes are small in
magnitude while the latter observes infrequent but relatively
large-magnitude changes. Weicker [10] defined six classes of
dynamism based on a combination of characteristics from
Angeline and De Jong’s classification schemes. Furthermore,
Weicker introduced the notion of homogeneity where a ho-
mogeneous environmental change is one in which all optima
change in the same manner.

Eberhart et al. [11], [12] proposed three classes of dynamic
environments based on whether the optima change in posi-
tion (Type I), value (Type II), or both (Type III). Recently,
Duhain and Engelbrecht [7] proposed a more generalized
framework for classifying dynamic environments based on
four environment classes, namely quasi-static, progressive,
abrupt, and chaotic. Each of these classes differ in their
relative temporal and spatial severities. On one extreme, quasi-
static environments observe infrequent, small changes while
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Fig. 1: Dynamic Environment Classifications

the other extreme, chaotic environments, observe frequent and
large changes. Progressive and abrupt environments are akin
to the drifting and abrupt environments of De Jong, respec-
tively. Note that the boundaries between the environments can
not be rigorously defined [7], however, Figure 1 provides a
visualization of their relative positioning with respect to the
temporal and spatial severity of the environment.

While none of the aforementioned classification schemes
completely describe all aspects of dynamic environments,
using a combination of the above schemes can provide a
very descriptive classification of a dynamic environment. For
example, by combining the classification schemes of Angeline,
Weicker, Eberhart et al., and the environmental classes of
Duhain and Engelbrecht, 27 environmental classifications can
be made which describe both the movement patterns of the
optima as well as the frequency and severity of changes [7].

B. Moving Peaks Benchmark

The moving peaks benchmark (MPB) introduced by Branke
[13] is a dynamic environment generator extensively used in
the literature (see, for example, [4], [6], [7], [14]) due to
its flexibility. MPB landscapes are constructed by defining a
number of peaks consisting of a position, height, and width.
The dynamism is controlled by varying the peak parameters
over time. Thus, the temporal severity of the problem is defined
by the change interval relative to the number of evaluations.

When an environmental change occurs, a velocity vector
with fixed length s (a user-supplied parameter) is calculated
for each peak. This velocity vector defines the movement
of the peak, while user-supplied height and width severity
parameters define scaling coefficients for the peak height and
width, respectively. If a velocity vector happens to take a
peak outside of the bounds of the problem, components of the
velocity vector are negated as necessary to ensure the peak
stays within the bounds of the problem instance. The velocity
vector calculation also employs the use of an inertia coefficient,
A € [0, 1], to influence the movement direction. When A = 0,
the peaks will always move in random directions and when
A = 1, the peaks will always move in the same direction,
randomly determined at the start of the simulation.

C. Farticle Swarm Optimization

Introduced by Kennedy and Eberhart [1], the PSO algo-
rithm was inspired by a simple model of the social dynamics
of a flock of birds. The PSO algorithm is a population-based,
stochastic optimization algorithm targeted towards real-valued,



static problems. The movement of each agent (referred to as a
particle) is premised on two simple behaviours: move towards
the best position in a neighbourhood and move towards its own
personal best position.

The movement of each particle through the search space is
governed by the iterative process of calculating and applying
a velocity vector to the current position of the particle. The
velocity for a particle is calculated as

Uij (t -+ 1) = wvij (t) + Cl’l“lj (t)(y,-j(t) — wij (t))
+ cara;(£)(9;(8) — i (1))

where v;;(t) is the velocity of particle ¢ in dimension j at
time t. The position of the particle in dimension j is given
by x;;, w denotes the inertia coefficient, while c¢; and c
represent the cognitive and social coefficients, respectively. A
stochastic component is added via the random constants, 71
and ro; ~ U(0,1). Finally, y;;(t) and g;(¢) denote the personal
and neighbourhood best positions in dimension j, respectively.
Particle positions are then updated according to

Zi(t 4+ 1) = Z;(t) + 03 (t + 1).

)

(@)

Originally proposed for static environments, the PSO al-
gorithm is known to have two major drawbacks when em-
ployed in dynamic environments, namely outdated memory
and diversity loss [4]. The outdated memory issue refers to
when a particles fitness and personal best position may be
misleading, or incorrect, due to an environmental change. The
other issue, diversity loss, occurs when the particles have
exhibited convergence and all particles have converged to the
same region. In a dynamic environment, lack of diversity may
prevent an adequate response to an environmental change as
the low velocities of the particles may inhibit the optimum
tracking capabilities of the PSO algorithm.

D. Quantum Particle Swarm Optimization

Quantum PSO [5] was introduced as a variant of PSO
based on a quantum model of an atom where electron positions
orbit a nucleus in a non-deterministic fashion. A proportion of
particles in the QPSO algorithm are designated as “quantum”
particles, and these particles do not update their positions using
a velocity vector. Rather, the positions of quantum particles
are sampled from a probability distribution centred around the
global best position. That is,

Ty (t + ]-) = d(g(t)v Tcloud) (3)

where d is some probability distribution and 7.0,q iS the
quantum radius. This position update strategy is analogous to
the non-deterministic electron positions in the atom analogy.
The remainder of particles, referred to as neutral particles,
update their positions using the standard position update as
given in Equation (2).

Blackwell et al. [6] examined three probability distri-
butions to sample quantum particle positions from, namely
the uniform, Gaussian, and non-uniform probability distri-
butions. Their results indicated that the uniform distribution
outperformed both the Gaussian and non-uniform distributions.
Furthermore, Blackwell ef al. suggest, based on theoretical
and empirical evidence, that using reouq ~ $/2 leads to
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good performance as this ensures that the swarm has sufficient
diversity to track a peak change of severity s [4], [6]. However,
the aforementioned studies only considered a limited subset of
dynamic environment types, and focused largely on the number
of peaks rather than the type of dynamism. Moreover, the stud-
ies made use of relatively small change severities (s € [1, 10])
and correspondingly small quantum radii (7¢jouq € [0, 10]). To
the best of the authors’ knowledge, the study by Blackwell et
al. is the only study which examined alternative probability
distributions for QPSO.

III. PROPOSED DISTRIBUTIONS

An effective search technique must strike a balance be-
tween exploration, by finding new and unexplored areas in
the search space, and exploitation, by improving upon known
and promising solutions. The balance between exploration and
exploitation is even more important when considering dynamic
environments. In the context of the quantum position update
mechanism, this translates to striking a balance between gen-
erating positions close to the global best particle (exploitation)
while also maintaining greater diversity by generating positions
further from the global best (exploration). To examine the
effects of a wide variety of such trade-offs, the following prob-
ability distributions were used to generate positions (calculated
as an offset from §(¢)) for quantum particles.

e  Uniform
e  Non-uniform (linearly decreasing probability)
Gaussian (. = 0,0 = 0.38822)

Cauchy (location = 0, scale = 0.01570)
Exponential (rate = 4.60517)

Beta (o = 4.60517, 3 = 1)

Triangular-0 (min = 0, max = 1, mode = 0)
Triangular-0.5 (min = 0, max = 1, mode = 0.5)

e  Triangular-1 (min = 0, max = 1, mode = 1)

Weibull (shape = 1.5,scale = 0.36127)

For distributions supported on unbounded intervals, namely
the Gaussian, Cauchy, exponential, and Weibull distributions,
the respective parameters were selected such that 99% of
samples drawn from the distribution have an absolute value
less than 1. Note that when a distribution produces a sample
with an absolute value greater than 1, this corresponds to
generating a position which is outside of the quantum cloud.
For the Beta distribution, the parameters were chosen to pro-
vide an approximate inverse for the exponential distribution.
The parameters for the triangular distribution were selected to
maximize exploration (mode = 1), exploitation (mode = 0),
and an equal balance thereof (mode = 0.5), respectively.
Figure 2 shows a sampling of positions around the origin,
in two dimensions, using each probability distribution and a
radius of 1.

IV. EXPERIMENTAL PROCEDURE

To compare the performance of QPSO with the probability
distributions, 24 benchmark environments were instantiated.
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TABLE I: Environmental Control Parameters

Environment Type
Parameter Quasi-Static Progressive Abrupt Chaotic
Peaks 1,5 1,5 1,5 1,5
Peak Heights [30, 70] [30, 70] [30, 70] [30, 70]
Peak Widths 1,12] [1,12] [1,12] [1,12]
Height Severity 1 1 10 10
Width Severity 0.05 0.05 0.05 0.05
Change Severity (s) 1 1 50 50
A 0 0 0 0
Change Freq. (Iterations) 50 10 50 10

TABLE II: Algorithmic Parameters

Parameter \ Value
Particles 30
Quantum Proportion 50% (15 particles)
Teloud {0.5, 25}
w 0.729844
cl, c2 1.496180
Topology Von Neumann
Iteration Strategy Synchronous

The moving peaks benchmark (MPB) [13] was used to gen-
erate both single- and five-peak dynamic environments, using
parameters listed in Table I, to examine uni- and multi-modal
landscapes, respectively. The selection of these parameters
corresponds to the four dynamic environment types proposed
by Duhain and Engelbrecht [7]. Furthermore, all environments
are Type III, random, and homogeneous using the classification
schemes of Eberhart ef al. [11], [12], Angeline [8], and We-
icker [10]. Experiments were performed using 10-, 30-, and 50-
dimensional environments. Each QPSO strategy was executed
50 times in every environment for 1000 iterations using the
parameters listed in Table II. The two examined values for
Teloud, Namely 0.5 and 25, adhere to the recommendation of
Teloud = S/2 [4], [6] and represent exploitative and explorative
behaviours, respectively. To remove the influence of change
detection mechanisms, particles re-evaluated their personal
best positions at each iteration. Finally, to prevent invalid
attractors, a particle’s personal best position was only updated
if the new position was within the search space.

(h) Triangular-0.5
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(i) Triangular-1 (j) Weibull

1000 sampled positions using various probability distributions and a radius of 1.

A. Performance Measures

When examining performance in dynamic environments,
several aspects are important to measure, namely accuracy (the
proximity to the optimum), stability (the reduction in solution
quality when an environmental change occurs), reactivity (the
ability of an optimizer to recover from an environmental
change), and exploitation capacity (the ability to find quality
solutions between environmental changes) [10], [15]. The five
performance measures used in this study, described below,
were selected to address each of these aspects of performance.

The error of an optimizer is the absolute value of the dif-
ference between the global best fitness and the optimal fitness.
The error is a direct measure of an optimizer’s accuracy.

The collective mean error (CME) is the mean error of the
best solution over an entire simulation. The CME incorporates
the accuracy, stability, reactivity, and (to a lesser degree) the
exploitation capacity of an optimizer. An improvement in any
of aforementioned aspects leads to an improvement in the
CME value [15].

In a similar fashion to the CME, the offline error measures
the mean error of the best solution across all iterations since
the last environmental change occurred. The offline error
incorporates the accuracy, reactivity, and exploitation capacity
of an optimizer. However, the offline error requires knowledge
of when an environmental change occurred, thus is it more
well-suited to synthetic benchmarks compared to the CME.

The average best error before change (ABEBC) measures
the average error of the best solution at each iteration just
before an environmental change occurred. Note that if the
environment changes every iteration, the ABEBC is equivalent
to the CME. The ABEBC strongly measures the exploitation
capacity of an optimizer.

Similar to the ABEBC, the average best error after change
(ABEAC) measures the average error of the best solution at
each iteration just after an environmental change occurred. The
ABEAC strongly measures the stability of an optimizer.



B. Statistical Analysis

Statistical analysis of results was performed using the
normalized wins and losses approach [16]. For each perfor-
mance measure, a Kruskal-Wallis test was performed using
the average performance measure values at each iteration just
before an environmental change occurred. If the Kruskal-
Wallis test indicated that a difference existed among the
strategies, pairwise Mann-Whitney U tests were performed to
identify the individual differences. When the Mann-Whitney U
test indicated that a difference existed among two strategies,
the average performance measure values at each iteration just
before a change occurred were used to assign wins and losses;
the better performing algorithm was awarded a win, while
the inferior algorithm was awarded a loss. To prevent skewed
results, the wins and losses are normalized using the number of
environmental changes. Finally, the strategies are ranked based
on the difference between the number of wins and losses.

V. RESULTS AND DISCUSSION

Table IIT presents the results aggregated over all examined
environments and dimensionalities. The triangular-0.5 distri-
bution with a quantum radius of 0.5 resulted in the lowest
overall error, while the remainder of measures (namely CME,
offline error, ABEBC, and ABEAC) were all minimized most
effectively when the non-uniform distribution with quantum
radius of 0.5 was employed. The worst overall performance
was noted when the Gaussian distribution with a radius of 25
was used. A further noteworthy observation was regarding the
commonly used uniform distribution which, with respect to
raw error, ranked 14th and 13th overall for r.,,q = 0.5 and
Teloud = 25, respectively. This indicates that the use of the
typical uniform distribution within QPSO is by no means the
most effective for the examined quantum radii. Additionally,
the lower average ranks observed when 7.0,4 = 0.5 was used
indicated that the smaller quantum radius was generally prefer-
able to the larger radius. This suggests that, unsurprisingly,
exploitative behaviour results in a lower raw error (and thus
accuracy) than explorative behaviour, in general.

A. Performance by Environment Type

To identify the effect of each probability distribution on the
performance of QPSO relative to the environment type, results
were grouped by the four environmental classes described in
Section II-A. The results are presented in Tables IV to VIIL

Quasi-Static Environments: The results for quasi-static
environments are presented in Table IV. For quasi-static en-
vironments, the lowest error was observed when the Cauchy
distribution, with radius of 0.5, was used. The remainder of
measures were most effectively minimized when the uniform
distribution and 7.;,,q = 0.5 was used. However, the uniform
distribution with a radius of 25 resulted in the worst raw error.
For the remainder of performance measures, the Gaussian
distribution with a radius of 25 performed the worst.

Progressive Environments: Table V presents the results for
progressive environments. For all measures, the best perfor-
mance was noted when a quantum radius of 25 was used —
the best error was observed when the non-uniform distribution
was employed while the remainder of measures were most
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effectively minimized through the use of the triangular-1 dis-
tribution. However, the worst performance was also observed
when a radius of 25 was used, namely the Weibull distribution
when error was examined and the exponential distribution for
the remainder of measures.

Abrupt Environments: The results for abrupt environments
are presented in Table VI. For all performance measures, the
non-uniform distribution with a radius of 25 resulted in the best
performance. The worst overall performance for all measures
was observed when a Gaussian distribution, with radius 25,
was employed.

Chaotic Environments: The results for chaotic environ-
ments are presented in Table VII. These results indicated
that the best performance, with respect to all performance
measures, occurred when the triangular-0.5 distribution was
used with a quantum radius of 0.5. For all performance
measures, the worst performance was demonstrated when the
uniform distribution with a radius of 0.5 was employed.

Radius Size and Diversity: The average ranks relative
to the radius size in Tables IV to VII show that for each
of the quasi-static, progressive, and abrupt environments, the
distributions which were coupled with the smaller quantum
radius (r¢ouq = 0.5) generally outperformed their counterparts
with the larger quantum radius (7.ouq = 25). When chaotic
environments were considered, the larger radius of 25 generally
lead to better performance. These results indicated that when
environmental changes were either relatively small in mag-
nitude or relatively low in frequency, exploitative behaviour
was favoured as opposed to explorative behaviour. However,
when changes were both frequent and relatively large (i.e.,
chaotic environments), optimizers had little time to exploit the
global best and, therefore, demonstrated superior performance
when they could most effectively mitigate the drastic change
in environment through heightened exploration.

To further support the observations regarding the radius
size, Figure 3 shows the diversity profiles of the two best
and two worst ranked distributions, with respect to error, for
each environment type. Diversity is measured as the average
distance from the swarm centre [17] and is reported on 30D,
single-peak environments. Note that for quasi-static, progres-
sive, and abrupt environments, the two distributions which
performed best maintained a lower level of diversity than the
distributions which lead to the worst performance. For chaotic
environments, the distribution which showed the highest level
of diversity (of those plotted) resulted in the second best
performance on chaotic environments.

B. Performance in Single- vs Five-Peak Environments

Lastly, the results were grouped based on the modality of
the environment to determine whether the number of peaks had
a significant impact on performance. The results are shown in
Tables VIII and IX, respectively.

Single-Peak Environments: When the results for single-
peak environments were considered, as shown in Table VIII, it
was noted that for four of the performance measures (namely
error, CME, offline error, and ABEBC), the non-uniform
distibution with radius of 0.5 resulted in the best performance.
The ABEAC measure was optimized most effectively by the



TABLE III: Overall Difference and Rank for All Environments

Error CME Offline Error ABEBC ABEAC
Teloud Distribution Difference Rank Difference Rank Difference Rank Difference Rank Difference Rank
Beta 12.82 8 37.38 5 120.94 4 70.52 5 105.26 5
Cauchy 19.86 4 20.40 10 28.36 11 20.48 12 21.12 12
Exponential 16.86 6 46.82 3 119.26 5 77.34 4 109.80 4
Gaussian 19.44 5 26.20 9 81.14 8 43.02 8 62.28 8
Non-uniform 34.28 2 85.26 1 213.46 1 141.26 1 196.00 1
0.5 Triangular-0.5 44.58 1 33.52 7 74.88 9 30.22 10 29.50 11
Triangular-0 23.50 3 40.42 4 112.44 6 63.26 7 89.76 7
Triangular-1 5.04 10 36.22 6 110.86 7 68.14 6 103.96 6
Uniform -12.48 14 32.00 8 126.60 3 84.96 3 138.70 3
Weibull 8.46 9 -5.90 14 9.54 13 -3.84 13 0.04 13
Average 6.2 6.7 6.7 6.9 7.0
Beta -4.42 11 -5.26 13 -24.84 14 -13.26 14 -23.90 14
Cauchy -7.34 12 12.94 12 25.42 12 22.50 11 29.82 10
Exponential -19.30 17 -96.72 19 -283.22 19 -180.84 19 -266.20 19
Gaussian -42.68 20 -126.30 20 -348.14 20 -217.36 20 -308.72 20
Non-uniform 14.16 7 58.78 2 159.42 2 105.26 2 150.84 2
25 Triangular-0.5 -33.88 18 -61.30 18 -154.68 17 -94.18 17 -129.00 17
Triangular-0 -14.74 15 -58.88 17 -168.40 18 -107.32 18 -156.70 18
Triangular-1 -36.86 19 -41.16 15 -104.24 15 -55.76 15 -73.42 15
Uniform -10.98 13 14.48 11 38.60 10 31.46 9 46.42 9
Weibull -16.32 16 -48.90 16 -137.40 16 -85.86 16 -125.56 16
Average 14.8 14.3 143 14.1 14.0

TABLE 1V: Overall Difference and Rank for Quasi-Static Environments

Error CME Offline Error ABEBC ABEAC
Teloud Distribution Difference Rank Difference Rank Difference Rank Difference Rank Difference Rank
Beta 15.60 9 36.10 6 102.90 4 60.00 4 83.90 4
Cauchy 29.10 1 36.90 5 69.10 8 43.60 7 50.90 8
Exponential 25.40 2 32.70 7 66.80 9 39.30 9 47.30 9
Gaussian 19.70 5 52.20 2 144.20 2 88.20 2 124.20 2
Non-uniform 25.10 3 46.10 3 106.20 3 71.90 3 96.60 3
0.5 Triangular-0.5 16.10 8 8.30 10 22.30 10 5.10 10 3.00 10
Triangular-0 14.20 10 27.80 9 70.20 7 42.20 8 56.70 7
Triangular-1 18.50 6 41.20 4 96.90 5 57.90 5 75.20 5
Uniform 18.30 7 78.10 1 228.80 1 143.10 1 208.10 1
Weibull 20.60 4 30.30 8 92.20 6 50.40 6 70.50 6
Average 5.5 5.5 5.5 5.5 5.5
Beta -21.40 16 -37.20 15 -90.30 15 -54.00 15 -71.40 15
Cauchy -20.80 15 -10.80 11 -21.70 11 -7.30 11 -3.80 11
Exponential -19.70 12 -38.40 16 -99.30 16 -59.20 16 -80.00 16
Gaussian -21.50 17 -74.80 20 -209.70 20 -132.00 20 -189.30 20
Non-uniform -3.30 11 -11.60 12 -34.90 12 -18.80 12 -26.50 12
25 Triangular-0.5 -24.50 19 -37.00 14 -81.30 14 -50.20 14 -63.50 14
Triangular-0 -20.10 13 -33.10 13 -77.00 13 -46.10 13 -59.10 13
Triangular-1 -24.50 18 -58.20 19 -156.40 19 -97.10 19 -136.50 19
Uniform -26.50 20 -44.50 18 -113.90 17 -66.90 17 -89.30 17
Weibull -20.30 14 -44.10 17 -115.10 18 -70.10 18 -97.00 18
Average 15.5 15.5 15.5 15.5 15.5

TABLE V: Overall Difference and Rank for Progressive Environments

Error CME Offline Error ABEBC ABEAC
Teloud Distribution Difference Rank Difference Rank Difference Rank Difference Rank Difference Rank
Beta 1.12 10 4.00 10 22.34 10 12.08 10 21.76 10
Cauchy 1.92 7 9.82 8 27.18 9 18.36 9 26.88 9
Exponential 1.68 8 15.92 7 45.84 7 30.52 7 45.66 7
Gaussian -1.92 14 -25.04 17 -58.62 16 -41.60 16 -55.72 16
Non-uniform 2.30 6 25.80 5 74.06 5 49.52 5 73.08 5
0.5 Triangular-0.5 2.38 5 -23.06 16 -66.76 17 -45.34 17 -66.14 17
Triangular-0 -1.52 13 -4.44 12 1.98 11 -2.24 12 3.52 11
Triangular-1 3.20 4 27.88 4 94.88 2 59.30 2 93.02 2
Uniform 3.52 2 18.76 6 58.28 6 37.28 6 56.18 6
Weibull 3.52 2 8.44 9 35.60 8 19.38 8 32.14 8
Average 7.1 9.4 9.1 9.2 9.1
Beta -4.52 19 -10.68 15 -40.70 15 -22.90 15 -37.16 15
Cauchy -3.10 15 -10.44 14 -38.86 14 -22.00 14 -35.80 14
Exponential -3.64 18 -70.82 20 -215.58 20 -141.70 20 -213.82 20
Gaussian 1.18 9 -6.46 13 -25.70 13 -17.64 13 -29.02 13
Non-uniform 4.94 1 30.74 2 87.90 3 57.20 3 83.34 3
25 Triangular-0.5 -0.28 12 1.96 11 -3.90 12 -0.56 11 -4.92 12
Triangular-0 -3.44 17 -29.06 19 -92.84 19 -58.98 19 -89.84 19
Triangular-1 0.72 11 36.60 1 98.98 1 67.38 1 96.80 1
Uniform -3.26 16 28.22 3 79.36 4 55.60 4 80.96 4
Weibull -4.30 20 -28.14 18 -83.44 18 -53.66 18 -80.92 18
Average 13.8 11.6 11.9 11.8 11.9
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TABLE VI: Overall Difference and Rank for Abrupt Environments

Error CME Offline Error ABEBC ABEAC
Teloud Distribution Difference Rank Difference Rank Difference Rank Difference Rank Difference Rank
Beta 0.90 12 9.10 8 26.40 7 17.30 7 25.50 6
Cauchy -15.00 18 -33.40 19 -85.30 19 -51.80 19 -70.20 19
Exponential -1.20 14 11.60 6 37.80 5 25.30 5 39.00 4
Gaussian 10.30 2 18.20 4 44.40 4 26.10 4 34.00 5
Non-uniform -9.80 17 -20.50 17 -51.70 17 -31.20 17 -41.90 16
0.5 Triangular-0.5 1.80 10 -1.00 14 -4.20 13 -3.80 15 -6.60 14
Triangular-0 3.30 9 0.40 11 -2.20 12 -2.50 13 -5.40 13
Triangular-1 7.20 4 23.10 2 63.10 2 39.00 2 55.90 2
Uniform 1.30 11 -0.20 13 -2.10 11 -1.70 11 -2.80 12
Weibull 6.90 5 10.60 7 24.90 8 14.30 9 18.00 9
Average 10.2 10.1 9.8 10.2 10.0
Beta 5.50 6 5.00 10 9.30 10 4.40 10 3.80 10
Cauchy -3.50 16 -2.90 15 -5.20 15 -2.30 12 -1.70 11
Exponential -16.30 19 -29.90 18 -75.20 18 -44.40 18 -58.90 18
Gaussian -18.50 20 -42.20 20 -108.10 20 -65.90 20 -89.60 20
Non-uniform 10.90 1 26.70 1 69.20 1 42.60 1 58.40 1
25 Triangular-0.5 0.90 13 8.40 9 24.50 9 15.90 8 23.40 7
Triangular-0 -2.10 15 -15.70 16 -44.60 16 -29.30 16 -42.90 17
Triangular-1 4.50 8 0.40 12 -4.50 14 -3.70 14 -9.00 15
Uniform 7.70 3 12.90 5 30.60 6 18.10 6 23.30 8
Weibull 5.20 7 19.40 3 52.90 3 33.60 3 47.70 3
Average 10.8 10.9 11.2 10.8 11.0
TABLE VII: Overall Difference and Rank for Chaotic Environments
Error CME Offline Error ABEBC ABEAC
Teloud Distribution Difference ~ Rank Difference ~ Rank Difference Rank Difference Rank Difference Rank
Beta -4.80 13 -11.82 13 -30.70 13 -18.86 14 -25.90 15
Cauchy 3.84 9 7.08 10 17.38 10 10.32 10 13.54 10
Exponential -9.02 15 -13.40 14 -31.18 14 -17.78 13 -22.16 13
Gaussian -8.64 14 -19.16 15 -48.84 16 -29.68 16 -40.20 16
Non-uniform 16.68 4 33.86 5 84.90 5 51.04 5 68.22 5
0.5 Triangular-0.5 24.30 1 49.28 1 123.54 1 74.26 1 99.24 1
Triangular-0 7.52 8 16.66 8 42.46 8 25.80 7 34.94 8
Triangular-1 -23.86 19 -55.96 19 -144.02 19 -88.06 19 -120.16 18
Uniform -35.60 20 -64.66 20 -158.38 20 -93.72 20 -122.78 20
Weibull -22.56 18 -55.24 18 -143.16 18 -87.92 18 -120.60 19
Average 12.1 123 124 12.3 12.5
Beta 16.00 5 37.62 3 96.86 3 59.24 3 80.86 3
Cauchy 20.06 3 37.08 4 91.18 4 54.10 4 71.12 4
Exponential 20.34 2 42.40 2 106.86 2 64.46 2 86.52 2
Gaussian -3.86 12 -2.84 12 -4.64 12 -1.82 12 -0.80 12
Non-uniform 1.62 11 12.94 9 37.22 9 24.26 9 35.60 6
25 Triangular-0.5 -10.00 16 -34.66 17 -93.98 17 -59.32 17 -83.98 17
Triangular-0 10.90 7 18.98 6 46.04 6 27.06 6 35.14 7
Triangular-1 -17.58 17 -19.96 16 -42.32 15 -22.34 15 -24.72 14
Uniform 11.08 6 17.86 7 42.54 7 24.66 8 31.46 9
Weibull 3.58 10 3.94 11 8.24 11 4.30 11 4.66 11
Average 8.9 8.7 8.6 8.7 8.5

triangular-1 distribution with radius of 25. The
mance for all measures was demonstrated by
distribution with radius of 25.

worst perfor-
the Gaussian

The average ranks in Table VIII depict that, in general, the
radius of 0.5 was preferable to the radius of 25. Given that
the task in single-peak environments is to track and optimize
a single peak, it is not unexpected to observe that exploitation
is generally preferred. Once the lone peak has been found,
the exploratory phase has essentially ended, and exploitation
becomes more important. Therefore, a larger capacity for ex-
ploitation exists in uni-modal environments than multi-modal
environments.

Five-Peak Environments: The results for five-peak envi-
ronments are shown in Table IX. The raw error was optimized
most effectively by the triangular-0.5 distribution with a ra-
dius of 0.5 while the non-uniform distribution, with radius
25, demonstrated the best performance with respect to the
remainder of measures. The triangular-1 distribution with
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radius 25 resulted in the worst overall values for error, CME,
offline error, and ABEBC. The worst ABEAC measure was
demonstrated by the exponential distribution with radius 25.

As with single peak-environments, distributions coupled
with a radius of 0.5 resulted in lower average ranks than those
coupled with a radius of 25. This indicates that even when
multi-modal environments are examined, excessive exploration
can be detrimental to performance.

C. Summary

When aggregated across all environments, the triangular-
0.5 distribution with a radius of 0.5 lead to the best error, and
thus accuracy, while a non-uniform distribution with radius of
0.5 demonstrated the best performance with respect to all other
measures. It was observed that for all but chaotic environments,
the smaller radius of 0.5 lead to superior performance, in
general. For abrupt environments, the smaller radius directly
contradicted the suggested value of reoua = $/2 [4], [6].
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error, in that order, on 30D, single-peak environments. Values in parentheses denote the size of r¢jouq-

While further evidence is need to conclusively state the fact,
these results indicated that exploitation is generally preferred
to exploration in QPSO, contrary to previous assumptions [6].

A noteworthy observation was that in no type of envi-
ronment did the commonly used uniform distribution (with
either radius size) lead to lowest overall error. However, the
uniform distribution with a radius of 0.5 did result in the best
CME, offline error, ABEBC, and ABEAC measures on quasi-
static environments. This observation indicates that, in general,
applications which make use of the standard QPSO algorithm
can be improved upon by using a more effective probability
distribution when generating the quantum positions.

VI. CONCLUSION

This paper presented an empirical study on the performance
implications of different probability distributions being used to
generate the positions of quantum particles in the quantum par-
ticle swarm optimization (QPSO) algorithm. Ten probability
distributions were examined using two quantum radius sizes on
a wide variety of dynamic environments with various temporal
and spatial severities, dimensionalities, and peaks.

The results indicated that the most effective probability dis-
tribution was dependent upon the type of dynamism. However,
with the exception of chaotic environments, a smaller radius,
and thereby a more compact quantum cloud, lead to superior
performance, in general. Given that the smaller radius, with
heavier focus on exploitation, lead to better performance, this
provided evidence to refute previous assumptions that the task
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of quantum particles is purely exploration. A final notewor-
thy conclusion was that the uniform distribution performed
relatively poorly overall, especially when considering solution
accuracy. Therefore, the use of alternative probability distribu-
tions for updating quantum positions may lead to performance
improvements in many applications which employ QPSO.

The primary objective of this study was to provide em-
pirical evidence that examining alternative probability distri-
butions for quantum particles is warranted. A future study
will aim to generalize the results and give direction as to
which probability distributions are better suited to specific
environment types. Additionally, further work will examine
the performance of the probability distributions relative to the
QPSO parameters, namely the proportion of quantum particles
and the quantum radius. It is not unreasonable to expect that
given a different number of quantum particles, the optimal
distribution for them would differ. Similarly, having a different
sized hypersphere to generate positions may also influence
the distribution which is most effective. Another study will
consider multi-peak environments in a more focused fashion,
i.e. using multi-swarm QPSO variants.
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